Vector Boson Scattering at the LHC

Ulrike Schnoor Michael Kobel, Anja Vest & Philipp Anger

IKTP TU Dresden Blockkurs Graduiertenkolleg

October 4, 2011

- 1. Vector Boson Scattering
 - Unitarity violation in VBS
 - Case 1: Light Higgs is found at the LHC
 - Case 2: No Higgs / Heavy Higgs
- 2. Measurement of VBS at ATLAS
 - Contributing Feynman Diagrams
 - Experimental Signature
- 3. Monte Carlo Predictions
 - Comparison between Whizard and Sherpa
 - Kinematics
- 4. Outlook

Why study Vector Boson Scattering at the LHC?

- Important channel to study electroweak symmetry breaking in case of
 - light (non-SM?) Higgs
 - heavy Higgs
 - other EWSB mechanism

due to unitarity violation in this channel above $\sqrt{s_{VV}} \sim$ 1.2 TeV

 Scattering of weak bosons in SM (including triple and quartic gauge vertices) not measured yet

What is Vector Boson Scattering?

• Signal $qq' \rightarrow q_{tag}q'_{tag}VV$ (V = W or Z)

- "blobb" contains all VV scattering diagrams
- background:
 - □ irreducible electroweak background due to gauge dependence
 - reducible QCD background with the same final state

Unitarity violation in the VBS channel

Scattering of longitudinally polarized weak gauge bosons $W_L^+ W_L^-$

Add s- and t-channel Higgs exchange amplitude:

5/22

Case 1: Light Higgs is found at the LHC

VBS cross section is Higgs mass dependent essentially $\sigma(m_{VV} < m_W)$ and $\sigma(m_{VV} > m_W)$

- channel is also sensitive to the coupling strenghts of Higgs to vector bosons
- probe SM or non-SM Higgs
- observe or exclude strong WW scattering

Case 2: No Higgs/ heavy Higgs

- no Higgs (m_H → ∞) or heavy Higgs (m_H ≥ 870 GeV): unitarity violated in VBS above √s_{VV} ~ 1.2 TeV → strong gauge sector
- ⇒ Higgs or new physics will be visible at higher energies in this channel (possibly through VV resonances)
- new physics for EWSB e.g.
 - QCD-like technicolor models with chiral symmetry breaking
 - Higgsless extra-dimension models
 - models with additional vector bosons, etc.
- VBS allows to probe alternative EWSB mechanism
- model-independent approach: effective Lagrangian with k-matrix unitarization at higher energies, e.g. electroweak chiral Lagrangian with k-matrix unitarization (WHIZARD)

Contributions to WW+2j Final State: EW

SIGNAL: $\mathcal{O}(\alpha_w^4)$ WW, WZ, ZZ scattering graphs:

IRREDUCIBLE BACKGROUND: additional diagrams $\mathcal{O}(\alpha_w^4)$

Contributions to WW+2j Final State: non-EW

REDUCIBLE BACKGROUND: Diagrams $\mathcal{O}(\alpha_w^n)$, $n \neq 4$

- Diagrams O(α⁴_w) can be separated gauge invariantly from diagrams with different order of α_w
- Backgrounds ~ αⁿ_w, n ≠ 4 to be reduced by kinematical/ topological cuts

Measurement of VV scattering

Compare all VBS contributions to data

 $\stackrel{?}{=}$ DATA - reducible background ($\sim lpha_w^n, n \neq$ 4)

Event generation

$$\begin{array}{ll} \mathsf{EW} & \alpha_s = 0 & \mathcal{O}(\alpha_w^4) \\ \mathsf{EWQCD} & \alpha_s = \alpha_s(m_Z) & \mathcal{O}(\alpha_w^4) \text{ and } \mathcal{O}(\alpha_w^2) \mathcal{O}(\alpha_s^2) \end{array}$$

Experimental Signature

Tagging jets

- 1, 2 central leptons
- 3, 4 forward/backward tagging jets

Soft jet veto in central region

lack of color exchange between initial-state quarks \Rightarrow suppressed hadron production in central region

Monte Carlo Generation: WHIZARD and SHERPA

Production of $qq \rightarrow q_{tag}q_{tag}l\nu l\nu$ at parton level

- $q, q_{tag}: u, \bar{u}, d, \bar{d}, s, \bar{s}; p_T^{jets} > 15 \; GeV; \Delta R \; (j,j) > 1.0$
- Leptons *I*: e^- , e^+ , μ^- , μ^+ , τ^- , τ^+ ; $p_T^{\text{leptons}} > 15 \text{ GeV}$, $M_{\parallel} > 20 \text{ GeV}$
- Neutrinos ν : ν_e , $\bar{\nu}_e$, ν_μ , $\bar{\nu}_\mu$, ν_τ , $\bar{\nu}_\tau$
- $\sqrt{s} = 7 \ TeV$
- *m_H* = 120 *GeV*
- pdfset: cteq6l
- $\alpha_{QED} = 1/132.5$ (*G_F* scheme for electroweak coupling)

