Likelihood principle
Systematics &
Nuisance parameters

— Likelihood principle and conditioning
— What are systematic uncertainties
— How to deal with systematic uncertainties

Wouter Verkerke, UCSB



U.L. in Poisson Process, n=3 observed: 3 ways

Bayesian interval

at 90% credibility:

find pu such that posterior
probability p(u>pu) = 0.1.

Likelihood ratio method for
approximate 90% C.L. U.L.:
find pu such that L(pu) / L(3)
has prescribed value.

- Asymptotically identical

to Frequentist interval
(Wilks theorem)

Frequentist one-sided 90%
C.L. upper limit: find pu such
that P(n<3 | pu) = 0.1.
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U.L. in Poisson Process, n=3 observed: 3 ways

e For 'difficult problems’ (low stats, high limits) answer will
diverge
— See Poisson n=3 for low statistics example

— Results depends on precise definition of question asked, which is
different for each described technique

e Deep foundational issues

- Frequentist approach has guaranteed ensemble properties
(“coverage”) (though issues arise with systematics.) Good ?!?

— Only Frequentist approach uses P(n|u§ for n #observed value. Bad?!?
(See likelihood principle in next slides

e These issues will not be resolved: aim to have software for
reporting all 3 answers, and sensitivity to prior.

e Note on coverage

- Bayesian methods do not necessarily cover (it is not their goal), but
that also means you shouldn’t interpret a 95% Bayesian “Credible
Interval” in the same way. Coverage can be thought of as a
calibration of our statistical apparatus.

Wouter Verkerke, NIKHEF
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Likelihood Principle

e As noted above, in both Bayesian methods and
likelihood-ratio based methods, the probability
(density) for obtaining the data at hand is used (via the
likelihood function), but probabilities for obtaining other
data are not used!

e In contrast, in typical frequentist calculations (e.qg., a
p-value which is the probability of obtaining a value as
extreme or more extreme than that observed), one
uses probabilities of data not seen.

e This difference is captured by the Likelihood Principle*:
If two experiments yield likelihood functions which are

proportional, then Your inferences from the two
experiments should be identical.

Wouter Verkerke, NIKHEF
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Likelihood Principle

L.P. is built in to Bayesian inference
(except e.g., when Jeffreys prior leads to violation).

L.P. is violated by p-values and confidence intervals.

e Although practical experience indicates that the L.P.

may be too restrictive, it is useful to keep in mind.
When frequentist results "make no sense” or “are
unphysical” the underlying reason might be traced to a
bad violation of the L.P.

*There are various versions of the L.P., strong and
weak forms, etc. See Stuart99 and book by Berger and
Wolpert.
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The “Karmen Problem”

e Simple counting experiment:

— You expected precisely 2.8 background events =———>
with a Poisson distribution

— You count the total number of observed events N=s+b
- You make a statement on s, given N, and b=2.8

e You observe N=0!
— Likelihood: L(s) = (s+b)% exp(-s-b) / 0! = exp(-s) exp(-b)

e Likelihood —based intervals
- LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s) 2 Independent of b!
— Bayesian integral also independent of factorizing exp(-b) term

e So for zero events observed, likelihood-based inference
about signal mean s is independent of expected b.

e For essentially all frequentist confidence interval
constructions, the fact that n=0 is less likely for b=2.8
than for b=0 results in narrower confidence intervals for p
as b increases.

— Clear violation of the L.P.



Likelihood Principle Example #2

e Binomial problem famous among statisticians

e Translated to HEP: You want to know the trigger efficiency e.

— You count until reaching n=4000 zero-bias events, and note that of these,
m=10 passed trigger.

Estimate e = 10/4000, compute binomial conf. interval for e.

— Your colleague (in a different sample!) counts zero-bias events until m=10
have passed the trigger. She notes that this requires n=4000 events.

Intuitively, e=10/4000 over-estimates e because she stopped just upon

reaching 10 passed events. (The relevant distribution is the negative
binomial.)

e Each experiment had a different stopping rule. Frequentist
confidence intervals depend on the stopping rule.

- It turns out that the likelihood functions for the binomial problem and the
negative binomial problem differ only by a constant!

- So with same n and m, (the strong version of) the L.P. demands same
inference about e from the two stopping rules!

