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U.L. in Poisson Process, n=3 observed: 3 ways

• Bayesian interval 
at 90% credibility: 
find μu such that posterior 
probability p(μ>μu) = 0.1.

• Likelihood ratio method for 
approximate 90% C.L. U.L.: 
find μu such that L(μu) / L(3) 
has prescribed value. 

– Asymptotically identical
to Frequentist interval
(Wilks theorem)

• Frequentist one-sided 90% 
C.L. upper limit: find μu such 
that P(n≤3 | μu) = 0.1.
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U.L. in Poisson Process, n=3 observed: 3 ways

• For ‗difficult problems‘ (low stats, high limits) answer will 
diverge

– See Poisson n=3 for low statistics example

– Results depends on precise definition of question asked, which is 
different for each described technique

• Deep foundational issues

– Frequentist approach has guaranteed ensemble properties 
(―coverage‖) (though issues arise with systematics.) Good ?!?

– Only Frequentist approach uses P(n|μ) for n ≠observed value. Bad?!?  
(See likelihood principle in next slides)

• These issues will not be resolved: aim to have software for 
reporting all 3 answers, and sensitivity to prior.

• Note on coverage

– Bayesian methods do not necessarily cover (it is not their goal), but 
that also means you shouldn‘t interpret a 95% Bayesian ―Credible 
Interval‖ in the same way. Coverage can be thought of as a 
calibration of our statistical apparatus. 
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Likelihood Principle

• As noted above, in both Bayesian methods and 
likelihood-ratio based methods, the probability 
(density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other 
data are not used!

• In contrast, in typical frequentist calculations (e.g., a 
p-value which is the probability of obtaining a value as 
extreme or more extreme than that observed), one 
uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: 

If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two 
experiments should be identical.
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Likelihood Principle

• L.P. is built in to Bayesian inference 
(except e.g., when Jeffreys prior leads to violation). 

• L.P. is violated by p-values and confidence intervals.

• Although practical experience indicates that the L.P. 
may be too restrictive, it is useful to keep in mind. 
When frequentist results ―make no sense‖ or ―are 
unphysical‖ the underlying reason might be traced to a 
bad violation of the L.P.

• *There are various versions of the L.P., strong and 
weak forms, etc. See Stuart99 and book by Berger and 
Wolpert.
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The ―Karmen Problem‖

• Simple counting experiment: 

– You expected precisely 2.8 background events 
with a Poisson distribution

– You count the total number of observed events N=s+b

– You make a statement on s, given Nobs and b=2.8

• You observe N=0!

– Likelihood: L(s) = (s+b)0 exp(-s-b) / 0! = exp(-s) exp(-b)

• Likelihood –based intervals

– LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s)  Independent of b!

– Bayesian integral also independent of factorizing exp(-b) term

• So for zero events observed, likelihood-based inference 
about signal mean s is independent of expected b. 

• For essentially all frequentist confidence interval 
constructions, the fact that n=0 is less likely for b=2.8 
than for b=0 results in narrower confidence intervals for μ 
as b increases. 

– Clear violation of the L.P.



Likelihood Principle Example #2

• Binomial problem famous among statisticians 

• Translated to HEP: You want to know the trigger efficiency e. 

– You count until reaching n=4000 zero-bias events, and note that of these, 
m=10 passed trigger. 

Estimate e = 10/4000, compute binomial conf. interval for e.

– Your colleague (in a different sample!) counts zero-bias events until m=10 
have passed the trigger. She notes that this requires n=4000 events. 

Intuitively, e=10/4000 over-estimates e because she stopped just upon 
reaching 10 passed events. (The relevant distribution is the negative 
binomial.)

• Each experiment had a different stopping rule. Frequentist 
confidence intervals depend on the stopping rule.

– It turns out that the likelihood functions for the binomial problem and the 
negative binomial problem differ only by a constant! 

– So with same n and m, (the strong version of) the L.P. demands same 
inference about e from the two stopping rules!
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Likelihood Principle Discussion

• We will not resolve this issue, but should be aware of it.

• If you are interested, read the book by Berger & 
Wolpert, but be prepared for the stopping rule 
arguments to set your head spinning.

