The non-autonomous chiral model and the Ernst equation of general relativity in the bidifferential calculus framework

Nils Kanning
Humboldt University, Berlin

4 October 2011
arXiv:1106.4122, joint work with A. Dimakis and F. Müller-Hoissen

Introduction

- Classical integrable systems are non-linear equations, which allow the construction of large families of exact solutions
- For certain equations these include solitons:

Localized waves, which keep their shape after interactions

Introduction

- Classical integrable systems are non-linear equations, which allow the construction of large families of exact solutions
- For certain equations these include solitons:

Localized waves, which keep their shape after interactions

- Stationary axially symmetric (electro-)vacuum Einstein equations are "integrable" [Belinski and Zakharov 1978; Maison 1979]
- Rotating (charged) black holes can be understood as "solitons"
- Many methods to construct solutions known

Introduction

- Classical integrable systems are non-linear equations, which allow the construction of large families of exact solutions
- For certain equations these include solitons:

Localized waves, which keep their shape after interactions

- Stationary axially symmetric (electro-)vacuum Einstein equations are "integrable" [Belinski and Zakharov 1978; Maison 1979]
- Rotating (charged) black holes can be understood as "solitons"
- Many methods to construct solutions known
- Bidifferential calculus framework is an abstract characterization of integrable systems [Dimakis and Müller-Hoissen 2000, 2009]
- Solution generating methods can be formulated independent of examples

Introduction

Bidifferential calculus framework

Seld-dual Yang-Mills equation

\downarrow

Many integrable PDEs

Many integrable partial differential or difference equations (PDDEs)

Introduction

Bidifferential calculus framework

Seld-dual Yang-Mills equation

\downarrow

Many integrable PDEs
\downarrow
Non-autonomous chiral model

Ernst equation

Stationary axially symmetric (electro-)vacuum Einstein equations

Introduction

Bidifferential calculus framework

Seld-dual Yang-Mills equation

Many integrable PDEs
\downarrow
Non-autonomous chiral model
\square
Ernst equation

Stationary axially symmetric (electro-)vacuum Einstein equations

- Outline of the talk:
- Powerful non-iterative solution generating method in the bidifferential calculus framework
- Application to non-autonomous chiral model and Ernst equation

Basic definitions

- A bidifferential calculus ($\Omega, \mathrm{d}, \overline{\mathrm{d}}$) is given by:
- A unital associative graded \mathbb{C}-algebra $\Omega=\bigoplus_{r \geq 0} \Omega^{r}$
- Two graded derivations of degree one $\mathrm{d}, \overline{\mathrm{d}}: \Omega^{r} \rightarrow \Omega^{r+1}$ satisfying

$$
\mathrm{d}_{\kappa}^{2}=0 \quad \forall \kappa \in \mathbb{C},
$$

where $\mathrm{d}_{\kappa}:=\overline{\mathrm{d}}-\kappa \mathrm{d}$, and the graded Leibniz rule

$$
\begin{aligned}
& \quad \mathrm{d}_{\kappa}\left(\chi \chi^{\prime}\right)=\left(\mathrm{d}_{\kappa} \chi\right) \chi^{\prime}+(-1)^{r} \chi \mathrm{~d}_{\kappa} \chi^{\prime} \quad \forall \kappa \in \mathbb{C} \\
& \text { for } \chi \in \Omega^{r}, \chi^{\prime} \in \Omega
\end{aligned}
$$

- Generalization of differential forms on a manifold
- Keep nice properties of exterior derivative

Bidifferential calculus formulation of "integrable" PDDE

- Choice of:
- Bidifferential calculus ($\Omega, \mathrm{d}, \overline{\mathrm{d}}$)
- Parameterization of a 1 -form $\mathbb{A} \in \Omega^{1}$ by variables of PDDE Such that:

$$
\operatorname{PDDE} \Longleftrightarrow \begin{gathered}
\kappa \text {-dependent zero-curvature condition } \\
\mathrm{D}_{\kappa}^{2}=0 \quad \forall \kappa \in \mathbb{C} \\
\text { where } \mathrm{D}_{\kappa}:=\mathrm{d}_{\kappa}-\mathbb{A}
\end{gathered}
$$