Wouter Verkerke, NIKHEF
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Likelihood Principle Discussion

o We will not resolve this issue, but should be aware of it.

e If you are interested, read the book by Berger &
Wolpert, but be prepared for the stopping rule
arguments to set your head spinning.

e Jrrelevance of the Stopping Rule is known as the
“Stopping Rule Principle” and has been hotly debated
for decades, with some famous statisticians changing
their minds, e.qg:

- L.J. "Jimmie” Savage is widely quoted as saying in 1962, "I
learned the stopping-rule principle from Professor Barnard in
conversation in the summer of 1952. Frankly, I then thought it a
scandal that anyone in the profession could advance an idea so
patently wrong, even as today I can scarcely believe that some
people resent an idea so patently right.”

Wouter Verkerke, NIKHEF
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Conditioning

An “ancillary statistic” (see literature for precise math
definition) is a function of your data which carries
information about the precision of your measurement of
the parameter of interest, but no info about parameter’s
value.

— The classic example is a branching ratio measurement in which the

total number of events N can fluctuate if the expt design is to run for a
fixed length of time. Then N is an ancillary statistic.

You perform an experiment and obtain N total events, and
then do a toy M.C. of repetitions of the experiment. Do you
let N fluctuate, or do you fix it to the value observed?

It may seem that the toy M.C. should include your
complete procedure, including fluctuations in N.

But there are strong arguments, going back to Fisher, that
inference should be based on probabilities conditional on
the value of the ancillary statistic actually obtained!

Wouter Verkerke, NIKHEF
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Conditioning (cont.)

The 1958 thought expt of David R. Cox focused the issue:

— Your procedure for weighing an object consists of flipping a coin to
decide whether to use a weighing machine with a 10% error or one
with a 1% error; and then measuring the weight. (Coin flip result is
ancillary stat.)

— Then “surely” the error you quote for your measurement should reflect
which weighing machine you actually used, and not the average error
of the “whole space” of all measurements!

— But classical most powerful Neyman-Pearson hypothesis test uses the
whole space!

In more complicated situations, ancillary statistics do not
exist, and it is not at all clear how to restrict the “whole
space” to the relevant part for frequentist coverage.

In methods obeying the likelihood principle, in effect one
conditions on the exact data obtained, giving up the
frequentist coverage criterion for the guarantee of
relevance

Wouter Verkerke, NIKHEF
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Conditioning - The two children problem

e General issue of precise question formulation is
pointedly illustrated with famous “two children problem”
by Gardener

e "A couple has two children, at least one them one is a
boy born on Tuesday”

e What is the probability that they have 2 boys?

Wouter Verkerke, NIKHEF



Conditioning - The two children problem

e Conditioning also plays a role in Martin Gardeners
famous “two children problem”

e “A couple has two children, at least one them one is a
boy born on Tuesday”

e What is the probability that they have 2 boys?
(Answer = 13/27)

e If you think this is counter-intuitive try this easier
version: “A couple has two children, at least one them
one is a boy”

e What is the probability that they have 2 boys?

Wouter Verkerke, NIKHEF



Summary of Three Ways to Make Intervals

Bayesian Frequentist Likelihood
Credible Confidence Ratio
Requires prior pdf? Yes No No
Obeys likelihood Yes (exception No Yes
principle? re Jeffreys prior)
Random variable in  z, M, U e, Mo
"Pliy € (11, 1))
Coverage No Yes (but over- |No
guaranteed? coverage...)
Provides Yes No No

P(parameter|data)?

Wouter Verkerke, NIKHEF



Nuisance parameters

e Have so far considered problems with one model
parameter

e Discussed three types of solution to above problem.

e What do we do if background is not exactly known?

- E.g. = 3.0 £ 1.0 (NB: this statement does not unique fix P(u))
Wouter Verkerke, NIKHEF



Nuisance parameters

e In real life, background rate, shape of background
model are usually not exactly known

— Need procedure to incorporate uncertainty on these ‘nuisance
parameters’ into account when setting limits etc.

e For preceding problems (with precisely defined null
hypotheses) procedures exist to calculate intervals and
significances could be exactly

e When dealing with nuisance parameters, this generally
not possible anymore

Q: Is that a problem?

