Single-Top Physics at ATLAS

t-Channel Lepton + Jets Analysis with 2011-2012 Data Using a Kinematic Fit

Carsten Kendziorra supervised by Prof. Th. Lohse

Humboldt-Universität zu Berlin

Graduate School "Mass, Spectrum, Symmetry" Block Course, Zeuthen, 04.10.2011

Contents

- The ATLAS detector at LHC
- Top quark production
- Project discription
- Summary

The Large Hadron Collider (LHC)

- Data taking since march 2010
- Current instantaneous luminosity $L = 3.2 \cdot 10^{33} \, \text{cm}^{-2} \text{s}^{-1}$
- Until now $\int L dt = 4 \,\mathrm{fb}^{-1}$, till end of 2012 $\sim \int L dt = 10 \,\mathrm{fb}^{-1}$

- Proton-proton collider at CERN
- Circumference: 27 km
- Currrent $\sqrt{s} = 7 \,\mathrm{TeV}$

ATLAS data taking 2011

The ATLAS Detector

- Multipurpose detector at the LHC at interaction point P1
- \bullet Solenoid magnet (2 T), toroid magnet (4 T), \sim 100 Mio readout channels
- \bullet Trigger: interaction rate 40 $\rm MHz$, recording $\sim 500\,\rm Hz$

Particle Detection and Identification

Cross Sections at Proton-Proton Scattering

- Huge deviations in cross sections for different processes
 - \rightarrow much more background events (e.g. W+jets, $t\overline{t})$ than single-top
 - ightarrow signal to background ratio S/B < 1
- Large uncertainties and deviations from theory for single-top $\sigma_{t,t\text{-channel}} = 90^{+9}_{-9}(\text{stat})^{+31}_{-20}(\text{syst}) \, \mathrm{pb}$

Single-Top Production Channels

Cross sections: Approximate NNLO calculations, Kidonakis, Phys. Rev. D 83, 091503(R) (2011), Phys. Rev. D 81, 054028 (2010)

Why Is Single-Top of Interest?

- Single top quark production in electro-weak interaction
 - → test EW interaction
 - ullet Direct measurement of CKM matrix element $V_{
 m tb}$
 - CKM-matrix unitary? More than 3 quark generations?
 - $\tau_{\rm t} < \tau_{\rm had}
 ightarrow {
 m spin}$ information conserved in decay products:
 - Test V A structur of weak int. \rightarrow anomalous couplings?
- Important background for charged Higgs and exotics analysis

Systematics for Single-Top Cross Section Measurement

Uncertainties already dominated by systematics

Source	$\Delta\sigma/\sigma$ [%]	
DATA statistics	+13	-13
MC statistics	+6	-6
Object modeling	+23	-14
b-tagging scale factor	+18	- 13
Generators & PDF	+25	-22
Background normalization	+10	-10
Luminosity	+7	-6
All systematics	+41	-27
Total	+44	-30

Signature of the t-Channel e ν

1 Electron, 1 b-jet, \mathcal{E}_T , 1 "light flavour" forward jet

Single-Top Production in the t-Channel

t-Channel

dominant at the LHC: $\sigma_{\text{single-ton}}^{\text{t-chan}} = 64.57_{-0.17}^{+2.71} \text{ pb}$

Signature:

Main background:

QCD-multijet-processes	>>	$\sigma_{ ext{single-top}}^{ ext{ t-chan}}$
W + jets	≈ 300 ·	$\sigma_{single-top}^{t-chan}$
Z + jets	≈ 40·	$\sigma_{ m single-top}^{ m t-chan}$
tt̄ - production	≈ 3·	$\sigma_{single-top}^{t-chan}$

- ullet Large background cross section compared to single-top o S/B < 1
- Sophisticated reconstruction method needed to reduce background and extract the signal

Reconstruction Methods for Single-Top

Tevatron

- Cut-based
- Kinematic fit
- Boosted decision tree
- Neuronal network
- Matrix element method (LO)

ATLAS

- Cut-based
- Kinematic fit ongoing
- Boosted decision tree planned
- Neuronal network
- Matrix element method (LO, NLO P. Rieck) planned

Kinematic Fit

- χ^2 -based fit (KinFitter package, TU Dresden) with nonlinear constraints
- ullet Use χ^2 , provided by the fitter, to discriminate signal and background

• Corrects momenta of the final state objects, such that the constraints are fulfilled and χ^2 is minimized

- Tests for every event every possible combination of lepton, b-jet, £_T
- Best combination (smallest χ^2) is the top quark candidate

Kinematic Fit

Advanteges:

- Data-driven (i.e. no MC dependence)
- Corrected momenta of final state objects
 → less dependence from energy scale
- Neutrino Pz reconstructed
 → full 4-momenta of t and W
- Works even without b-tagging

Results:

from MSc thesis by Patrick Rieck and PhD thesis (in progress) by Ruth Herrberg and Michelangelo Giorgi

1.188

250

2000

150

1000

500

Single-Top Physics at ATLAS

Project Discription

- Based on 2 PhD thesis for total cross section measurement (to be finalized in summer 2012):
 - Ruth Herrberg: t-channel
 - Michelangelo Girogi: Wt-channel
- Work on systematics of cross section measurement
- B-Tagging performance studies and systematics (highest contribution now)
- Measurement of differential cross sections
 - \rightarrow Interpretation of measurement, e.g. SM tests
 - ullet $V_{\mathsf{tb}} o \mathsf{CKM} ext{-Fitter}, \ \mathsf{Heiko} \ \mathsf{Lacker}$
 - V A structure

Summary

- LHC provides unique production rates for single-top
- Single-top provides the possibility for testing the EW interaction
- First results published by ATLAS and CMS

ATLAS:
$$\sigma_{t,t\text{-channel}} = 90^{+9}_{-9}(\text{stat})^{+31}_{-20}(\text{syst}) \, \text{pb}$$

theory: $\sigma_{t,t\text{-channel}} = 64.57^{+2.71}_{-2.01} \, \text{pb}$

- Plan for my PhD:
 - Improving the signal extraction and background rejection of the analysis with a kinematic fit
 - Measure total and differential cross sections and improve systematics (esp. b-tagging) with 2011-2012 data
 - \rightarrow perform standard model tests ($V_{\rm tb}$, V-A structure)

Backup

B-Tagging

- Identification of jets originating from b-quarks
- Exploit longer lifetime of B-hadrons
 → secondary vertex and displaced tracks
- Taggers provide a b-tag probability weight $W_{\rm jet}$ for each jet \rightarrow jet is tagged as b-jet if $W_{\rm jet} > W_{\rm cut}$

