On the Way towards an Automated Tool for Multileg NLO Computations

Benedikt Biedermann AG Phenomenology of Elementary Particles

In Collaboration with Simon Badger and Peter Uwer

Motivation

Signal for new physics requires precise understanding of QCD:

High energy pp-scattering gives rise to multi-leg parton amplitudes

- Automation at tree-level solved, e.g. MadGraph, HELAC,...
- Important goal: Automation of NLO gluon amplitudes with "many" legs

Why NLO amplitudes?

Tree-level approximation is the classical approximation i.e. no quantum corrections

First quantum corrections at one-loop level

Inclusive W++3 jet cross-section at the LHC and the K-factor defined as K = σ_{NLO}/σ_{LO}

One-loop Methods

Amplitude

[Passarino, Veltman1979]

= sum of all Feynman diagrams

Scalar one-loop integrals \mathcal{I}_j

$$\mathcal{A} = \sum_{j} c_{j} \mathcal{I}_{j}$$

One-loop Amplitude = Determination of the coefficients c_j

Scalar Integral Basis

Decomposition of an arbitrary one-loop amplitude

$$\mathcal{I}_{ijkl}^{(4)} = \int \mathrm{d}^d l \frac{1}{D_i D_j D_k D_l}$$
$$D_i = (p_i + l)^2 - m_i^2$$

No tadpoles in massless theories

Aim: get d, c and b

Scalar Integrand

Focus on the integrand of the amplitudes

$$\mathcal{A}_{N} = \int \mathrm{d}^{4}l \,\mathcal{A}_{N}(l) \qquad \qquad \begin{bmatrix} \text{Ossola,Papadopoulos,Pittau2007} \\ \text{[Ellis, Giele, Kunszt 2008]} \end{bmatrix}$$
$$\mathcal{A}_{N}(l) = \sum_{\{ijkl\}} \frac{\overline{d}_{ijkl}(l)}{D_{i}D_{j}D_{k}D_{l}} + \sum_{\{ijk\}} \frac{\overline{c}_{ijk}(l)}{D_{i}D_{j}D_{k}} + \sum_{\{ij\}} \frac{\overline{b}_{ij}(l)}{D_{i}D_{j}}$$

Numerator: Loop-momentum independent part + spurious terms

$\overline{d}(l) = d + \widetilde{d}(l)$	Loop-momentum independent part is the desired integral coefficient
$\int \mathrm{d}^4 l \frac{d + \tilde{d}(l)}{D_i D_j D_k D_l} = d$	$\int \mathrm{d}^4 l \frac{1}{D_i D_j D_k D_l} = d \mathcal{I}^{(4)}$

Extraction of the Coefficients

Number of spurious terms is fixed and finite:

Partial Fractioning the Integrand

$$\mathcal{A}_N(l) = \sum_{\{ijkl\}} \frac{\overline{d}_{ijkl}(l)}{D_i D_j D_k D_l} + \sum_{\{ijk\}} \frac{\overline{c}_{ijk}(l)}{D_i D_j D_k} + \sum_{\{ij\}} \frac{\overline{b}_{ij}(l)}{D_i D_j}$$

• multiply with $D_i D_j D_k D_l$ • go on-shell: $D_i = D_j = D_k = D_l = 0$

$$\overline{d}_{ijkl}(l) = \mathcal{A}_N(l) D_i D_j D_k D_l$$

$$\equiv \mathcal{A}_1^{\text{tree}}(l) \mathcal{A}_2^{\text{tree}}(l) \mathcal{A}_3^{\text{tree}}(l) \mathcal{A}_4^{\text{tree}}(l)$$

$$\equiv \text{Product of four tree amplitudes}$$

The loop-momentum must be constructed such that the propagators vanish (on-shell cut condition).

General Procedure

Triangles and bubbles: more involved

- boxes, triangles and bubbles have common cuts
 - → intricate subtraction procedure
- A lot of spurious terms

Triangles

$$\mathcal{A}_{N}(l) = \sum_{\{ijkl\}} \frac{\overline{d}_{ijkl}(l)}{D_{i}D_{j}D_{k}D_{l}} + \sum_{\{ijk\}} \frac{\overline{c}_{ijk}(l)}{D_{i}D_{j}D_{k}} + \sum_{\{ij\}} \frac{\overline{b}_{ij}(l)}{D_{i}D_{j}}$$
$$\downarrow \quad \text{emultiply with} \quad \begin{array}{c} D_{i}D_{j}D_{k} \\ \bullet \text{ go on-shell:} \quad D_{i} = D_{j} = D_{k} = 0 \end{array}$$
$$\overline{c}_{ijk}(l) = \left[\mathcal{A}_{N}(l) - \sum_{l \neq \{i,j,k\}} \frac{\overline{d}_{ijkl}(l)}{D_{i}D_{j}D_{k}D_{l}} \right] D_{i}D_{j}D_{k}$$
$$\equiv \mathcal{A}_{1}^{\text{tree}}(l)\mathcal{A}_{2}^{\text{tree}}(l)\mathcal{A}_{3}^{\text{tree}}(l) - \sum_{l \neq \{i,j,k\}} \frac{\overline{d}_{ijkl}(l)}{D_{l}} \right]$$

 \equiv Product of three tree amplitudes – box part

Boxes versus Triangles

Example with four external legs:

11

Numerical Implementation

- Coded in C++
- **On-shell:** loop-momentum parametrization with van Neerven-Vermaseren basis [van Neerven, Vermaseren 1984]
- **Disentanglement:** Discrete Fourier Projection (DFP)
- **Tree amplitudes:** recursion techniques [Berends, Giele 1987]

On-shell conditions in 4 Dimensions

Box case:

4 equations: $D_i = D_j = D_k = D_l = 0$

→ loop momentum entirely "frozen"

Triangle case:

3 equations:
$$D_i = D_j = D_k = 0$$

→ loop-momentum and integrand depend on one free parameter t:

$$\bar{c}_{ijk}(t) = \mathcal{A}_1^{\text{tree}}(t)\mathcal{A}_2^{\text{tree}}(t)\mathcal{A}_3^{\text{tree}}(t) - \sum_{l \neq \{i,j,k\}} \frac{\overline{d}_{ijkl}(t)}{D_l}$$

Bubble case:

- 2 equations: $D_i = D_j = 0$
- \longrightarrow two free parameters t and y: $\overline{b} = \overline{b}(t, y)$

Discrete Fourier Projection I

Integrand is a complex valued power series in t with **finite** number of power terms:

of power terms = # of spurious terms + 1

Triangles:

Discrete Fourier Projection II

Mathematics behind the Fourier Projection:

• Complete and orthonormal function basis

$$\frac{1}{2p+1} \sum_{j=-p}^{p} e^{i2\pi(n-m)/(2p+1)} = \delta_{mn}$$

• Uses Z(N) as discrete subgroup of U(1)

Bubble case:

• double Fourier projection with two independent circles

Tree Amplitude Calculation

Results

Fully automated computation of the boxes, triangles and bubbles (cut-constructible parts) in pure gauge theory

estimate of the numerical precision via UV singularities:

- 1/e singularities of the bubbles canceled via gluonic beta function
 - → compare finite parts

sum of all bubble coefficients

gluonic part of the beta function

6-Gluon Amplitude

Bubble test

10-gluon Amplitude

Bubble test

Conclusion and Outlook

Conclusion

- Cut-constructible part works for all boxes, triangles and bubbles
- Good accuracy thanks to discrete Fourier Projection
- Speed can be improved

Outlook

• D-dimensional cuts for the rational terms