- A: Yes. If your (approximate) calculation says Z=5, but it is really
Z=3, there is a substantial chance your discovery is fake

— If ATLAS and CMS use different methods one experiment may
claim discovery of e.g. Higgs with only half the data of the other
because of differences in significance calculation

Wouter Verkerke, NIKHEF



Counting with sideband - Nuisance parameters

e Simplest example: counting experiment with sideband

— We have a signhal region where we expect s+b events from signal
and background respectively

- We have a control region where we measure background only.
This region can be larger than the signal region to accrue extra
statistics

e Model: Poisson(Ng|s+b)Poisson(N|T-b)

e Measurement now consistent of two numbers: Ngg, Ny

e Model now has two parameters constrained from data
— s = signal yield = ‘parameter of interest’

- b = background estimate = ‘nuisance parameter’

e Result from experiment is 2D likelihood L(s,b)

Wouter Verkerke, NIKHEF



Counting with sideband - Nuisance parameters

e Model: Poisson(Ng4|s+b)Poisson(N.,|T-b), T=3 (exact)

e \isualization of Likelihood

— Nsig=10, Nctl=10

‘ Histogram of ll__s_b |
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We know how to set

~¥ interval on s given a fixed b

Now need to incorporate
uncertainty on b...
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Treatment of nuisance parameters

e 1 - Definition of nuisance parameters

— A nuisance parameter is any parameter of the model that is not a
parameter-of-interest (for physics).

e Example: for Higgs discovery N(higgs) is of interest, everything else is nuisance
e 2 - Introduction of nuisance parameters in Likelihood

- Sometimes nuisance parameter arise naturally in the likelihood.

— Systematic uncertainties always introduce nuisance parameters,
but explicit parameterization not always obvious (e.g. how to
parameterize effect of Pythia-vs-Herwig?)

e 3 - Treatment of nuisance parameters in inference

— Each of the three main classes of constructing intervals (Bayesian,
likelihood ratio, Neyman confidence intervals) has a way to
incorporate the uncertainty on the nuisance parameters in the
parameters of interest. But this remains a subject of frontier
statistics research.

Wouter Verkerke, NIKHEF



Likelihood fit — Definition of nuisance parameters

e In ML fits, any floating fit parameter that is not the
parameter of interest if a nuisance parameter

e Model = Nsig*Gauss(x,m,s)+Nbkg*Uniform(x)

- Nsig
- m,s,Ny4 are nuisance parameters

is parameter of interest

o Difference with Poisson(N4|s+b)Poisson(N,|T-b)
example is that nuisance parameters are here
constrained from the same dataset as the parameter of

interest
Wouter Verkerke, NIKHEF



Introduction of nuisance parameters due to systematic uncertainties

e Additional nuisance parameters can originate from
systematic uncertainties earlier in the analysis chain
e Examples
- Fragmentation with Herwig vs Pythia
— Uncertainty on Jet Energy Scale
— Acceptance/efficiency uncertainties

e (Often these uncertainties are included
with ‘variation technique’ a posteriori

- E.g. Extract parameter-of-interest with Pythia and Herwig separately
- Add e.g. half of difference in quadrature to total error

— Usually fine for *high’ statistics fits with 10 error definition (NB: still
need to pay attention to correlations with other errors)

e For Bayesian/Likelihood based techniques these sources
must be incorporated in the likelihood

— Ensure consistent treatment of these systematics as nuisance
parameters in inference analysis (limit or confidence interval)

— No accurate ‘a posteriori’ prescription exists to include these



Incorporating external systematics in the likelihood

e External systematics can be defined in two classes
- A: Those that have an effect only on the parameters of the model
— B: Those that (also) alter the distribution of the observables

e A: Can introduce systematics on parameters as auxiliary
measurement in likelihood

- Idea: float parameter that is originally fixed, but add auxiliary
measurement that constrains that parameter with a shape that represents
systematic uncertainty on it

— Example model without systematic
L(s,b) = Poisson(Ny4|s+b) [ with b fixed ]

- Example Model with auxiliary measurement:
L(s,b) = Poisson(Ng4|s+b) - Poisson(N|T-b)

!