Bidifferential calculus formulation of "integrable" PDDE

- Choice of:
- Bidifferential calculus ($\Omega, \mathrm{d}, \overline{\mathrm{d}}$)
- Parameterization of a 1 -form $\mathbb{A} \in \Omega^{1}$ by variables of PDDE Such that:

$$
\mathrm{PDDE} \Longleftrightarrow \begin{aligned}
& \kappa \text {-dependent zero-curvature condition } \\
& \mathrm{D}_{\kappa}^{2}=0 \quad \forall \kappa \in \mathbb{C} \\
& \text { where } \mathrm{D}_{\kappa}:=\mathrm{d}_{\kappa}-\mathbb{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ansatz } \mathbb{A}=(\overline{\mathrm{d}} g) g^{-1} \\
& \text { with } g \in \Omega^{0}
\end{aligned}
$$

$$
\text { g-equation } \quad d\left((\bar{d} g) g^{-1}\right)=0
$$

- Other ansätze for \mathbb{A} possible, but not considered in this talk

Solution generating method

- $\Omega=\Omega^{0} \otimes \Lambda\left(\mathbb{C}^{N}\right)$ with Ω^{0} all matrices over some unital algebra \mathcal{B}
- Theorem:

$$
\begin{aligned}
& \boldsymbol{P}, \boldsymbol{R}, \boldsymbol{X} \in \mathcal{B}^{n \times n} \text { invertible solutions of } \\
& \overline{\mathrm{d}} \boldsymbol{P}=(\mathrm{d} \boldsymbol{P}) \boldsymbol{P}, \quad \overline{\mathrm{d}} \boldsymbol{R}=\boldsymbol{R}(\mathrm{d} \boldsymbol{R}), \quad \overline{\mathrm{d}} \boldsymbol{X}=(\mathrm{d} \boldsymbol{X}) \boldsymbol{P}-(\mathrm{d} \boldsymbol{R}) \boldsymbol{X}, \\
& \quad \boldsymbol{X P}-\boldsymbol{R} \boldsymbol{X}=\boldsymbol{V} \boldsymbol{U}
\end{aligned}
$$

Solution generating method

- $\Omega=\Omega^{0} \otimes \Lambda\left(\mathbb{C}^{N}\right)$ with Ω^{0} all matrices over some unital algebra \mathcal{B}
- Theorem:

$$
\begin{aligned}
& \boldsymbol{P}, \boldsymbol{R}, \boldsymbol{X} \in \mathcal{B}^{n \times n} \text { invertible solutions of } \\
& \overline{\mathrm{d}} \boldsymbol{P}=(\mathrm{d} \boldsymbol{P}) \boldsymbol{P}, \quad \overline{\mathrm{d}} \boldsymbol{R}=\boldsymbol{R}(\mathrm{d} \boldsymbol{R}), \quad \overline{\mathrm{d}} \boldsymbol{X}=(\mathrm{d} \boldsymbol{X}) \boldsymbol{P}-(\mathrm{d} \boldsymbol{R}) \boldsymbol{X}, \\
& \quad \boldsymbol{X} \boldsymbol{P}-\boldsymbol{R} \boldsymbol{X}=\boldsymbol{V} \boldsymbol{U}
\end{aligned}
$$

- Powerful solution generating method
- Typically contains multi-soliton solutions
- Solutions parametrized by matrix data ($\boldsymbol{P}, \boldsymbol{R}, \boldsymbol{U}, \boldsymbol{V}$)
- Non-linear superposition corresponds to block-wise composition of matrix data
- Special case with d- and d-constant $\boldsymbol{P}, \boldsymbol{R}$ well known [Dimakis and Müller-Hoissen 2009, 2010; Dimakis, NK and Müller-Hoissen 2011]

Proof of the solution generating method

- Proof by short elementary computation
- Alternative proof:

$$
\begin{aligned}
& \begin{array}{clc}
\mathcal{B}^{n \times n} & \text { Darboux } & \mathcal{B}^{n \times n} \\
\Psi & \text { transformation } & \Psi
\end{array} \\
& \boldsymbol{g}=\boldsymbol{R}^{-1} \xrightarrow{\text { "adds soliton" }} \boldsymbol{g}^{\prime}=\boldsymbol{X} \boldsymbol{P} \boldsymbol{X}^{-1} \boldsymbol{R}^{-1} \\
& \mathcal{B}^{m \times m}
\end{aligned}
$$

Proof of the solution generating method

- Proof by short elementary computation
- Alternative proof:

- Interpretation:

Typically
"1- or 2-soliton solution" of g-equation in $\mathcal{B}^{n \times n}$

```
                                    n>m
```