• Irrelevance of the Stopping Rule is known as the 
―Stopping Rule Principle‖ and has been hotly debated 
for decades, with some famous statisticians changing 
their minds, e.g:

– L.J. ―Jimmie‖ Savage is widely quoted as saying in 1962, ―I 
learned the stopping-rule principle from Professor Barnard in 
conversation in the summer of 1952. Frankly, I then thought it a 
scandal that anyone in the profession could advance an idea so 
patently wrong, even as today I can scarcely believe that some 
people resent an idea so patently right.‖
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Conditioning

• An ―ancillary statistic‖ (see literature for precise math 
definition) is a function of your data which carries 
information about the precision of your measurement of 
the parameter of interest, but no info about parameter‘s 
value.

– The classic example is a branching ratio measurement in which the 
total number of events N can fluctuate if the expt design is to run for a 
fixed length of time. Then N is an ancillary statistic.

• You perform an experiment and obtain N total events, and 
then do a toy M.C. of repetitions of the experiment. Do you 
let N fluctuate, or do you fix it to the value observed? 

• It may seem that the toy M.C. should include your 
complete procedure, including fluctuations in N.

• But there are strong arguments, going back to Fisher, that 
inference should be based on probabilities conditional on 
the value of the ancillary statistic actually obtained!
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Conditioning (cont.)

• The 1958 thought expt of David R. Cox focused the issue:

– Your procedure for weighing an object consists of flipping a coin to 
decide whether to use a weighing machine with a 10% error or one 
with a 1% error; and then measuring the weight. (Coin flip result is 
ancillary stat.)

– Then ―surely‖ the error you quote for your measurement should reflect 
which weighing machine you actually used, and not the average error 
of the ―whole space‖ of all measurements!

– But classical most powerful Neyman-Pearson hypothesis test uses the 
whole space!

• In more complicated situations, ancillary statistics do not 
exist, and it is not at all clear how to restrict the ―whole 
space‖ to the relevant part for frequentist coverage.

• In methods obeying the likelihood principle, in effect one 
conditions on the exact data obtained, giving up the 
frequentist coverage criterion for the guarantee of 
relevance
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Conditioning - The two children problem

• General issue of precise question formulation is 
pointedly illustrated with famous ―two children problem‖ 
by Gardener

• ―A couple has two children, at least one them one is a 
boy born on Tuesday‖

• What is the probability that they have 2 boys?
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Conditioning - The two children problem

• Conditioning also plays a role in Martin Gardeners 
famous ―two children problem‖

• ―A couple has two children, at least one them one is a 
boy born on Tuesday‖

• What is the probability that they have 2 boys?

(Answer = 13/27)

• If you think this is counter-intuitive try this easier 
version: ―A couple has two children, at least one them 
one is a boy‖

• What is the probability that they have 2 boys?
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Summary of Three Ways to Make Intervals
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Nuisance parameters

• Have so far considered problems with one model 
parameter

• Hypothetical case for ―SuperSymmetry‖ discovery

– Simulation for SM – Predicts 3 events (Poisson, μ exactly known)

– Simulation for SUSY – Predicts 6 events  9 events in total

– Observed event count in data: 8 events

• How do you conclude (or not) that you‘ve discovered 
supersymmetry?

– You expect 9 events (with SUSY), you see 8, looks promising

• Discussed three types of solution to above problem.

• What do we do if background is not exactly known?

– E.g. μ = 3.0 ± 1.0  (NB: this statement does not unique fix P(μ))
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Nuisance parameters

• In real life, background rate, shape of background 
model are usually not exactly known

– Need procedure to incorporate uncertainty on these ‗nuisance 
parameters‘ into account when setting limits etc.

• For preceding problems (with precisely defined null 
hypotheses) procedures exist to calculate intervals and 
significances could be exactly

• When dealing with nuisance parameters, this generally 
not possible anymore

• Q: Is that a problem?