Main measurement Auxiliary measurement
(distribution for b, given N, T)

— Can replace auxiliary measurement with external measurement
L(s,b) = Poisson(N44|s+b) - Gaussian(b,by,c,)
(distribution for b from ext. source)



Adding uncertainties to a likelihood

e Example 1 - Width known exactly
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Shape of auxiliary measurement likelihood

e Shape of auxiliary measurements requires some careful
thought - especially when evaluating high Z limits

e Option A: Rescaled Poisson: Poisson(N|T-b)

— Most suitable if uncertainty on B is dominated by statistical
uncertainty from a sideband or control region

— (It is the exact solution for a counting measurement in a
sideband)
e Option B: Gaussian: Gauss(b,b,,0)
- Usually chosen if source information is known in form b, = g,

— Also often chosen if true shape is unknown (e.g. ‘theory
uncertainty”)

— Central Limit Theorem = Sum of many uncertainties is
asymptotically Gaussian

- But beware of relatively large Gaussian uncertainties
- These can result in optimistically biased significance
calculations

Wouter Verkerke, NIKHEF



Shape of auxiliary measurement likelihood

e Option B: Gaussian: Gauss(b,b,,0,) [ continued]
— Illustration of danger of large Gaussian uncertainties
Model = Poisson(Ng4|s+b) - Gaussian(b,bg,cy,)
with by = 3, o, = 1 (33%)

If we look at 50 fluctuations we in principle allow the Gaussian
term to move 50 off its center
- Allow downward fluctuation to b=-2!

In reality b must be greater than zero
- Significance of result will be optimistically biased

e Option C: Gamma(b,by,0,) a,
—z/8 -

: _ k-1 € > §

flz;k,0) == T (R) forz > 0 and k,6 > 0. P

— Longer positive tail than Gaussian
— Better behavior at 0 than Gaussian
— Asymptotically Gaussian

- Good ‘alternate model’ for systematics
Wouter Verkerke, NIKHEF



The size of external systematic errors

- What is a good estimate for your systematic uncertainty?

e I)If A and B are extreme scenarios, and the truth must
always be between A and B

- Example: fully transverse and fully longitudinal polarization
— Error is root of variance with uniform distribution with width A-B

5 |4-B| V(o) =(x)? —(x?) = (lj .

12/

- Popular method because sqrt(12) is quite small, but only justified if A,B are
truly extremes!

e II) If Aand B are typical scenarios

- Example: JETSET versus HERWIG (different Physics simulation packages) N
Factor \ N—1
to get unbiased

|A—B|\/_ |A—B| estimate of o, .ent
o=—————:- 2:— pa
J2

— Error is difference divided by sqgrt(2)



Systematic uncertainties that effect observables

e So far discussed introduction of systematic effect that
only affect model parameters.

e Can also model systematic uncertainties that affect
distribution of observables in likelihood

e Example: 'Pythia-vs-Herwig’
— Need to run full analysis chain on both variations

— Fit resulting observable distribution

for both cases §’03;_ Pythia
e Q: How to turn set of two Gort /\
distributions in a single model Fos|-
with a associated systematic 0.05

Herwig

uncertainty parameter? 0.04

0.03]

0.02[

0.010

Ll 111 | 1 11 | 111 Ll | Ll | Ll ] Ll L
60 80 100 120 140 160 180 200 220 240
X



Nuisance parameters that effect observables

e Solution is a ‘morphing transform’ — An algorithm to
turn a given pdf(A) into pdf(B) with an associated
continuous parameters

— Several algorithms available in e.g. RooFit

FA(X;P) Fe(x;q) Fas(X;0,p,q)
gosf-
éwi—
o6l

C ' \\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\:\\\\:}\g\‘\‘\~
0.03 \\\\\\\\\\\\\\\\\\\\“\\\\“‘4*“*

a \\\\\\\‘\\\\\\\\\
0.021
0.012—

0550100 120 140 160180 306 320 240

X

— In likelihood replace F, with F,g and gain explicit nuisance
parameter o that quantifies ‘Herwig-vs-Pythia’ systematic

— Optionally, add (Gaussian) constraint term on parameter a



Treatment of nuisance parameters

e Effort so far has been to incorporate systematic
uncertainties as explicit nuisance parameters in model

e The next step is to include the effect of all these
nuisance parameters on the statistical inference on the
parameter-of-interest

o Will first discuss procedure in each of the three
‘fundamental’ approaches

Wouter Verkerke, NIKHEF



Dealing with nuisance parameters in Bayesian intervals

e Elimination of nuisance parameters in Bayesian interval

Construct a multi-D prior pdf P(parameters)
for the space spanned by all parameters;

Multiply by P(data|parameters) for the data obtained;
Integrate over the full subspace of all nuisance parameters;

pls|x)=[(L(s.B)p(s.5) Jib

You are left with the posterior pdf for the parameter of interest. The
math is now reduced to the case of no nuisance parameters.

e [ssues

The multi-D prior pdf is a problem for both subjective and non-
subjective priors.

