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the construction of large families of exact solutions

» For certain equations these include solitons:
Localized waves, which keep their shape after interactions

> Stationary axially symmetric (electro-)vacuum Einstein equations are
“integrable” [Belinski and Zakharov 1978; Maison 1979]

» Rotating (charged) black holes can be understood as “solitons”
» Many methods to construct solutions known

» Bidifferential calculus framework is an abstract characterization of
integrable systems [Dimakis and Miiller-Hoissen 2000, 2009]

» Solution generating methods can be formulated independent of
examples
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Seld-dual Yang-Mills Many integrable partial differential
equation or difference equations (PDDEs)
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Many integrable PDEs
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Non-autonomous chiral model

!

. Stationary axially symmetric
Ernst equation <——

(electro-)vacuum Einstein equations
» Outline of the talk:

» Powerful non-iterative solution generating method in the
bidifferential calculus framework
» Application to non-autonomous chiral model and Ernst equation
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Bidifferential calculus framework

Basic definitions

» A bidifferential calculus (Q,d,d) is given by:
> A unital associative graded C-algebra Q = (P, Q"

» Two graded derivations of degree one d,d : Q" — Q'+1
satisfying

2 =0 VkeC,
where d,. :=d —kd, and the graded Leibniz rule

de(XX) = (du X)X + (=1)"xdsx’ Ve e C
fory e Q", x' €Q

» Generalization of differential forms on a manifold
» Keep nice properties of exterior derivative
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Bidifferential calculus framework

Bidifferential calculus formulation of “integrable” PDDE

» Choice of:
» Bidifferential calculus (Q2,d,d)
» Parameterization of a 1-form A € Q! by variables of PDDE
Such that:

k-dependent zero-curvature condition
PDDE +—— D2 =0 VkeC,
where D, :=d, —A
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Bidifferential calculus framework

Bidifferential calculus formulation of “integrable” PDDE

» Choice of:
» Bidifferential calculus (Q2,d,d)
» Parameterization of a 1-form A € Q! by variables of PDDE
Such that:

k-dependent zero-curvature condition
PDDE +—— D2 =0 VkeC,
where D, :=d, —A

Ansatz A = (dg)g !
with g € Q°

g-equation d ((ag)gfl) =0

» Other ansatze for A possible, but not considered in this talk
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Bidifferential calculus framework

Solution generating method

» Q=0%% A(CV) with Q° all matrices over some unital algebra B
> Theorem:

P, R, X € B"*" invertible solutions of
dP=(dP)P, dR=R(R), dX=(dX)P—(dR)X,
XP—-RX=VU

with d- and d-constant U € B™*", V € B"™*m
— g = In+ U(RX)"1V € B™™ solves g-equation
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Solution generating method

v

Q= Q%® A(CN) with QO all matrices over some unital algebra B
Theorem:

v

P, R, X € B"*" invertible solutions of
dP=(dP)P, dR=R(R), dX=(dX)P—(dR)X,
XP—-RX=VU

with d- and d-constant U € B™*", V € B"™*m
— g = In+ U(RX)"1V € B™™ solves g-equation

v

Powerful solution generating method
» Typically contains multi-soliton solutions
» Solutions parametrized by matrix data (P, R, U, V)
» Non-linear superposition corresponds to block-wise composition
of matrix data

v

Special case with d- and d-constant P, R well known [Dimakis and
Miiller-Hoissen 2009, 2010; Dimakis, NK and Miiller-Hoissen 2011]
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Bidifferential calculus framework

Proof of the solution generating method

> Proof by short elementary
computation

> Alternative proof:

axn Darboux Bxn
w  transformation W

“adds soliton”
—_—

g=R! g = XPX R7!

Projection
[Marchenko 1988]

g=(Ug V)™

m
Bme
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Bidifferential calculus framework

Proof of the solution generating method

> Proof by short elementary
computation

> Alternative proof: > Interpretation:
Darboux
nxn Bxn .
w  transformation v Typically

“1- or 2-soliton solution”

_1 adds soliton” = 11 .
g=R " —— g’ =XPX 'R of g-equation in B"*"
Projection
[Marchenko 1988] n=m
g= (Ug’_l V)—1 “Multi-soliton solution”
m of g-equation in B™*™
Bme
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Non-autonomous chiral model and Ernst equation

Bidifferential calculus for non-autonomous chiral model
» Finding a bidifferential calculus formulation for a given “integrable”
PDDE is a difficult problem (like finding a Lax pair)
» Choose bidifferential calculus (£2,d, d):
» Q=0Q%® A(C?) with Q° = C>(R3,C)™*m
» For f € Q0 define
df = —£a +e(f, — p )G,
df =€ (f,+p )G + £C2

with a basis (1, ¢ of A'(C?)
Parameterization of g € QO:
» g =eg(z,p) with c € C

g-equation Non-autonomous chiral model

d ((Hg)g‘l) _og —— (pézg_l)z + (Pépg_l)P =0

for m x m matrix g

Nils Kanning, arXiv:1106.4122
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Non-autonomous chiral model and Ernst equation
Application of the solution generating method
» Equations for P, R essentially reduce to n X n matrix equation
P’ —2p Yzl + B)P—1,=0

for P with a constant matrix B (respectively for R with B’)
» If spec P Nspec R = (), it only remains to solve a Sylvester equation

