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Confidence intervals
Limits & significance

—Null Hypothesis testing – P-values
— Classical or ‗frequentist‘ confidence intervals
— Issues that arise in interpretation of fit result
— Bayesian statistics and intervals



Introduction

• Issues and differences between methods arise when 
experimental result contains little information

• Now we focus on the difficult cases

• Most common scenario is establishing the presence of 
signal in the data (at a certain confidence level), or be 
able to set limits, in the absence of a convincing signal

– Connection with hypothesis testing 
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Hypothesis testing (reminder)

• Definition of terms

– Rate of type-I error = a

– Rate of type-II error = b

– Power of test is 1-b

• Treat hypotheses asymmetrically

– Null hypo is special  Fix rate of type-I error

• Now can define a well stated goal

– Maximize the power of test (minimized rate of type-II error) for 
given a
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Formulating the question precisely

• When making statistical inference on data samples that 
contain little information, precise formulation of 
question and assumption made, become very important

• Let‘s start with a very basic formulation on the question 
of discovery. 

• Hypothetical case for ―SuperSymmetry‖ discovery

– Simulation for SM – Predicts 3 events (Poisson, μ exactly known)

– Simulation for SUSY – Predicts 6 events  9 events in total

– Observed event count in data: 8 events

• How do you conclude (or not) that you‘ve discovered 
supersymmetry?

– You expect 9 events (with SUSY), you see 8, looks promising
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Formulating the question precisely

• NB: Proving that you see SUSY is very hard!

– Usually not the 1st question to resolve, instead

• Instead: Can you prove the SM is wrong?

– I.e. what is the probably when expect 3 events we observe, with 
SM processes only?

– Note that this question is easier to answer: you don‘t event need 
any SUSY simulation to (dis)prove it

• Connection with hypothesis testing

– H0 = SM, H1 = SM+SUSY,

– Aiming to disprove H0  care primarily about rate of Type-I error 
(a)  ‗False Positive‘ (claim discovery when there is none)

– NB: To quantify Type-II error (b)  ‗False Negative‘ (claim no 

discovery when you could have) you do need SUSY events

• This will then also depend on SUSY modeling details & parameters

Wouter Verkerke, NIKHEF



Significance, Probability

• How do you formulate your result

– There is a X% probability that there is no SUSY in nature?

– If there is no SUSY in nature, Y% of repeated experiments will 
report an excess of events that observed (or larger)

• Are these statements equivalent?

• Do both statements result in the same numeric value?

– I.e. is Y% = 100%-X%

• Need to discuss fundamentals of probability and 
statistics more before proceeding.
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Definition of ―Probability‖

• Abstract mathematical probability P can be defined in terms of 
sets and axioms that P obeys. If the axioms are true for P, 
then P obeys Bayes‘ Theorem (see next slides)

P(B|A) = P(A|B) P(B) / P(A).

• Two established* incarnations of P are:

• 1) Frequentist P: limiting frequency in ensemble of imagined 
repeated samples (as usually taught in Q.M.). 
P(constant of nature) and P(SUSY is true) do not exist (in a 
useful way) for this definition of P (at least in one universe).

• 2) (Subjective) Bayesian P: subjective degree of belief.
(de Finetti, Savage) P(constant of nature) and P(SUSY is true) 
exist for You. Shown to be basis for coherent personal 
decision-making.

*It is important to be able to work with either definition of P, and to know 
which one you are using!
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Frequentist P – the initial example

• Work out initial example (disproving SM)

• Can we calculate probability that SM mimics N=9
(i.e. result is a ‗false positive)?

– Calculation details depend on how measurement was done 
(fit, counting etc..)

– Simplest case: counting experiment, Poisson process

Prediction      N=3            
Measurement N=9

0.0038)3;(
9

 


dnnPoissonp  =‗p value‘



Frequentist P – working out example #2

• P-value - If you repeat experiment many times, given 
fraction of experiments will result in result more 
extreme that observed value

– In this example, only 0.38% of experiments will result in an 
observation of 9 or more events when 3 are expected.

• P-Value vs Z-value (significance)

– Often defines significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction to give 
the same p-value.
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Bayes Theorem in pictures

• Rev. Thomas Bayes

• 1702 – 7 April 1761

• Bayes Theorem

• Essay “Essay Towards Solving a Problem in the Doctrine 
of Chances”  published in Philosophical Transactions of 
the Royal Society of London in 1764
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P(B|A) = P(A|B) P(B) / P(A).



Bayes‘ Theorem in Pictures
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What is the ―Whole Space‖?