– A: Yes. If your (approximate) calculation says Z=5, but it is really 
Z=3, there is a substantial chance your discovery is fake

– If ATLAS and CMS use different methods one experiment may 
claim discovery of e.g. Higgs with only half the data of the other 
because of differences in significance calculation
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Counting with sideband – Nuisance parameters

• Simplest example: counting experiment with sideband

– We have a signal region where we expect s+b events from signal 
and background respectively

– We have a control region where we measure background only. 
This region can be larger than the signal region to accrue extra 
statistics

• Model: Poisson(Nsig|s+b)Poisson(Nctl|τb)

• Measurement now consistent of two numbers: Nsig,Nctl

• Model now has two parameters constrained from data

– s = signal yield = ‗parameter of interest‘

– b = background estimate = ‗nuisance parameter‘

• Result from experiment is 2D likelihood L(s,b)
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Counting with sideband – Nuisance parameters

• Model: Poisson(Nsig|s+b)Poisson(Nctl|τb), τ=3 (exact)

• Visualization of Likelihood

– Nsig=10, Nctl=10

Wouter Verkerke, NIKHEF

We know how to set
interval on s given a fixed b

Now need to incorporate
uncertainty on b…



Treatment of nuisance parameters

• 1 – Definition of nuisance parameters

– A nuisance parameter is any parameter of the model that is not a 
parameter-of-interest (for physics).

• Example: for Higgs discovery N(higgs) is of interest, everything else is nuisance

• 2 – Introduction of nuisance parameters in Likelihood

– Sometimes nuisance parameter arise naturally in the likelihood. 

– Systematic uncertainties always introduce nuisance parameters, 
but explicit parameterization not always obvious (e.g. how to 
parameterize effect of Pythia-vs-Herwig?)

• 3 – Treatment of nuisance parameters in inference

– Each of the three main classes of constructing intervals (Bayesian, 
likelihood ratio, Neyman confidence intervals) has a way to 
incorporate the uncertainty on the nuisance parameters in the 
parameters of interest. But this remains a subject of frontier 
statistics research.

Wouter Verkerke, NIKHEF



Likelihood fit – Definition of nuisance parameters

• In ML fits, any floating fit parameter that is not the 
parameter of interest if a nuisance parameter

• Model = Nsig*Gauss(x,m,s)+Nbkg*Uniform(x)

– Nsig is parameter of interest

– m,s,Nbkg are nuisance parameters

• Difference with Poisson(Nsig|s+b)Poisson(Nctl|τb) 
example is that nuisance parameters are here 
constrained from the same dataset as the parameter of 
interest
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Introduction of nuisance parameters due to systematic uncertainties

• Additional nuisance parameters can originate from 
systematic uncertainties earlier in the analysis chain

• Examples

– Fragmentation with Herwig vs Pythia

– Uncertainty on Jet Energy Scale

– Acceptance/efficiency uncertainties

• Often these uncertainties are included 
with ‗variation technique‘ a posteriori

– E.g. Extract parameter-of-interest with Pythia and Herwig separately

– Add e.g. half of difference in quadrature to total error

– Usually fine for ‗high‘ statistics fits with 1σ error definition (NB: still 
need to pay attention to correlations with other errors)

• For Bayesian/Likelihood based techniques these sources 
must be incorporated in the likelihood

– Ensure consistent treatment of these systematics as nuisance 
parameters in inference analysis (limit or confidence interval)

– No accurate ‗a posteriori‘ prescription exists to include these



Incorporating external systematics in the likelihood

• External systematics can be defined in two classes

– A: Those that have an effect only on the parameters of the model

– B: Those that (also) alter the distribution of the observables

• A: Can introduce systematics on parameters as auxiliary 
measurement in likelihood

– Idea: float parameter that is originally fixed, but add auxiliary 
measurement that constrains that parameter with a shape that represents 
systematic uncertainty on it

– Example model without systematic
L(s,b) = Poisson(Nsig|s+b) [ with b fixed ]

– Example Model with auxiliary measurement: 
L(s,b) = Poisson(Nsig|s+b)  Poisson(Nctl|τb)

– Can replace auxiliary measurement with external measurement
L(s,b) = Poisson(Nsig|s+b)  Gaussian(b,b0,sb)

(distribution for b from ext. source)