Configuration as similar as possible to get comparable results

Monte Carlo Predictions for VBS Cross Sections

Cross sections for VBS processes

Generator	$\sigma_{\rm EW}$ [fb]	$\sigma_{\rm EWQCD}$ [fb]
Sherpa	44.35	1262.13
Whizard	29.42	790.180

Differences between the generators: $\sim 35\%$ \rightarrow WHIZARD and SHERPA authors

EW
$$\alpha_s = 0$$
 $\mathcal{O}(\alpha_w^4)$ EWQCD $\alpha_s = \alpha_s(m_Z)$ $\mathcal{O}(\alpha_w^4)$ and $\mathcal{O}(\alpha_w^2)\mathcal{O}(\alpha_s^2)$

- cross sections correspond to few events in 2011/2012 ($\mathcal{L} \sim 10 \text{ fb}^{-1}$)
- compare to H→WW + 2j: not published yet (in ATLAS)

Comparison between WHIZARD and SHERPA

WHIZARD vs. SHERPA (normalized to their respective cross sections)

 ϕ of leading tagging jet (EW)

invariant mass of charged leptons (EW)

- generate more exclusive samples (e.g. purely WZ: FS e⁺e⁻μ⁺ν_μ) to find origin of the differences
- for VBS analysis apply stronger VBS cuts, e.g. on Δη(jets) → reduce differences between generators

Kinematic distributions on the following slides from private RIVET Analysis: $jj \rightarrow jjW^+W^- \rightarrow jjI^+I^-\nu_l\bar{\nu}_l$

- **2** W's reconstructed from leptons (e or μ) and MET
- jet reconstruction with anti- k_T (R = 0.4)
- tagging jets: opposite hemispheres $\rightarrow \eta_{j1} \cdot \eta_{j2} < 0$ required Both EW and EWQCD are normalized to 1.0 for better comparability (normally EWQCD ~ 25 times EW)

Pseudorapidity distributions of jets

Pseudorapidity distributions of jets (WHIZARD)

Difference in pseudorapidity

Ulrike Schnoor: Vector Boson Scattering at the LHC

18/22

Transverse momentum of jets

Lepton pseudorapidity and ΔR

both after applying tagging jet cut

Lepton centrality (VBS feature)

Lepton centrality ζ $\zeta := \min\{\min\{\eta_{l1}, \eta_{l2}\} - \min\{\eta_{j1}, \eta_{j2}\}, \max\{\eta_{j1}, \eta_{j2}\} - \max\{\eta_{l1}, \eta_{l2}\}\}$

- both leptons within tagging jets (in η): ζ > 0
- one or both leptons larger η than closest jet: ζ < 0
- for VBS, ζ tends to be rather positive

Outlook and Plans

Analysis plans

- □ Analyze ATLAS data 2011/12
- □ Find reason for discrepancies between WHIZARD and SHERPA
- Establish SM vector boson scattering incl. triple and quartic gauge vertices (not experimentally measured up to now)
- Probe EWSB mechanism in this channel, i/a with model-independent Lagrangian
- Set limits on anomalous contributions to this process (alternatives to Higgs mechanism, non-SM weak boson quartic vertex)

BACKUP

Scattering of longitudinally polarized vector bosons

Unitarity violation only for longitudinal gauge-boson scattering:

 A(V_T V_T → V_T V_T) ~ O(1): → no violation of unitarity
 A(V_L V_L → V_L V_L) ~ s/m_V²: → violates unitarity above √s_{VV} ≈ 1.2 TeV

 V_L scattering associated to scattering of "Goldstone" scalars (w, z) via equivalence theorem:

$$\mathcal{A}(W_L W_L \to W_L W_L) = \mathcal{A}(ww \to ww)$$

$$\mathcal{A}(W_L Z_L \to W_L Z_L) = \mathcal{A}(wz \to wz) \text{ etc.}$$

Branching ratios of various decay channels

VBS contributions from different final states of W decays

	$qq ightarrow q_{ m tag} q_{ m tag} WW$:	$WW ightarrow \ell u \ell u$	BR 0.046
		$WW o qq\ell u$	BR 0.292
Final states:	$qq ightarrow q_{ m tag} q_{ m tag} WZ$:	$WZ ightarrow \ell u \ell \ell \ WZ ightarrow qq \ell \ell \ WZ ightarrow qq \ell u$	BR 0.015 BR 0.045 BR 0.151
	$qq ightarrow q_{ m tag} q_{ m tag} ZZ$:	$ZZ ightarrow \ell\ell\ell\ell \ ZZ ightarrow qq\ell\ell \ ZZ ightarrow \ell\ell u u$	BR 0.005 BR 0.094 BR 0.027

(with $I = e, \mu$)