• Note that for probabilities to be well-defined, the ―whole 
space‖ needs to be defined, which in practice introduces 
assumptions and restrictions.

• Thus the ―whole space‖ itself is more properly thought 
of as a conditional space, conditional on the 
assumptions going into the model (Poisson process, 
whether or not total number of events was fixed, etc.).

• Furthermore, it is widely accepted that restricting the 
―whole space‖ to a relevant subspace can sometimes 
improve the quality of statistical inference –see the 
discussion of ―Conditioning‖ in later slides.
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Example of Bayes‘ Theorem Using Frequentist P

• A b-tagging method is developed and one measures:

– P(btag| b-jet), i.e., efficiency for tagging b‘s

– P(btag| not a b-jet), i.e., efficiency for background

– P(no btag| b-jet) = 1 -P(btag| b-jet), 

– P(no btag| not a b-jet) = 1 -P(btag| not a b-jet)

• Question: Given a selection of jets tagged as b-jets, 
what fraction of them is b-jets? 
I.e., what is P(b-jet | btag) ?

• Answer: Cannot be determined from the given 
information!

– Need also: P(b-jet), the true fraction of all jets that are b-jets. 
Then Bayes‘ Theorem inverts the conditionality:

P(b-jet | btag) ∝ P(btag|b-jet) P(b-jet)
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Example of Bayes‘ Theorem Using Bayesian P

• In a background-free experiment, a theorist uses a 
―model‖ to predict a signal with Poisson mean of 3 
events. From Poisson formula we know

– P(0 events | model true) = 30e-3/0! = 0.05

– P(0 events | model false) = 1.0

– P(>0 events | model true) = 0.95

– P(>0 events | model false) = 0.0

• The experiment is performed and zero events are 
observed.

• Question: Given the result of the expt, what is the 
probability that the model is true? 

I.e., What is P(model true | 0 events) ?
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Example of Bayes‘ Theorem Using Bayesian P

• Answer: Cannot be determined from the given 
information! 

– Need in addition: P(model true), the degree of belief in the mode 
prior to the experiment.  Then using Bayes‟ Thm

– P(model true | 0 events) ∝ P(0 events | model true) P(model true)

• If ―model‖ is S.M., then still very high degree of belief 
after experiment! 

• If ―model‖ is large extra dimensions, then low prior 
belief becomes even lower.

– N.B. Of course this example is over-simplified

Wouter Verkerke, NIKHEF 

[B.Cousins HPCP]



A Note re Decisions

• Suppose that as a result of the previous experiment, your 
degree of belief in the model is P(model true | 0 events) = 
99%, and you need to decide whether or not to take an 
action

– making a press release, or planning your next experiment, based on 
the model being true. 

• Question: What should you decide?

• Answer: Cannot be determined from the given information!

– Need in addition: the utility function (or cost function), which gives the 
relative costs (to You) of a Type I error (declaring model false when it 
is true) and a Type II error (not declaring model false when it is false).

• Thus, Your decision, such as where to invest your time or 
money, requires two subjective inputs: Your prior 
probabilities, and the relative costs to You of outcomes.

• Statisticians often focus on decision-making; in HEP, the 
tradition thus far is to communicate experimental results 
(well) short of formal decision calculations. One thing 
should become clear: classical “hypothesis testing” is not a 
complete theory of decision-making!
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At what p/Z value do we claim discovery?

• HEP folklore: claim discovery when p-value of 
background only hypothesis is  2.87  10-7, 
corresponding to significance Z = 5.

• This is very subjective and really should depend on the
prior probability of the phenomenon in question, e.g.,

– phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs ~10-7 (?)
Life on Mars ~10-10

Astrology ~10-20

• Cost of type-I error (false claim of discovery) can be 
high

– Remember cold nuclear fusion ‗discovery‘
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Bayes‘ Theorem Generalized to Probability Densities

• Original Bayes Thm: 

P(B|A) ∝ P(A|B) P(B). 

• Let probability density function p(x|μ) be the conditional pdf
for data x, given parameter μ. Then Bayes‘ Thm becomes

p(μ|x) ∝ p(x|μ) p(μ).

• Substituting in a set of observed data, x0, and recognizing 
the likelihood, written as L(x0|μ) ,L(μ), then

p(μ|x0) ∝L(x0|μ) p(μ),

where:

– p(μ|x0) = posterior pdf for μ, given the results of this experiment

– L(x0|μ) = Likelihood function of μ from the experiment

– p(μ) = prior pdf for μ, before incorporating the results of this experiment

• Note that there is one (and only one) probability density in μ 
on each side of the equation, again consistent with the 
likelihood not being a density.
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Bayes‘ Theorem Generalized to pdfs

• Graphical illustration of p(μ|x0) ∝ L(x0|μ) p(μ)

• Upon obtaining p(μ|x0), the credibility of μ being in any 
interval can be calculated by integration.