Main measurement Auxiliary measurement
(distribution for b, given Nctl,τ)



Adding uncertainties to a likelihood

• Example 1 – Width known exactly

• Example 2 – Gaussian uncertainty on width



Shape of auxiliary measurement likelihood

• Shape of auxiliary measurements requires some careful 
thought – especially when evaluating high Z limits

• Option A: Rescaled Poisson: Poisson(N|τb)

– Most suitable if uncertainty on B is dominated by statistical 
uncertainty from a sideband or control region

– (It is the exact solution for a counting measurement in a 
sideband)

• Option B: Gaussian: Gauss(b,b0,σb)

– Usually chosen if source information is known in form b0 ± σb

– Also often chosen if true shape is unknown (e.g. ‗theory 
uncertainty‘)

– Central Limit Theorem  Sum of many uncertainties is 

asymptotically Gaussian

– But beware of relatively large Gaussian uncertainties 
 These can result in optimistically biased significance 

calculations
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Shape of auxiliary measurement likelihood

• Option B: Gaussian: Gauss(b,b0,σb) [ continued]

– Illustration of danger of large Gaussian uncertainties

Model = Poisson(Nsig|s+b)  Gaussian(b,b0,sb)
with b0 = 3, σb = 1 (33%)

If we look at 5σ fluctuations we in principle allow the Gaussian 
term to move 5σ off its center 
 Allow downward fluctuation to b=-2 !

In reality b must be greater than zero 
 Significance of result will be optimistically biased

• Option C: Gamma(b,b0,σb)

– Longer positive tail than Gaussian

– Better behavior at 0 than Gaussian

– Asymptotically Gaussian

– Good ‗alternate model‘ for systematics
Wouter Verkerke, NIKHEF
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• Two values – corresponding to use of two (theory) models A,B

– What is a good estimate for your systematic uncertainty?

• I) If A and B are extreme scenarios, and the truth must 
always be between A and B

– Example: fully transverse and fully longitudinal polarization

– Error is root of variance with uniform distribution with width A-B

– Popular method because sqrt(12) is quite small, but only justified if A,B are 
truly extremes!

• II) If A and  B are typical scenarios

– Example: JETSET versus HERWIG (different Physics simulation packages)

– Error is difference divided by sqrt(2)
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Systematic uncertainties that effect observables

• So far discussed introduction of systematic effect that 
only affect model parameters.

• Can also model systematic uncertainties that affect 
distribution of observables in likelihood

• Example: ‗Pythia-vs-Herwig‘

– Need to run full analysis chain on both variations

– Fit resulting observable distribution 
for both cases

• Q: How to turn set of two
distributions in a single model
with a associated systematic
uncertainty parameter?

Wouter Verkerke, NIKHEF
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Nuisance parameters that effect observables

• Solution is a ‗morphing transform‘ – An algorithm to 
turn a given pdf(A) into pdf(B) with an associated 
continuous parameters

– Several algorithms available in e.g. RooFit

– In likelihood replace FA with FAB and gain explicit nuisance 
parameter a that quantifies ‗Herwig-vs-Pythia‘ systematic

– Optionally, add (Gaussian) constraint term on parameter a

FA(x;p) FB(x;q) FAB(x;a,p,q)



Treatment of nuisance parameters

• Effort so far has been to incorporate systematic 
uncertainties as explicit nuisance parameters in model

• The next step is to include the effect of all these 
nuisance parameters on the statistical inference on the 
parameter-of-interest

• Will first discuss procedure in each of the three 
‗fundamental‘ approaches 
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Dealing with nuisance parameters in Bayesian intervals

• Elimination of nuisance parameters in Bayesian interval

– Construct a multi-D prior pdf P(parameters) 
for the space spanned by all parameters; 

– Multiply by P(data|parameters) for the data obtained; 

– Integrate over the full subspace of all nuisance parameters; 

– You are left with the posterior pdf for the parameter of interest. The 
math is now reduced to the case of no nuisance parameters.

• Issues

– The multi-D prior pdf is a problem for both subjective and non-
subjective priors. 