"Multi-soliton solution" of g-equation in $\mathcal{B}^{m \times m}$

Bidifferential calculus for non-autonomous chiral model

- Finding a bidifferential calculus formulation for a given "integrable" PDDE is a difficult problem (like finding a Lax pair)
- Choose bidifferential calculus $(\Omega, \mathrm{d}, \overline{\mathrm{d}})$:
- $\Omega=\Omega^{0} \otimes \bigwedge\left(\mathbb{C}^{2}\right)$ with $\Omega^{0}=\mathcal{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{C}\right)^{m \times m}$
- For $f \in \Omega^{0}$ define

$$
\begin{aligned}
& \mathrm{d} f=-f_{z} \zeta_{1}+e^{\theta}\left(f_{\rho}-\rho^{-1} f_{\theta}\right) \zeta_{2} \\
& \overline{\mathrm{~d}} f=e^{-\theta}\left(f_{\rho}+\rho^{-1} f_{\theta}\right) \zeta_{1}+f_{z} \zeta_{2}
\end{aligned}
$$

with a basis ζ_{1}, ζ_{2} of $\bigwedge^{1}\left(\mathbb{C}^{2}\right)$
Parameterization of $g \in \Omega^{0}$:

- $g=e^{c \theta} \tilde{g}(z, \rho)$ with $c \in \mathbb{C}$

$$
\begin{aligned}
& \text { g-equation } \\
& \mathrm{d}\left((\overline{\mathrm{~d}} g) g^{-1}\right)=0 \Longleftrightarrow \begin{array}{l}
\text { Non-autonomous chiral model } \\
\left(\rho \tilde{g}_{z} \tilde{g}^{-1}\right)_{z}+\left(\rho \tilde{g}_{\rho} \tilde{g}^{-1}\right)_{\rho}=0 \\
\text { for } m \times m \text { matrix } \tilde{g}
\end{array}
\end{aligned}
$$

Application of the solution generating method

- Equations for $\boldsymbol{P}, \boldsymbol{R}$ essentially reduce to $n \times n$ matrix equation

$$
\tilde{\boldsymbol{P}}^{2}-2 \rho^{-1}\left(z \boldsymbol{I}_{n}+\boldsymbol{B}\right) \tilde{\boldsymbol{P}}-\boldsymbol{I}_{n}=0
$$

for $\tilde{\boldsymbol{P}}$ with a constant matrix \boldsymbol{B} (respectively for $\tilde{\boldsymbol{R}}$ with \boldsymbol{B}^{\prime})

- If $\operatorname{spec} \tilde{\boldsymbol{P}} \cap \operatorname{spec} \tilde{\boldsymbol{R}}=\emptyset$, it only remains to solve a Sylvester equation

$$
\tilde{\boldsymbol{X}} \tilde{\boldsymbol{P}}-\tilde{R} \tilde{X}=\boldsymbol{V} \boldsymbol{U}
$$

for the $n \times n$ matrix $\tilde{\boldsymbol{X}}$ (a unique solution exists)
$\Longrightarrow \tilde{g}=I_{m}+\boldsymbol{U}(\tilde{\boldsymbol{R}} \tilde{\boldsymbol{X}})^{-1} \boldsymbol{V}$ solves non-autonomous chiral model

Application of the solution generating method

- Equations for $\boldsymbol{P}, \boldsymbol{R}$ essentially reduce to $n \times n$ matrix equation

$$
\tilde{\boldsymbol{P}}^{2}-2 \rho^{-1}\left(z \boldsymbol{I}_{n}+\boldsymbol{B}\right) \tilde{\boldsymbol{P}}-\boldsymbol{I}_{n}=0
$$

for $\tilde{\boldsymbol{P}}$ with a constant matrix \boldsymbol{B} (respectively for $\tilde{\boldsymbol{R}}$ with \boldsymbol{B}^{\prime})

- If $\operatorname{spec} \tilde{\boldsymbol{P}} \cap \operatorname{spec} \tilde{\boldsymbol{R}}=\emptyset$, it only remains to solve a Sylvester equation

$$
\tilde{X} \tilde{\boldsymbol{P}}-\tilde{R} \tilde{X}=V U
$$

for the $n \times n$ matrix $\tilde{\boldsymbol{X}}$ (a unique solution exists)
$\Longrightarrow \tilde{g}=I_{m}+\boldsymbol{U}(\tilde{\boldsymbol{R}} \tilde{\boldsymbol{X}})^{-1} \boldsymbol{V}$ solves non-autonomous chiral model