In HEP there is almost no use of the favored non-subjective priors
(reference priors of Bernardo and Berger), so we do not know how well
they work for our problems.

In case of many nuisance parameters, the high-D numeric integral can
be a technical problem (use of Markov Chain Monte Carlo)



Illustration of nuisance parameters in Bayesian intervals
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Dealing with nuisance parameters in Frequentist intervals

e (Full) Neyman construction:

— The goal is that the parameter of interest should be covered at
the stated confidence for every value of the nuisance
parameter

— if there is any value of the nuisance parameter which makes the
data consistent with the parameter of interest, that parameter
point should be considered:

— eg. don’t claim discovery if any background scenario is compatible
with data

full construction

e Issues

— Significant over coverage common
problem

- Wilks theorem may not apply
due to e.q. ‘'look elsewhere effects’
in nuisance parameters > must
rely on toy MC approach, can
get very cumbersome




Wilks theorem and nuisance parameters

e Wilks’s theorem holds if the true distribution is in the
family of functions being considered

- eg. we have sufficiently flexible models of signal & background to
incorporate all systematic effects

- but we don’t believe we simulate everything perfectly

— ..and when we parametrize our models usually we have further
approximated our simulation.

e E.qg. if a model has a floating mass, it is clear that there
is @ degradation in significance due to the look-
elsewhere effect (if you look into a wide enough mass
range, your always find ‘some peak’ in the background)

- Formally, the conditions required for Wilks’s theorem do not hold

because floating mass parameter makes no sense in a
background-only model.

Wouter Verkerke, NIKHEF



MLE fit fit data

Dealing with nuisance parameters in Likelihood ratio intervals

e Nuisance parameters in LR interval

— For each value of the parameter of interest, search the full
subspace of nuisance parameters for the point at which the

likelihood is maximized.

Associate that value of the likelihood with that value of the
parameter of interest 2 ‘Profile likelihood’
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Dealing with nuisance parameters in Likelihood ratio intervals

P

100

Likelihood Ratio

8
T T[]

) Profile Likelihood Ratio

Minimizes —-log(L)

for each value of fgg4

by changing bkg shape params
(a 6t order Chebychev Pol)
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Link between MINOS errors and profile likelihood

Parameter of interest

sg2

Eas

3456 I8 4 42 44

11 |\||||||||||:|\||||||||||||‘||\:||||
A 02 03 04 05 0.6 07 D8

: frac

Note that MINOS algorithm in
MINUIT gives same errors as
Profile Likelihood Ratio

— MINOS errors is bounding box 18]
around A(s) contour /I
— Profile Likelihood = Likelihood g
minimized w.r.t. all nuisance F
parameters X T X

frac

Wouter Verkerke, NIKHEF
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Dealing with nuisance parameters in Likelihood ratio intervals

e Issues with Profile Likelihood
— Has a reputation of underestimating the true uncertainties.

— In Poisson problems, this is partially compensated by effect due to
discreteness of n, and profile likelihood (MINUIT MINOS) gives

good performance in many problems.

e NB: Computationally Profile Likelihood is quite
manageable, even with a large number of nuisance

parameters
— Minimize likelihood w.r.t. 20 parameters quite doable

— Especially compared to numeric integration over 20 parameters,
or constructing confidence belt in 20 dimensions...

— But beware of finding the wrong minimum, General problem with
algorithmic minimization

e But in profile likelihoods many minimizations are performed with incrementally
different starting points - How to choose starting point?

Wouter Verkerke, NIKHEF



Hybrid Techniques: Introduction to Pragmatism

e Given the difficulties with all three classes of interval
estimation, especially when incorporating nuisance

parameters, it is common in HEP to relax foundational rigor
and:

— Treat nuisance parameters in a Bayesian way while treating the
parameter of interest in a frequentist way, or

— Treat nuisance parameters by profile likelihood while treating
parameter of interest another way, or

- Use the Bayesian framework (even without the priors recommended
by statisticians), but evaluate the frequentist performance. In effect

(as in profile likelihood) one gets approximate coverage while
respecting the L.P.