– In HEP there is almost no use of the favored non-subjective priors 
(reference priors of Bernardo and Berger), so we do not know how well 
they work for our problems. 

– In case of many nuisance parameters, the high-D numeric integral can 
be a technical problem (use of Markov Chain Monte Carlo)
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Illustration of nuisance parameters in Bayesian intervals

• Example: data with Gaussian model (mean,sigma)

∫ =

MLE fit fit data-logLR(mean,sigma)

LR(mean,sigma) prior(mean,sigma) posterior(mean)



Dealing with nuisance parameters in Frequentist intervals

• (Full) Neyman construction: 

– The goal is that the parameter of interest should be covered at 
the stated confidence for every value of the nuisance 
parameter

– if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that parameter 
point should be considered:

– eg. don‘t claim discovery if any background scenario is compatible 
with data

• Issues

– Significant over coverage common
problem

– Wilks theorem may not apply
due to e.g. ‗look elsewhere effects‘
in nuisance parameters  must 

rely on toy MC approach, can
get very cumbersome
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Wilks theorem and nuisance parameters

• Wilks‘s theorem holds if the true distribution is in the 
family of functions being considered

– eg. we have sufficiently flexible models of signal & background to 
incorporate all systematic effects

– but we don‘t believe we simulate everything perfectly 

– ..and when we parametrize our models usually we have further 
approximated our simulation.

• E.g. if a model has a floating mass, it is clear that there 
is a degradation in significance due to the look-
elsewhere effect (if you look into a wide enough mass 
range, your always find ‗some peak‘ in the background)

– Formally, the conditions required for Wilks‘s theorem do not hold 
because floating mass parameter makes no sense in a 
background-only model. 

Wouter Verkerke, NIKHEF



Dealing with nuisance parameters in Likelihood ratio intervals

• Nuisance parameters in LR interval

– For each value of the parameter of interest, search the full 
subspace of nuisance parameters for the point at which the 
likelihood is maximized. 

– Associate that value of the likelihood with that value of the 
parameter of interest  ‗Profile likelihood‘

MLE fit fit data

-logLR(mean,sigma) -logLR(mean,sigma)
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Dealing with nuisance parameters in Likelihood ratio intervals

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)



Link between MINOS errors and profile likelihood

• Note that MINOS algorithm in 
MINUIT gives same errors as 
Profile Likelihood Ratio

– MINOS errors is bounding box 
around (s) contour

– Profile Likelihood = Likelihood
minimized w.r.t. all nuisance 
parameters

Wouter Verkerke, NIKHEF
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Dealing with nuisance parameters in Likelihood ratio intervals

• Issues with Profile Likelihood

– Has a reputation of underestimating the true uncertainties. 

– In Poisson problems, this is partially compensated by effect due to 
discreteness of n, and profile likelihood (MINUIT MINOS) gives 
good performance in many problems.

• NB: Computationally Profile Likelihood is quite 
manageable, even with a large number of nuisance 
parameters

– Minimize likelihood w.r.t. 20 parameters quite doable

– Especially compared to numeric integration over 20 parameters, 
or constructing confidence belt in 20 dimensions…

– But beware of finding the wrong minimum, General problem with 
algorithmic minimization

• But in profile likelihoods many minimizations are performed with incrementally 
different starting points  How to choose starting point?
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Hybrid Techniques: Introduction to Pragmatism

• Given the difficulties with all three classes of interval 
estimation, especially when incorporating nuisance 
parameters, it is common in HEP to relax foundational rigor 
and: 

– Treat nuisance parameters in a Bayesian way while treating the 
parameter of interest in a frequentist way, or

– Treat nuisance parameters by profile likelihood while treating 
parameter of interest another way, or

– Use the Bayesian framework (even without the priors recommended 
by statisticians), but evaluate the frequentist performance. In effect 
(as in profile likelihood) one gets approximate coverage while 
respecting the L.P.