XP-RX=wU
for the n x n matrix X (a unique solution exists)
—> & = I, + U(RX)~1V solves non-autonomous chiral model
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Application of the solution generating method

» Equations for P, R essentially reduce to n X n matrix equation

P’ —2p Yzl + B)P—1,=0

for P with a constant matrix B (respectively for R with B’)
» If spec P Nspec R = (), it only remains to solve a Sylvester equation

XP-RX=wU
for the n x n matrix X (a unique solution exists)
—> & = I, + U(RX)~1V solves non-autonomous chiral model

» Example:

P = (pid;), R = (r0;) diagonal:
(VU);
pj—ri

!

with constants b; and ji € {£1} (respectively for r; with b}, jl)
such that {p;} N {r} =0

Nils Kanning, arXiv:1106.4122 9/13
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Non-autonomous chiral model and Ernst equation

Connection with general relativity

Stationary axially symmetric vacuum Einstein equations
{ [Ernst 1968]
Ernst equation for complex scalar function £
(ReE)(Epp + p71E) + Ex2) = (E,)2 + (&2)?
{ [witten 1979]

Non-autonomous chiral model with m = 2 and

= (e )
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Non-autonomous chiral model and Ernst equation

Connection with general relativity

Stationary axially symmetric vacuum Einstein equations
{ [Ernst 1968]
Ernst equation for complex scalar function £
(Re&)(Epp + p71Ep + E22) = (£,)2 + (&2)°
{ [witten 1979]

Non-autonomous chiral model with m = 2 and
g:2<_ 17 £(5_5)>
E+E\3(E-9) EE

» Parameterization of g equivalent to reduction conditions
T

=& (18)°=Im, tr(7)=m-2
and v =7, 42 = I, with constant m x m matrix ~ [Giirses 1984]
» m = 3: Stationary axially symmetric electro-vacuum space-times

g
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Non-autonomous chiral model and Ernst equation

Kerr-NUT solution

» Implement reduction conditions on solutions in example above

>» m=n=2:
Explicit analysis of solution g implies

) L ]

u-(3 ) v-(0 1)

with one of the following conditions on the parameters:
» b, b, u, v real:
Non-extreme Kerr-NUT space-time
(includes rotating black hole)
»b=b,j=—j, v=T1u:
Hyperextreme Kerr-NUT space-time
(naked singularity)

Nils Kanning, arXiv:1106.4122
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Non-autonomous chiral model and Ernst equation

Multi-Kerr-NUT solutions

» m=2,n=2N:
Superpose N non-extreme or N hyperextreme Kerr-NUT solutions
by composing their matrix data

5 _ (Pi(biJi) 0 5 _ (ri(bi,J) 0
b= ("7 ionin) B= ("G )

1 —Uu; . 1 Vi
U"_(u,- 1 > V"_<—v,- 1)

with p; # ry to v

= T ~ 1

P = block-diag (P1,...,Pn),

’ BPu Py, v

R = block-diag (R1, ..., Ry), V
N

» Reduction conditions on g ensured by conditions on matrix data
(I3, R, U, V), these conditions are fulfilled because they hold
for each block (f’,-, R, U, V)
» m = 3: Hyperextreme multi-Demianiski-Newman solution (charged
generalization of multi-Kerr-NUT) obtained analogously

Nils Kanning, arXiv:1106.4122
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Conclusions

> Generalization of solution generating method to non-constant P, R
» Necessary for application to non-autonomous chiral model

> Interpretation of method as Darboux transformation and projection
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Conclusions

Conclusions

> Generalization of solution generating method to non-constant P, R
» Necessary for application to non-autonomous chiral model

v

Interpretation of method as Darboux transformation and projection

v

Solutions of the non-autonomous chiral model with diagonal IE’, R
» Reductions to well known multi-Kerr-NUT and hyperextreme
multi-Demianski-Newman solutions
» Non-extreme multi-Demianski-Newman solutions still missing
(crucial step is to find reduction conditions for matrix data)

v

Method produces much larger class of solutions
» Solutions with non-diagonal P, R known (some are limits of
solutions with diagonal P.R, no systematic exploration yet)
» Also solutions with spec P N spec R # () possible?

v

Non-autonomous chiral model and Ernst equation addressed in new
way using bidifferential calculus

» Established solid foundations, but still much to explore!

Nils Kanning, arXiv:1106.4122



	Introduction
	Bidifferential calculus framework
	Non-autonomous chiral model and Ernst equation
	Conclusions