Example of common technique in HEP: *Cousins-Higland’

— Use Bayesian technique to eliminate nuisance parameters (integration)

- Use Frequentist technique to construct interval on parameter-of-
interest from integrated likelihood

— NB: This technique is known to ‘under-cover’ in certain situations

Wouter Verkerke, NIKHEF



Recent comparisons results from PhyStat 2007

A Prototype Problem IROGIHATEN,

What is significance Z of an observation x =178 events in a
signal like region, if my expected background 5 =100 with a
10% uncertainty?

» if you use the ATLAS TDR formula Zs>=5.5
» if you use Cousins-Highland Zn=5.0

The question seems simple enough, but it is not actually
well-posed

» what do | mean by 10% background uncertainty?

Typically, we consider an auxiliary measurement y used to
estimate background (Type | systematic)

» eg: a sideband counting experiment where backgroui Example Sideband Measurement BROOKHAVEN
in sideband is a factor T bigger than in signal region NI

Lp(x,y|lp,b) = Pois(x|u +b) - Pois(y|Th).
Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26, 2007 Sideband measurement used
to extrapolate / interpolate
the background rate in
signal-like region 1500

Events ’.'UZ GeV

These slide discuss the earlier

shown prObIem: For now ignore uncertainty in  ®®

extrapolation.
POISSOn(NS|g|S+b) . POISSO”(thIIT'b) 12500

NB: This is one of the very few
problems with nuisance parameters
with can be exactly calculation

Lp(x,ylp. b) = Pois(z|p+ b) - Pois(y|Tb).

Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26,2007 14




Recent comparisons results from PhyStat 2007

Comparison of Methods for Prototype Problem BROOKHLUEN

contours for b, =100, critical regions fort =1

In my contribution to PhyStat2005, »wor

| considered this problem and 1201/ /: ~°Svst-=mﬂcs\ \

compared the coverage for several oy [z o .
L b profile | /

methods 100f ‘I. x e .' /,Jl(

40
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./ ’ ;
ry ;

» Cousins-Highland result (Zn) W\ T ST
badly under-covers (only 4.20)! =500 720~ aaa 160180 200

X

902—
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Major results: 60}

» See Linnemann’s PhyStat03 paper

- rate of Type | erroris 110 times
. Figure 7. A comparison of the various methods eritical bound-
h |g h er than Stated l ary zerit(y) (see text). The concentric ovals represent con-

tours of Lo from Eq. 15.

- much less luminosity required

Method Lo (Zo) | Lp (Zo) | @erie(y = 100)
No Syst 3.0 3.1 150
L 4.1 4.1 171
--------------------------------- 1 | Zn (Sec. 4.1) 4.2 (42 ) 178
n Profile Likelihood Ratio (MINUIT/ ! | 46 i7 s Exaft
Zr = Zp; 4.9 5.0 185 i
' | MINOS) works great out to 5o! I [“EEE = =2 == solftion
-------------------------------- 4| profile Ag 4.7 4.7 ~182

Kyle Cranmer (BNL) Statistics Forum, May |1, 2007 I5




What do you publish? — Expected versus observed limits

e With knowledge of your detector and the expected
background you can calculate the ‘expected limit’ for
any new discovery you’'d like to make

e This tells you how sensitive your experiment is to make
a discovery.

e Procedure

— For each discovery type (e.g. Higgs at mass X GeV) run many MC
studies, for each construct the limit.

— Average of limits you get from above procedure = expected limit

— Works in principle for any type of limit setting procedure
(Bayesian, Frequentist of Likelihood)

e Two flavors of output

- Required amount of data to make N sigma discovery »>
Customary when you don’t have any data yet

— expected vs observed > Customary when you have data

Wouter Verkerke, NIKHEF



Example of expected limits — Higgs discovery potential

Summary of Higgs discovery potential at the LHC

Final word about Higgs mechanism by end 2012 ?