• Example of common technique in HEP: ‗Cousins-Higland‘

– Use Bayesian technique to eliminate nuisance parameters (integration)

– Use Frequentist technique to construct interval on parameter-of-
interest from integrated likelihood

– NB: This technique is known to ‗under-cover‘ in certain situations

Wouter Verkerke, NIKHEF 



Recent comparisons results from PhyStat 2007

These slide discuss the earlier
shown problem:

Poisson(Nsig|s+b)  Poisson(Nctl|τb)

NB: This is one of the very few
problems with nuisance parameters
with can be exactly calculation



Recent comparisons results from PhyStat 2007

Wouter Verkerke, NIKHEF

Exact
solution



What do you publish? – Expected versus observed limits

• With knowledge of your detector and the expected 
background you can calculate the ‗expected limit‘ for 
any new discovery you‘d like to make

• This tells you how sensitive your experiment is to make 
a discovery.

• Procedure

– For each discovery type (e.g. Higgs at mass X GeV) run many MC 
studies, for each construct the limit.

– Average of limits you get from above procedure = expected limit

– Works in principle for any type of limit setting procedure 
(Bayesian, Frequentist of Likelihood)

• Two flavors of output

– Required amount of data to make N sigma discovery 

Customary when you don‘t have any data yet

– expected vs observed  Customary when you have data
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Example of expected limits – Higgs discovery potential
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Example of expected vs observed
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Expected versus observed limit

• If you find less ‗null hypothesis‘ events than expected 
your observed limit will be better then expected

– You got ‗lucky‘ in terms of limit setting

• If you find more ‗null hypothesis‘ events than expected 
your observed limit will be worse than expected

– You‘re unlucky in terms of setting a good limit

– On the other hand it is also possible that those extra events were 
actually ‗signal‘  You might get lucky soon with a discovery

Wouter Verkerke, NIKHEF



Goal for the LHC a Few Years Ago

• Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate 
complexity:

– Bayesian with analysis of sensitivity to prior

– Frequentist construction with approximate treatment of nuisance 
parameters

– Profile likelihood ratio (Minuit MINOS)

– Other ―favorites‖ such as LEP‘s CLS(which is an HEP invention)

• The community can then demand that a result shown with 
one‘s preferred method also be shown with the other 
methods, and sampling properties studied.

• When the methods all agree, we are in asymptopic
nirvana.

• When the methods disagree, we learn something! 

– The results are answers to different questions.

– Bayesian methods can have poor frequentist properties

– Frequentist methods can badly violate likelihood principle

Wouter Verkerke, NIKHEF 



ATLAS/CMS/ROOT Project: RooStats built on RooFit

• Core developers:

• K. Cranmer (ATLAS)

• Gregory Schott (CMS)

• Wouter Verkerke (RooFit)

• Lorenzo Moneta (ROOT)

• Open project, all welcome 
to contribute.

• Included in ROOT 
production releases since 
v5.22, more soon to come

• Example macros in 
$ROOTSYS/tutorials/roostats

• RooFit extensively 
documented, RooStats
manual catching up, code 
doc in ROOT.

Wouter Verkerke, NIKHEF 



RooStats Project – Example 

• Create a model - Example

Wouter Verkerke, NIKHEF 

RooWorkspace* w = new RooWorkspace(“w”); 

w->factory(“Poisson::P(obs[150,0,300], 

sum::n(s[50,0,120]*ratioSigEff[1.,0,2.],

b[100,0,300]*ratioBkgEff[1.,0.,2.]))");

w->factory("PROD::PC(P, Gaussian::sigCon(ratioSigEff,1,0.05), 

Gaussian::bkgCon(ratioBkgEff,1,0.1))"); 

)1.0,1,()05.0,1,()|( bsbs rGaussrGaussrbrsxPoisson 

RooWorkspace(w) w contents

variables

---------

(b,obs,ratioBkgEff,ratioSigEff,s)

p.d.f.s

-------

RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554

RooPoisson::P[ x=obs mean=n ] = 0.0325554

RooAddition::n[ s * ratioSigEff + b * ratioBkgEff ] = 150

RooGaussian::sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] = 1

RooGaussian::bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1

Create workspace with above model (using factory)

Contents of workspace from above operation



RooStats Project – Example 

• Confidence intervals calculated with model

– Profile 
likelihood 

– Feldman
Cousins

– Bayesian 
(MCMC)

Wouter Verkerke, NIKHEF 

ProfileLikelihoodCalculator plc; 

plc.SetPdf(w::PC); 

plc.SetData(data); // contains [obs=160]

plc.SetParameters(w::s); 

plc.SetTestSize(.1); 

ConfInterval* lrint = plc.GetInterval(); // that was easy. 