– To make a decision as to whether or not μ is in an interval or not 
(e.g., whether or not μ>0) , one requires a further subjective 
input: the cost function (or utility function) for making wrong 
decisions
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p(μ|x0) L(x0|μ) p(μ)

∝ ∗

Area that integrates 
X% of posterior

-1<μ<1 at 68% credibility



Choosing Priors

• When using the Bayesian formalism you always have a 
prior. What should you put in there?

• When there is clear prior knowledge, it is usually 
straightforward what to choose as prior

– Example: prior measurement of μ = 50 ± 10

– Posterior represents updated belief. But sometimes we only want 
to publish result of this experiment, or there is no prior 
information. What to do?
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Choosing Priors

• Common but thoughtless choice: a flat prior

– Flat implies choice of metric. Flat in x, is not flat in x2

• Flat prior implies choice on given metric

– Conversely you make any prior flat by a appropriate coordinate 
transformation (i.e a probability integral transform)

– ‗Preferred metric‘ has often no clear-cut answer. (E.g. when 
measuring neutrino-mass-squared, state answer in m or m2)

– In multiple dimensions even more issues (flat in x,y or flat in r,φ?)
Wouter Verkerke, NIKHEF
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Probability Integral Transform

• “…seems likely to be one of the most fruitful 
conceptions introduced into statistical theory in the last 
few years” −Egon Pearson (1938) 

• Given continuous x ∈(a,b), and its pdf p(x), let

y(x) = ∫a
x p(x′) dx′.

• Then y ∈( 0,1) and p(y) = 1 (uniform) for all y. (!)

• So there always exists a metric in which the pdf is 
uniform. 

– The specification of a Bayesian prior pdf p(μ) for parameter μ is 
equivalent to the choice of the metric f(μ) in which the pdf is 
uniform. 
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Using priors to exclude unphysical regions

• Priors provide a simple way to exclude unphysical regions 
from consideration

• Simplified example situations for a measurement of mn
2

1. Central value comes out negative (= unphysical).

2. Upper limit (68%) may come out negative, e.g. m2<-5.3, not so clear 
what to make of that

– Introducing prior that excludes unphysical region ensure limit in 
physical range of observable (m2<6.4)

– NB: Previous considerations on appropriateness of flat prior for domain 
m2>0 still apply Wouter Verkerke, NIKHEF
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Non-subjective priors?

• The question is: can the Bayesian formalism be used by scientists to report the 
results of their experiments in an ―objective‖ way (however one defines 
―objective‖), and does any of the coherence remain when subjective P is 
replaced by something else?

• Can one define a prior p(μ) which contains as little information as possible, so 
that the posterior pdf is dominated by the likelihood?

– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-20thcentury:

– The really really thoughtless idea*, recognized by Jeffreys as such, but dismayingly common in 
HEP: just choose p(μ) uniform in whatever metric you happen to be using! 

• ―Jeffreys Prior‖ answers the question using a prior uniform in a metric related to 
the Fisher information.

– Unbounded mean μ of gaussian: p(μ) = 1

– Poisson signal mean μ, no background: p(μ) = 1/sqrt(μ)

• Many ideas and names around on non-subjective priors

– Objective priors? Non-informative priors? Uninformative priors?

– Vague priors? Ignorance priors? Reference priors? 

• Kassand & Wasserman who have compiled a list of them, suggest a neutral 
name : Priors selected by “formal rules”.

– Whatever the name, keep in mind that choice of prior in one metric determines it in all other 
metrics: be careful in the choice of metric in which it is uniform!

– N.B. When professional statisticians refer to ―flat prior‖, they usually mean the Jeffreys prior.
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Sensitivity Analysis

• Since a Bayesian result depends on the prior probabilities, 
which are either personalistic or with elements of 
arbitrariness, it is widely recommended by Bayesian 
statisticians to study the sensitivity of the result to varying 
the prior.

• Sensitivity generally decreases with precision of experiment

• Some level of arbitrariness – what variations to consider in 
sensitivity analysis
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Bayesian Probability 

• Bayesian probability is often the ‗natural‘ framework in 
which people (& scientists) think.

• If you read ―90 < M(X) < 100‖ to mean that the true
M(X) has a 68% probability of being between 90-100
then you‘re thinking in terms of Bayesian probability

• Strictly speaking your quantifying your belief in M(X) (or 
perhaps our ‗collective belief as HEP scientists‘ as true 
value in nature of M(X) is fixed (but unknown)

• In the Bayesian framework you always have a prior. 

