$pp ightarrow \gamma^*/Z ightarrow \tau au$ cross-section measurement and MSSM Higgs search

Christian Gumpert

IKTP, TU Dresden

04. October 2011

Christian Gumpert | IKTP, TU Dresden | 04. October 2011

Outline

- 1 Motivation
- 2 The ATLAS detector
- 3) Z
 ightarrow au au cross-section measurement
 - Event topology
 - Event selection
 - Background estimation
 - Methodology for cross-section measurement
 - Systematic uncertainties
 - Result

MSSM Higgs searches in the di-tau final state

- Current search strategies in ATLAS
- Goals of my diploma thesis

Summary and outlook

Motivation

- + τ leptons play an important role in new physics models, e.g. in Higgs searches
- all gauge bosons and their (leptonic) decay channels had been seen by ATLAS until the end of 2010 except for $\gamma^*/Z\to\tau\tau$
- $\Rightarrow\,$ complete this list by observing $\gamma^*/Z\to\tau\tau$ events and measuring its cross-section
 - $Z \rightarrow \tau \tau$ is an irreducible background for $\Phi \rightarrow \tau \tau$ searches
- ⇒ precise knowledge and understanding of its properties (decay kinematics, mass distribution) is essential
 - test/tune different analysis and mass reconstruction techniques using the well-known SM process

The ATLAS detector

Event topology

$Z \to \tau \tau \to \ell \ell + 4\nu$

- small branching ratio but clear signature
- get rid of tricky $\gamma^*/Z \rightarrow ee/\mu\mu$ backgrounds by restricting the analysis to the $e\mu + 4\nu$ final state
- $\Rightarrow\,$ isolated electron and isolated muon with low MET

Object selection

Electrons

- passes the medium identification criteria
- fulfills isolation criteria
- *p*_T > 16*GeV*

Muons

- reconstructed using information from the Inner detector and the muon spectrometer
- passes the isolation criteria
- *p*_T > 10*GeV*

Event selection

Baseline selection

- electron trigger (EF_e15_medium)
- detector was fully operational
- at least one reconstructed vertex
- exactly one isolated electron and muon of opposite charge

Remaining background processes

- **1** QCD multi-jet events \rightarrow estimated from data
- 2 $W \rightarrow \mu \nu$, $t \bar{t}$ suppressed by further cuts
- electroweak backgrounds are taken from MC predicitions but the normalisation was checked in dedicated control regions

QCD multi-jet estimation

- assume that for QCD: $\frac{A}{B} = \frac{C}{D}$
- correct for electroweak contamination in control regions
- QCD shape is taken from region C
- ⇒ estimate for number of QCD events in signal region
 - due to limiting statistics a cut factorisation was used to propagate the QCD estimate to the end of the cut flow

Background suppression

Methodology for cross-section calculation

$$\sigma_{fid} (pp \to \gamma^*/Z \to \tau\tau \to e\mu + 4\nu) = \frac{N_{Data} - N_{Bkg}}{L}$$
$$\sigma_{tot} (pp \to \gamma^*/Z \to \tau\tau \to e\mu + 4\nu) = \frac{N_{Data} - N_{Bkg}}{L \cdot A_Z \cdot C_Z}$$

with

- N_{Data} number of observed data events
- N_{Bkg} number of estimated background events
- L integrated luminosity
- A_Z geometrical and kinematic acceptance for the signal process
- C_Z correction factor for selection efficiencies

Systematic uncertainties

Background estimation

Source	Uncertainty (%)					
	$Z/\gamma^* \rightarrow ee, \mu\mu$	W + jets	tī	Multijet		
Muon p_T	0.12	0.00	0.42	0.05		
Muon scale factor	1.23	1.82	1.72	4.89		
Elec scale factor	5.38	6.37	5.92	4.66		
Elec/Cluster/Jet E	7.48	11.86	9.27	2.59		
Vertex Weight	0.55	0.55	0.58	0.64		
Lumi	3.40	3.40	3.40	3.79		
Cross Section	5.00	5.00	7.00	5.64		
OTX Sys	0.37	0.37	0.40	0.30		
Elec Charge	0.28	0.28	0.28	0.31		
Jet cleaning	2.10	0.79	16.24	0.40		
QCD estimation	-	-	-	13.00		
Total Systematic	11.31	14.91	21.18	16.38		

Acceptance A_Z

PDF set	1.8%
model dependence	1.8%
total	2.9%

Correction	Cz
electron SF muon SF energy scale others	6.1% 2.6% 1.7% $\approx 1\%$
total	7.0%

Result

ATLAS-CONF-2011-045

	value	9	stat.		syst.	
N _{Data} N _{Bkg} A _Z C _Z L[pb ⁻¹]	85 8.94 0.1139 0.2887 35.51	± ± ± ±	4.12 0.0004 0.005 0	+ + + + +	0.84 0.0033 0.020 1.21	

$$\begin{split} \sigma^{\text{tot}}_{\gamma^*/Z} \cdot \mathcal{BR}(\gamma^*/Z \to \tau\tau \to e\mu + 4\nu) &= (65.85 \pm 8.82(\text{stat}) \pm 4.82(\text{sys}) \pm 2.24(\text{lumi})) \, \text{pb} \\ \sigma^{\text{tot}}_{\gamma^*/Z} \cdot \mathcal{BR}(\gamma^*/Z \to \tau\tau) &= (1062.6 \pm 142.3(\text{stat.}) \pm 77.7(\text{sys}) \pm 36.17(\text{lumi}) \pm 4.3(\text{theo})) \, \text{pb} \\ \sigma^{\text{theory}}_{\gamma^*/Z} \cdot \mathcal{BR}(\gamma^*/Z \to \tau\tau) &= (964 \pm 15(\text{PDF}) \pm 10(\alpha_S)) \, \text{pb} \end{split}$$

- reasonable agreement with theory prediction
- dominated by statistical uncertainty
- largest background arises from the (conservative) QCD estimation

Current search strategies in ATLAS

Motivation for MSSM

- minimal SUSY extension to the SM \rightarrow same theoretical motivations as SUSY
- tree-level predictions in terms of the parameters m_A and $\tan\beta$
- predicts 5 Higgs bosons: $\Phi = h/H/A$ and H^{\pm}
- couplings between Higgs bosons and down-type fermions are enhanced by tan $\beta \rightarrow b$ -associated Higgs production and $\Phi \rightarrow \tau^- \tau^+$ become important

Search strategies for $\Phi \rightarrow \tau^+ \tau^-$ (ATLAS-CONF-2011-132)

- different analyses for the $au_h au_h, au_h \ell$ and $e\mu$ final state
- fully inclusive analyses
- simple cut-and-count approach for limit setting

Goals of my diploma thesis

Goals

- investigate feasibility of MVA for increasing the sensitivity
- test other methods for limit extraction (e.g. template fit)

Current status

- baseline selection frozen and most technicalities solved
- check of important backgrounds in dedicated control regions done
- TMVA setup for testing different MVA methods in place

Christian Gumpert | IKTP, TU Dresden | 04. October 2011

Summary and outlook

Summary

- contributed to the $\gamma^*/Z \to \tau \tau$ cross-section measurement with $L=35 pb^{-1}$
- development of multi-variate analysis for MSSM Higgs search in the $\Phi \rightarrow \tau \tau \rightarrow e \mu + 4 \nu$ channel

Outlook

- fix MVA analysis
- estimate systematic uncertainties
- test template fit for limit extraction
- (planned contributions to mass reconstruction in di-tau final states)