FeldmanCousins fc; 

fc.SetPdf(w::PC); 

fc.SetData(data); fc.SetParameters(w::s); 

fc.UseAdaptiveSampling(true); 

fc.FluctuateNumDataEntries(false); 

fc.SetNBins(100); // number of points to test per parameter 

fc.SetTestSize(.1); 

ConfInterval* fcint = fc.GetInterval(); // that was easy. 

UniformProposal up; 

MCMCCalculator mc; 

mc.SetPdf(w::PC); 

mc.SetData(data);  mc.SetParameters(s); 

mc.SetProposalFunction(up); 

mc.SetNumIters(100000); // steps in the chain 

mc.SetTestSize(.1); // 90% CL 

mc.SetNumBins(50); // used in posterior histogram 

mc.SetNumBurnInSteps(40); 

ConfInterval* mcmcint = mc.GetInterval();



RooStats Project – Example 

• Retrieving and visualizing output

Wouter Verkerke, NIKHEF 

double fcul = fcint->UpperLimit(w::s);

double fcll = fcint->LowerLimit(w::s);



RooStats Project – Example 

• Some notes on example

– Complete working example (with output visualization) 
shipped with ROOT distribution 
($ROOTSYS/tutorials/roofit/rs101_limitexample.C)

– Interval calculators make no assumptions on internal 
structure of model. Can feed model of arbitrary complexity to 
same calculator (computational limitations still apply!)

Wouter Verkerke, NIKHEF 



‗Digital‘ publishing of results

• A likelihood may be considered the ultimate publication 
of a measurement

• Interesting to be able to digitally publish actual 
likelihood rather than

– Parabolic version (i.e. you publish your measurement and an 
error)

– Some parameterized form. Cumbersome in >1 dimension. No 
standard protocol for exchanging this time of information

• This is trivially possible
with RooFit/RooStats

– Many potential applications, 
e.g. combining of Higgs channels, 

Wouter Verkerke, NIKHEF 



• Using both model & p.d.f from file

– Note that above code is independent of actual p.d.f in file 

e.g. full Higgs combination would work with identical code

TFile f(“myresults.root”) ;

RooWorkspace* w = f.Get(“w”) ;

RooPlot* xframe = w::x.frame() ;

w::d.plotOn(xframe) ;

w::g.plotOn(xframe) ;

RooAbsReal* nll = w::g.createNLL(w::d) 

RooAbsReal* pll = nll->createProfile(w::mean) ;

RooPlot* mframe = w::m.frame(-1,1) ;

pll->plotOn(mframe) ;

mframe->Draw()

Using persisted p.d.f.s.

Make plot
of data

and p.d.f

Construct
likelihood

& profile LH

Draw
profile LH
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A toy combination example

‘Atlas’
‘CMS’

Combined

P
ro

fi
le

 l
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d



Work in progress on realistic Higgs limit combination
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The end – Recommended reading

• Easy

– R. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989

– L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge 
University Press

– Philip R. Bevington and D.Keith Robinson, Data Reduction and 
Error Analysis for the Physical Sciences 

• Intermediate

– Glen Cowan, Statistical Data Analysis (Solid foundation for 
HEP)

– Frederick James, Statistical Methods in Experimental Physics, 
World Scientific, 2006. (This is the second edition of the 
influential 1971 book by Eadie et al., has more advanced 
theory, many examples)

• Advanced

– A. Stuart, K. Ord, S. Arnold, Kendall‘s Advanced Theory of 
Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of 
this ―Kendall and Stuart‖ series. (Authoritative on classical 
frequentist statistics; anyone contemplating a NIM paper on 
statistics should look in here first!)

• PhyStat conference series: 

– Beginning with Confidence Limits Workshops in 2000, links at 
http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/

Wouter Verkerke, NIKHEF 