– If you didn‘t put one in, you‘re assuming it to be flat in your 
current choice of metric

Wouter Verkerke, NIKHEF



What Can Be Computed without Using a Prior?

• Not P(constant of nature | data).

1. Confidence Intervals for parameter values, as 
defined in the 1930‘s by Jerzy Neyman.

2. Likelihood ratios, the basis for a large set of 
techniques for point estimation, interval estimation, 
and hypothesis testing.

• These can both be constructed using frequentist 
definition of P.

• Compare and contrast them with Bayesian methods.
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Confidence Intervals

• ―Confidence intervals‖, and this phrase to describe 
them, were invented by Jerzy Neyman in 1934-37. 

– While statisticians mean Neyman‘s intervals (or an approximation) 
when they say ―confidence interval‖, in HEP the language tends to 
be a little loose.

– Recommend using ―confidence interval‖ only to describe intervals 
corresponding to Neyman‘s construction (or good approximations 
thereof), described below.

• The slides contain the crucial information, but you will 
want to cycle through them a few times to ―take home‖ 
how the construction works, since it is really ingenious –
perhaps a bit too ingenious given how often confidence 
intervals are misinterpreted.

• In particular, you will understand that the confidence 
level does not tell you ―how confident you are that the 
unknown true value is in the interval‖ –only a subjective
Bayesian credible interval has that property!
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How to construct a Neyman Confidence Interval

• Simplest experiment: one measurement (x), one theory 
parameter (q)

• For each value of parameter θ, determine distribution in in 
observable x

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-a% confidence Interval, define acceptance interval that 
contains 100%-a% of the probability 
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observable x
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given a parameter value θ0



How to construct a Neyman Confidence Interval

• Definition of acceptance interval is not unique

– Algorithm to define acceptance interval is called ‗ordering rule‘
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pdf for observable x given a parameter value θ0

observable x

observable x

Lower Limit

Central

Other options, are e.g. 
„symmetric‟ and „shortest‟



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ
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How to construct a Neyman Confidence Interval

• This makes the confidence belt

– The region of data in the confidence belt can be considered as 
consistent with parameter θ

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• This makes the confidence belt

– The region of data in the confidence belt can be considered as 
consistent with parameter θ
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How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can 
be constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true 
value
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Confidence interval – summary

• Note that this result does NOT amount
to a probability density distribution
in the true value of q

• Let the unknown true value of θ be θt. 

In repeated expt‘s, the confidence 
intervals obtained will have 
different endpoints [θ1, θ2], 
since the endpoints are functions 
of the randomly sampled x.

A little thought will convince you that 
a fraction C.L. = 1 – a of intervals 
obtained by Neyman‘s construction
will contain (―cover‖) the fixed but 
unknown μt. i.e.,

P( θt ∈[θ1, θ2]) = C.L. = 1 -a.

• The random variables in this equation are θ1 and θ2, and not θt, 

• Coverage is a property of the set, not of an individual interval! 

• It is true that the confidence interval consists of those values of θ for 
which the observed x is among the most probable to be observed.

– In precisely the sense defined by the ordering principle used in the Neyman construction
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Coverage

• Coverage = Calibration of confidence interval

– Interval has coverage if probability of true value in interval 
is a% for all values of mu

– It is a property of the procedure, not an individual interval

• Over-coverage : probability to be in interval > C.L

– Resulting confidence interval is conservative

• Under-coverage : probability to be in interval < C.L

– Resulting confidence interval is optimistic

– Under-coverage is undesirable  You may claim discovery too early

• Exact coverage is difficult to achieve

– For Poisson process impossible 
due to discrete nature of event count

– ―Calibration graph‖ for preceding example below 
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Confidence intervals for Poisson counting processes

• For simple cases, P(x|μ) is known analytically and the 
confidence belt can be constructed analytically 

– Poisson counting process with a fixed background estimate, 

– Example: for P(x|s+b) with b=3.0 known exactly

Wouter Verkerke, NIKHEF

Confidence belt from 
68% and 90% central intervals

Confidence belt from 
68% and 90% upper limit



Connection with hypothesis testing example

• Construction of confidence intervals and hypothesis 
testing closely connected.

• Going back to opening example: 
worked with P(x|μ) with μ=3 to calculate p-value 
Slice at μ=3 of confidence belt
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Confidence belts for non-counting data

• Confidence for simple counting experiment easy

– Data = Single observable ‗N‘, 

– Hypothesis: Poisson model P(N|s+b) with b=fixed

• What if a single measurement is a histogram?