- Example:

$$
\begin{aligned}
& \tilde{\boldsymbol{P}}=\left(p_{i} \delta_{i j}\right), \tilde{\boldsymbol{R}}=\left(r_{i} \delta_{i j}\right) \text { diagonal: } \\
& \qquad p_{i}=\rho^{-1}\left(z+b_{i}+j_{i} \sqrt{\left(z+b_{i}\right)^{2}+\rho^{2}}\right), \quad \tilde{\boldsymbol{X}}_{i j}=\frac{(\boldsymbol{V} \boldsymbol{U})_{i j}}{p_{j}-r_{i}} \\
& \text { with constants } \left.b_{i} \text { and } j_{i} \in\{ \pm 1\} \text { (respectively for } r_{i} \text { with } b_{i}^{\prime}, j_{i}^{\prime}\right) \\
& \text { such that }\left\{p_{i}\right\} \cap\left\{r_{i}\right\}=\emptyset
\end{aligned}
$$

Connection with general relativity

Stationary axially symmetric vacuum Einstein equations

$$
\Downarrow \text { [Ernst 1968] }
$$

Ernst equation for complex scalar function \mathcal{E}

$$
\begin{gathered}
(\operatorname{Re} \mathcal{E})\left(\mathcal{E}_{\rho \rho}+\rho^{-1} \mathcal{E}_{\rho}+\mathcal{E}_{z z}\right)=\left(\mathcal{E}_{\rho}\right)^{2}+\left(\mathcal{E}_{z}\right)^{2} \\
\Downarrow[\text { Witten 1979] }
\end{gathered}
$$

Non-autonomous chiral model with $m=2$ and

$$
\tilde{g}=\frac{2}{\mathcal{E}+\overline{\mathcal{E}}}\left(\begin{array}{cc}
1 & \frac{i}{2}(\mathcal{E}-\overline{\mathcal{E}}) \\
\frac{i}{2}(\mathcal{E}-\overline{\mathcal{E}}) & \mathcal{E} \overline{\mathcal{E}}
\end{array}\right)
$$

Connection with general relativity

Stationary axially symmetric vacuum Einstein equations

$$
\Downarrow \text { [Ernst 1968] }
$$

Ernst equation for complex scalar function \mathcal{E}

$$
\begin{gathered}
(\operatorname{Re} \mathcal{E})\left(\mathcal{E}_{\rho \rho}+\rho^{-1} \mathcal{E}_{\rho}+\mathcal{E}_{z z}\right)=\left(\mathcal{E}_{\rho}\right)^{2}+\left(\mathcal{E}_{z}\right)^{2} \\
\Downarrow[\text { Witten 1979] }
\end{gathered}
$$

Non-autonomous chiral model with $m=2$ and

$$
\tilde{g}=\frac{2}{\mathcal{E}+\overline{\mathcal{E}}}\left(\begin{array}{cc}
1 & \frac{i}{2}(\mathcal{E}-\overline{\mathcal{E}}) \\
\frac{i}{2}(\mathcal{E}-\overline{\mathcal{E}}) & \mathcal{E} \overline{\mathcal{E}}
\end{array}\right)
$$

- Parameterization of \tilde{g} equivalent to reduction conditions

$$
\tilde{g}^{\dagger}=\tilde{g}, \quad(\gamma \tilde{g})^{2}=I_{m}, \quad \operatorname{tr}(\gamma \tilde{g})=m-2
$$

and $\gamma^{\dagger}=\gamma, \gamma^{2}=I_{m}$ with constant $m \times m$ matrix γ [Gürses 1984]

- $m=3$: Stationary axially symmetric electro-vacuum space-times

Kerr-NUT solution

- Implement reduction conditions on solutions in example above
- $m=n=2$:

Explicit analysis of solution \tilde{g} implies

$$
\begin{gathered}
\tilde{\boldsymbol{P}}=\left(\begin{array}{cc}
p(b, j) & 0 \\
0 & p(b,-j)
\end{array}\right), \quad \tilde{\boldsymbol{R}}=\left(\begin{array}{cc}
r\left(b^{\prime}, j^{\prime}\right) & 0 \\
0 & r\left(b^{\prime},-j^{\prime}\right)
\end{array}\right), \\
\boldsymbol{U}=\left(\begin{array}{cc}
1 & -u \\
u & 1
\end{array}\right), \quad \boldsymbol{V}=\left(\begin{array}{cc}
1 & v \\
-v & 1
\end{array}\right)
\end{gathered}
$$

with one of the following conditions on the parameters:

- b, b^{\prime}, u, v real:

Non-extreme Kerr-NUT space-time (includes rotating black hole)

- $b=\overline{b^{\prime}}, j=-j^{\prime}, v=\bar{u}$:

Hyperextreme Kerr-NUT space-time (naked singularity)

Multi-Kerr-NUT solutions

- $m=2, n=2 N$:

Superpose N non-extreme or N hyperextreme Kerr-NUT solutions by composing their matrix data

$$
\begin{aligned}
\tilde{\boldsymbol{P}}_{i}=\left(\begin{array}{cc}
p_{i}\left(b_{i}, j_{i}\right) & 0 \\
0 & p_{i}\left(b_{i},-j_{i}\right)
\end{array}\right), \quad \tilde{\boldsymbol{R}}_{i}=\left(\begin{array}{cc}
r_{i}\left(b_{i}^{\prime}, j_{i}^{\prime}\right) & 0 \\
0 & r_{i}\left(b_{i}^{\prime},-j_{i}^{\prime}\right)
\end{array}\right) \\
\boldsymbol{U}_{i}=\left(\begin{array}{cc}
1 & -u_{i} \\
u_{i} & 1
\end{array}\right), \quad \boldsymbol{V}_{i}=\left(\begin{array}{cc}
1 & v_{i} \\
-v_{i} & 1
\end{array}\right)
\end{aligned}
$$

with $p_{i} \neq r_{k}$ to
$\tilde{\boldsymbol{P}}=\operatorname{block}-\operatorname{diag}\left(\tilde{\boldsymbol{P}}_{1}, \ldots, \tilde{\boldsymbol{P}}_{N}\right)$,

$$
\boldsymbol{U}=\left(\begin{array}{lll}
\boldsymbol{U}_{1} & \ldots & \boldsymbol{U}_{N}
\end{array}\right), \quad \boldsymbol{V}=\left(\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{N}
\end{array}\right)
$$

- Reduction conditions on \tilde{g} ensured by conditions on matrix data ($\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}, \boldsymbol{U}, \boldsymbol{V}$), these conditions are fulfilled because they hold for each block ($\tilde{\boldsymbol{P}}_{i}, \tilde{\boldsymbol{R}}_{i}, \boldsymbol{U}_{i}, \boldsymbol{V}_{i}$)
- $m=3$: Hyperextreme multi-Demiański-Newman solution (charged generalization of multi-Kerr-NUT) obtained analogously

Conclusions

- Generalization of solution generating method to non-constant $\boldsymbol{P}, \boldsymbol{R}$
- Necessary for application to non-autonomous chiral model
- Interpretation of method as Darboux transformation and projection

Conclusions

- Generalization of solution generating method to non-constant $\boldsymbol{P}, \boldsymbol{R}$
- Necessary for application to non-autonomous chiral model
- Interpretation of method as Darboux transformation and projection
- Solutions of the non-autonomous chiral model with diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$
- Reductions to well known multi-Kerr-NUT and hyperextreme multi-Demiański-Newman solutions
- Non-extreme multi-Demiański-Newman solutions still missing (crucial step is to find reduction conditions for matrix data)

Conclusions

- Generalization of solution generating method to non-constant $\boldsymbol{P}, \boldsymbol{R}$
- Necessary for application to non-autonomous chiral model
- Interpretation of method as Darboux transformation and projection
- Solutions of the non-autonomous chiral model with diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$
- Reductions to well known multi-Kerr-NUT and hyperextreme multi-Demiański-Newman solutions
- Non-extreme multi-Demiański-Newman solutions still missing (crucial step is to find reduction conditions for matrix data)
- Method produces much larger class of solutions
- Solutions with non-diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$ known (some are limits of solutions with diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$, no systematic exploration yet)
- Also solutions with spec $\tilde{\boldsymbol{P}} \cap \operatorname{spec} \tilde{\boldsymbol{R}} \neq \emptyset$ possible?

Conclusions

- Generalization of solution generating method to non-constant $\boldsymbol{P}, \boldsymbol{R}$
- Necessary for application to non-autonomous chiral model
- Interpretation of method as Darboux transformation and projection
- Solutions of the non-autonomous chiral model with diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$
- Reductions to well known multi-Kerr-NUT and hyperextreme multi-Demiański-Newman solutions
- Non-extreme multi-Demiański-Newman solutions still missing (crucial step is to find reduction conditions for matrix data)
- Method produces much larger class of solutions
- Solutions with non-diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$ known (some are limits of solutions with diagonal $\tilde{\boldsymbol{P}}, \tilde{\boldsymbol{R}}$, no systematic exploration yet)
- Also solutions with spec $\tilde{\boldsymbol{P}} \cap \operatorname{spec} \tilde{\boldsymbol{R}} \neq \emptyset$ possible?
- Non-autonomous chiral model and Ernst equation addressed in new way using bidifferential calculus
- Established solid foundations, but still much to explore!

