Yield extraction of a 4th generation signal with the ATLAS detector

Malik Aliev, Sergio Grancagnolo, Heiko Lacker, Rocco Mandrysch, <u>Dennis Wendland</u>

Humboldt-Universität zu Berlin

**GK blockcourse** Rathen, 23.03.2010







## Introduction to a 4th family of fermions

- Motivation
- Search signature
- Particle and event selection

## 2 Counting analysis

- Idea
- Control samples
- Estimation of control ratios and signal yields

# 3 Results for b' (300 GeV)

- Mixing sample
- Signal and control regions
- Result
- Convergences

## Summary

## Introduction to a 4th family of fermions

- Motivation
- Search signature
- Particle and event selection

## Counting analysis

- Idea
- Control samples
- Estimation of control ratios and signal yields

## 3 Results for b' (300 GeV)

- Mixing sample
- Signal and control regions
- Result
- Convergences

## Summary

## Motivation

#### Present situation:

- Number of families not fixed by the Standard Model
- Z-resonance (LEP I):  $N_{\nu} = 3$  with  $m_{\nu} < m_Z/2$
- If  $\nu_4$  exists:  $m_{\nu_4} \geq m_7/2$

#### With a fourth generation:

- Possible way to explain baryogenesis (Fok et al, Phys.Rev.D78:075023,2008; Hou, Chin. J. Phys.47:134, 2009)
- Higher Higgs mass (up to 600GeV) possible (Kribs et al, Phys.Rev.D76:075016,2007)

# Direct limits

#### Current mass limits on short living particles @ 95% CL:

| Particle           | m <sub>min</sub> [GeV] | Experiment |
|--------------------|------------------------|------------|
| $\ell_4$           | 100                    | LEP        |
| $\nu_4$ (Dirac)    | 90.3                   | LEP        |
| $\nu_4$ (Majorana) | 80.5                   | LEP        |
| t'                 | 311                    | Tevatron   |
| b'                 | 325                    | Tevatron   |

#### Consequence for us:

 $\bullet$  Looking for 4th generation quarks with m  $\geq$  300GeV

# Tiny mixing angles between 4th and other families $\Rightarrow$ particles could have long lifetime:

• Mass limit depends on CKM elements and mass of other heavy quark (Hung el all,, Phys.Rev.D77:037302,2008)

## Search signature

Assumption: m(b')-m(t) > m(W), V\_{tb'} sufficiently large wrt V\_{ub'} and V\_{cb'}

Final states of t' and b' decay with sizable branching fraction:

| m(t') > m(b') | m(t')-m(b') > m(W)  | $b'\bar{b'} \rightarrow t\bar{t} + 2W \rightarrow b\bar{b}2W^+2W^-$   |
|---------------|---------------------|-----------------------------------------------------------------------|
|               |                     | $t'\bar{t'} \rightarrow b'\bar{b'} + 2W \rightarrow b\bar{b}3W^+3W^-$ |
|               | m(t')-m(b') < m(W)  | $b'ar{b'}  ightarrow tW^-ar{t}W^+  ightarrow bar{b}2W^+2W^-$          |
|               |                     | $t'ar{t'} 	o b {\cal W}^+ar{b} {\cal W}^-$                            |
|               |                     | $b'\bar{b}'  ightarrow t'W^- ar{t}'W^+  ightarrow bar{b}2W^+2W^-$     |
| m(b') > m(t') | m(b')-m(t') > m(W)  | $b'ar{b'}  ightarrow tW^-ar{t}W^+  ightarrow bar{b}2W^+2W^-$          |
|               |                     | $t'ar{t'} 	o b \mathcal{W}^+ar{b}\mathcal{W}^-$                       |
|               |                     | $b'ar{b'}  ightarrow tW^-ar{t}W^+  ightarrow bar{b}2W^+2W^-$          |
|               | (vv) = m(v) = m(vv) | $t'ar{t'} 	o b {\cal W}^+ar{b} {\cal W}^-$                            |

## Search scenario

#### Decay channels:

• 
$$b'\bar{b}' \rightarrow t\bar{t} + W^+W^- \rightarrow b\bar{b} + 2W^+2W^-$$

• 
$$t'\bar{t'} \rightarrow b'\bar{b'} + W^+W^- \rightarrow t\bar{t} + 2W^+2W^- \rightarrow b\bar{b} + 3W^+3W^-$$

- $\Rightarrow$  Exclusive reconstruction difficult but inclusive multilepton final state interresting
- $\Rightarrow$  b' final states:  $\ell^{\pm}\ell^{\pm}/3\ell$  + jets
- $\Rightarrow$  t' final states:  $\ell^\pm\ell^\pm/3\ell$  + jets
- $\Rightarrow$  rare standard model signatures
  - signature also used in "Search for A Fourth Generation b' Quark in tW Final State at CMS in pp Collisions at  $\sqrt{s} = 10$  TeV" (CMS PAS EXO-09-012)

## Lepton selection

#### Leptons

| particle    | p <sub>T</sub> <sup>min</sup> [GeV] | $ \eta^{max} $ | $E_T^{cone20}$ [GeV] |
|-------------|-------------------------------------|----------------|----------------------|
| $e^{\pm}$   | 20                                  | < 2.5          | < 8                  |
| $\mu^{\pm}$ | 20                                  | < 2.5          | < 10                 |

•  $E_T^{cone20}$ : Energy sum in a cone R =  $\sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.2$ 

• Muons:  $\chi^2/NDoF < 5$  for matching between tracks in Muon Spectrometer and Inner Detector