– Data = Histogram in ‗x‘

– Hypothesis = Gaussian model G(x|μ,σ) with μ=fixed

– Parameter σ goes on ‗y axis‘, what goes on ‗x axis‘ of Neyman?

• Solution: you construct a test statistic T(x,μ)
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Confidence belts for non-trivial data

• Common choice of test statistic is a Likelihood Ratio

– pdf(x,μ) = Gaussian(x,50,μ)
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Confidence belts for non-trivial data

• What will the confidence belt look like when
replacing

x=3.2
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Confidence belts for non-trivial data

• What will the confidence belt look like when
replacing

x=3.2
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Confidence belts with Likelihood Ratio ordering rule
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• Note that a confidence interval with 
a Likelihood Ratio ordering rule (i.e. 
acceptance interval is defined by a 
range in the LR) is exactly the 
Feldman-Cousins interval

• One of the important features of FC 
that it provides a unified method for 
upper limits and central confidence 
intervals with good coverage

– Upper limit at low x, 
central interval at higher

– When choosing ‗ad hoc‘ criteria to 
switch, good chance that your 
procedure doesn‘t have good coverage



Confidence belts with Likelihood Ratio ordering rule

• How can we determine the shape of the confidence belt 
in (LR,μ) for random problem

– In the case of the Poisson(x|s+b) confidence belt in (x,s) we could 
construct the belt directly from the p.d.f.

– In rare cases you can do the same for a belt in (LR,s)

1. Calculation with toy-MC sampling

– For each μ generate N samples of ‗toy‘ data generated from the 
model F(x|μ). Calculate LR for each toy and construct distribution



Confidence belts with Likelihood Ratio ordering rule

• Use asymptotic distribution of LR

– Wilks theorem  Asymptotic distribution of –log(LR) is chi-
squared distribution c2(2LLR,n), with n the number of parameters 
of interest (n=1 in example shown)

– Does not assume p.d.f.s are Gaussian

– Example: 
LLR distribution from 100 event, 
20-bin measurement with Gaussian model 
from toy MC (histogram) vs asymptotic p.d.f
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excellent agreement 
up to Z=3 (LLR=4.5)

(need a lot of toy MC
to prove this up to Z=5…)



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for LLR, 

– Then the confidence belt is exactly a box 

– And the constructed confidence interval can be simplified
to finding the range in μ where LLR=½Z2

 This is exactly the MINOS error
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Likelihood (Ratio) Intervals

• Thus, after using maximum-likelihood method to obtain estimate û 
which maximizes L(u), one can obtain a likelihood interval [u1,u2] as 
the union of all u for which 

LR(u) ≤Z2, for Z real.

• But! Regularity conditions, in particular requirement that û not be on 
the boundary, need to be carefully checked. (E.g., if u≥0 on physical 
grounds, then û=0 requires care.)
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Likelihood-Ratio Interval example

• 68% C.L. likelihood-ratio 
interval for Poisson process 
with n=3 observed:

• L (μ) = μ3exp(-μ)/3!

• Maximum at μ= 3.

• Δ2ln(L)= 12 yields interval 
[1.58, 5.08]
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U.L. in Poisson Process, n=3 observed: 3 ways

• Bayesian interval 
at 90% credibility: 
find μu such that posterior 
probability p(μ>μu) = 0.1.

• Likelihood ratio method for 
approximate 90% C.L. U.L.: 
find μu such that L(μu) / L(3) 
has prescribed value. 

• Frequentist one-sided 90% 
C.L. upper limit: find μu such 
that P(n≤3 | μu) = 0.1.
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68% intervals by various methods for Poisson process with n=3 observed

• NB: Frequentist intervals over-cover due to discreteness 
of n in this example

• Note that issues, divergences in outcome are usually 
more dramatic and important at high Z (e.g. 5σ = 
‗discovery‘)
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Summary

• Three classes of inference (for limits and intervals)

– Bayesian  Results in probability density function on true value. 

Prior knowledge always implicitly or explicitly assumed

– Frequentist  Statement on frequency of obtained result (X% of 

time true value will be in interval)

– Likelihood  Asymptotically identical to Frequentist interval with 

LR ordering rule (Feldman Cousins, Wilks Theorem)

• For ‗simple problems‘ (high statistics, limits at <<5σ) all 
procedures usually give comparable answers

• For ‗difficult problems‘ (low stats, high limits) answer 
will diverge

– See Poisson n=3 for low statistics example

– Results depends on precise definition of question asked, which is 
different for each described technique
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