CMS Preliminary
— —
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Example of expected vs observed
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Expected versus observed limit

e If you find less ‘null hypothesis’ events than expected
your observed limit will be better then expected

— You got ‘lucky’ in terms of limit setting

e If you find more ‘null hypothesis’ events than expected
your observed limit will be worse than expected
— You're unlucky in terms of setting a good limit

— On the other hand it is also possible that those extra events were
actually ‘signal” &> You might get lucky soon with a discovery

Wouter Verkerke, NIKHEF



Goal for the LHC a Few Years Ago

e Have in place tools to allow computation of results using a
variety of recipes, for problems up to intermediate
complexity:

— Bayesian with analysis of sensitivity to prior

— Frequentist construction with approximate treatment of nuisance
parameters

— Profile likelihood ratio (Minuit MINOS)
— Other “favorites” such as LEP’s CLS(which is an HEP invention)
e The community can then demand that a result shown with

one’s preferred method also be shown with the other
methods, and sampling properties studied.

e When the methods all agree, we are in asymptopic
nirvana.

e When the methods disagree, we learn something!
— The results are answers to different questions.
— Bayesian methods can have poor frequentist properties
- Frequentist methods can badly violate likelihood principle

Wouter Verkerke, NIKHEF



ATLAS/CMS/ROOT Project: RooStats built on RooFit
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Core developers:

K. Cranmer (ATLAS)
Gregory Schott (CMS)
Wouter Verkerke (RooFit)
Lorenzo Moneta (ROOT)

Open project, all welcome
to contribute.

Included in ROOT
production releases since
v5.22, more soon to come

Example macros in
$ROOTSYS/tutorials/roostats

RooFit extensively
documented, RooStats
manual catching up, code
doc in ROOT.

Wouter Verkerke, NIKHEF



RooStats Project — Example

e Create a model - Example
Poissonx|s-r,+b-r,)-Gauss(r,,1,0.05) - Gauss(, ,1,0.1)

Create workspace with above model (using factory)

RooWorkspace* w = new RooWorkspace(“w”);
w->factory(“Poisson: :P(obs[150,0,300],
sum: :n(s[50,0,120]*ratioSigEff[1.,0,2.],
b[100,0,300]*ratioBkgEff[1.,0.,2.1))");
w->factory("PROD: :PC(P, Gaussian::sigCon(ratioSigEff,1,0.05),
Gaussian: :bkgCon(ratioBkgEff,1,0.1))");

Contents of workspace from above operation
RooWorkspace(w) w contents

variables

RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554
RooPoisson::P[ x=obs mean=n ] = 0.0325554
RooAddition::n[ s * ratioSigEff + b * ratioBkgkEff ] = 150
RooGaussian::sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] =1
RooGaussian: :bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1 e, NIKHEF



RooStats Project — Example

e Confidence intervals calculated with model
ProfilelLikelihoodCalculator plc;

plc.SetPdf(w::PQ);

plc.SetData(data); // contains [0bs=160]
plc.SetParameters(w::s);

plc.SetTestSize(.1);

ConfInterval* 1rint = plc.GetInterval(); // that was easy.

- Profile
likelihood

- Feldman
Cousins

— Bayesian
(MCMQO)

FeldmanCousins fc;

fc.
fc.
fc.
fc.
fc.
fc.

SetPdf(w::PC);

SetData(data); fc.SetParameters(w::s);
UseAdaptiveSampling(true);
FluctuateNumDataEntries(false);

SetNBins(100); // number of points to test per parameter
SetTestSize(.1);

ConfInterval* fcint = fc.GetInterval(); // that was easy.

UniformProposal up;
MCMCCalculator mc;

mc

mc.
mc.
mc.
.SetTestSize(.1); // 90% CL
mc.
mc.

mc

.SetPdf(w::PCO);

SetData(data); mc.SetParameters(s);
SetProposalFunction(up);
SetNumIters(100000); // steps in the chain

SetNumBins(50); // used in posterior histogram
SetNumBurnInSteps (40);

ConfInterval* mcmcint = mc.GetInterval();



RooStats Project — Example

e Retrieving and visualizing output

double fcul
double fcl1

fcint->UpperLimit(w::s);
fcint->LowerLimit(w::s);

Profile Likelihood Ratio and Posterior for S
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RooStats Project — Example

e Some notes on example

- Complete working example (with output visualization)
shipped with ROOT distribution
($ROOTSYS/tutorials/roofit/rsl101_1limitexample.C)

— Interval calculators make no assumptions on internal
structure of model. Can feed model of arbitrary complexity to
same calculator (computational limitations still apply!)

[
—
e [P
i Eh s PR e e et
' . ' . . ' . - .
e - L., .= 1Y e = P e A o R — o -l
it e Feiw tosere [ [ [ (. ettt P e
TR —— o g iy e e [ . P, . — g i et
~ "y " i s _—
[ [ it et i T ki [am— — et 4 T e e [ [am— [ g e [ [ et
e | 15 - - — i bt e A R =1 e e Py R - = RN = et By . ity b |t
- . . .
e, T s, P TN g e PEE . e SN . by ey -, P o e e B 1 I Y | EEs . B s o, S e i e
s § _ . ; Y v
Rt e P e - e ] ] o " ] B ] T B i P e
A i f— = = by TR~ — b -
.,
. e T i i Malias = Mk "'\.\ i T i e ¥ e i
h | sl e s g = —, —=T} = ey =t s | e =]
-
.
. o .
e [, T W St . [ .
= - f=rrd .. o aa =]
'\.‘H
= - o e ok -
. STy
i i -f s P
L_J T’ -

Wouter Verkerke, NIKHEF



‘Digital’ publishing of results

e A likelihood may be considered the ultimate publication
of a measurement

e Interesting to be able to digitally publish actual
likelihood rather than

— Parabolic version (i.e. you publish your measurement and an
error)

— Some parameterized form. Cumbersome in >1 dimension. No
standard protocol for exchanging this time of information

1 H = yy
[Ldt=301b " tHH > bh)

(no K-factors) 4 H — ZZM = 41

e This is trivially possible
with RooFit/RooStats

- Many potential applications,
e.g. combining of Higgs channels,

ATLAS H — WW7 — hiv
2 {*)
107 qqH — qq WW"
r 4 qqH —= qqTT

Signal significance

Total significance

10 |

PR [N N RSN AN TR T SN AN TN SN SN T T ST SM N TR S SO S
100 120 140 160 180 200
my (GeV/c?)




Using persisted p.d.f.s.

e Using both model & p.d.f from file -

TFile f(“myresults.root”) ;
RooWorkspace* w = f.Get(“w”) ;

Make plot RooPlot* xframe = w::x.frame() ;
of data < w::d.plotOn(xframe) ; ‘ ———
and p.d.f _ w::g.plotOn(xframe) ;
Construct (¢
likelihood < RooAbsReal* nll = w::g.createNLL(w::d)
& profile LH U RooAbsReal* pl11 = nll->createProfile(w::mean) ;
=
_ AT ——— o
Draw RooPlot* mframe = w::m.frame(-1,1) ; uﬁfﬁﬂm”
profile LH Y  pll1->plotOn(mframe) ; \
. mframe->Draw()

Projection of profile likelihood

= =y N w0 [ (L] ] ~ ]
LR LA AL LA LA L

-

YE Ty Ty T Ty T e T T Ty
01 -0.08 006 -0.04 002 0 0.02 004 006 0.08 01
m

- Note that above code is independent of actual p.d.f in file >
e.g. full Higgs combination would work with identical code



A toy combination example
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Work in progress on realistic Higgs limit combination

Combining the inputs ﬁ"

Using the same code as last time, with a few extra lines for the new
channels, we arrive at the combined dataset & model

» here the only common parameter is mu, the master signal strength
» could easily make Higgs mass be the same for all three channels

+» the combined model has 27 nuisance parameters
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The end - Recommended reading

Easy

R. Barlow, Statistics: A Guide to the Use of Statistical Methods
in the Physical Sciences, Wiley, 1989

L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge
University Press

Philip R. Bevington and D.Keith Robinson, Data Reduction and
Error Analysis for the Physical Sciences

Intermediate

ﬁ:zeg]) Cowan, Statistical Data Analysis (Solid foundation for

Frederick James, Statistical Methods in Experimental Physics,
World Scientific, 2006. (This is the second edition of the
influential 1971 book by Eadie et al., has more advanced
theory, many examples)

Advanced

A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of
Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of
this “"Kendall and Stuart” series. (Authoritative on classical
frequentist statistics; anyone contemplating a NIM paper on
statistics should look in here first!)

PhyStat conference series:

Beginning with Confidence Limits Workshops in 2000, links at
http://phystat-lhc.web.cern.ch/phystat-lhc/ and
http://www.physics.ox.ac.uk/phystat05/

Frederick James

DATA
ANALYSIS o _
Statistical Methods in
Experimental Physics

2nd Edition -

Classical
Inference

Wouter Verkerke, NIKHEF