## Jet selection

#### Jets

- Cone jet algorithm with  $\Delta R < 0.4$
- Remove misidentified jets in a cone  $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.2$ and  $|\eta| < 2.5$  with  $e^{\pm}$ ,  $\mu^{\pm}$ ,  $\gamma$  and  $\tau^{\pm}$
- $E_T^{jet} > 25 GeV$  in order to suppress jets from underlying event

## Event selection

#### Missing energy:

- Use for calculation:
  - Jets
  - Muons
  - Correction function for dead material (cryostat)
  - Calorimeter cells in  $e^{\pm}$ ,  $\tau^{\pm}$ ,  $\gamma$
- $E_T > 20 GeV$

#### Leptons and jets

- Electrons and muons :  $P_T^{leading} > 35 \text{GeV}$
- :  $E_{\tau}^{leading} > 85 \text{GeV}$ Jets

### Introduction to a 4th family of fermions

- Motivation
- Search signature
- Particle and event selection

## Distance Counting analysis

- Idea
- Control samples
- Estimation of control ratios and signal yields

## 3 Results for b' (300 GeV)

- Mixing sample
- Signal and control regions
- Result
- Convergences

## Summary

Counting analysis

#### Idea

## **Motivation**



 $\Rightarrow$  How to reliably estimate the background on data?

#### Procedure

- Long term: Likelihood fit in N<sub>Jets</sub>
- This talk: Counting analysis (N<sub>Jets</sub> only used as control distribution)

#### • Two issues:

- Control of background cross sections (included in this talk)
- 2 Lepton fake rates (long term)

## Test of procedure using MC pseudo-data

- Mixing sample is used as pseudo-data
- Selecting randomly events from each MC background and signal sample corresponding to specific luminosity (here:  $50pb^{-1}$ ) and assuming specific cross section ( $N = \sigma \cdot L$ )
- Using the remaining events as the MC prediction

#### Idea

# Subtracting background

- Counting of observed entries on data in specific signal region (SR) and subtraction of MC background
- Signal region: Lepton category (same sign dileptons)



## Control samples

Lepton categories and dominating background





CR for  $Z \rightarrow ee$ 



CR for 
$$Z \rightarrow \mu \mu$$

# Controlling background

- Control main backgrounds in control regions (CR)
- Same event cuts as SR but different lepton categories
- Modifying MC predictions by control ratios





# Estimation of control ratios and signal yields

#### Calculation - Iteration 0

•  $\sum_{i}$ 

• R<sup>0</sup><sub>i</sub>

•  $\sum_{i_{other}}$ 

$$N_{Sig}^{0} = N_{data}^{SR} - \sum_{i} \left( N_{MC,i}^{SR} \cdot \mathbf{R}_{i}^{0} \right) - \sum_{i_{other}} N_{MC,i_{other}}^{SR}$$
$$\mathbf{R}_{i}^{0} = \frac{N_{data}^{CR,i}}{N_{MC,i}^{CR,i}}$$

- $N_{MC(data)}$  : Number of entries in  $N_{Jets}$  histogram of MC (data) sample
  - : Sum over data-driven corrected BG samples
  - : Sum over other, uncorrected BG
    - : Correction factor for sample *i*, also calculated for signal in SR

## Estimation of control ratios and signal yields

#### Calculation - Iteration k

$$R_{i}^{0} = \frac{N_{data}^{CR,i}}{N_{MC,i}^{CR,i}} \implies R_{i}^{k} = \frac{N_{data}^{CR,i} - \sum_{m \neq i} \mathbf{R}_{m}^{k-1} \cdot \mathbf{N}_{MC,m}^{CR}}{N_{MC,i}^{CR,i}}$$

- $\sum_{m}$  : Sum over all BG (corrected and uncorrected) and MC signal sample
- R<sub>m</sub><sup>k-1</sup> : Correction factor of previous iteration for sample m (= 1 for uncorrected BG), also calculated for signal in SR

### Introduction to a 4th family of fermions

- Motivation
- Search signature
- Particle and event selection

## Counting analysis

- Idea
- Control samples
- Estimation of control ratios and signal yields

## Besults for b' (300 GeV)

- Mixing sample
- Signal and control regions
- Result
- Convergences

## **Summary**

# Mixing sample

Modified cross sections  $\sigma$  in mixing sample generation by factor  $k_{\sigma}$ 

 $\sigma \rightarrow k_{\sigma} \cdot \sigma$ 

#### Modification of cross sections in production of mixing sample

| Woullied Sumple       |      |
|-----------------------|------|
| b' (300 GeV)          | 1.15 |
| $We\nu+jets$ (MC)     | 0.9  |
| $W\mu\nu+$ jets (MC)  | 0.9  |
| Zee+jets (MC)         | 0.9  |
| $Z\mu\mu+$ jets (MC)  | 0.9  |
| $t\bar{t}$ +jets (MC) | 1.15 |
| Dibosons+jets         | 0.9  |

#### Expected result from MC signal sample

Expecting  $\mathbf{21.6}\pm0.3$  signal events

Dennis Wendland (HU-Berlin)

Yield extraction of a 4th generation signal

23.03.2010 19 / 25

Results for b' (300 GeV) Signal and control regions

# Signal and control regions before correction procedure





Dennis Wendland (HU-Berlin)

Yield extraction of a 4th generation signal

N<sub>Jets</sub>

Results for b' (300 GeV) Signal and control regions

## Signal and control regions after correction procedure





# Result for b' (300 GeV) @ 50 $pb^{-1}$ , $\sqrt{s} = 10$ TeV

#### Results

| Sample                    | Events        | Final $R_i^k$ | $k_{\sigma}$ |
|---------------------------|---------------|---------------|--------------|
| data                      | $34\pm 6$     |               |              |
| $We\nu+jets$ (MC)         | $0.6\pm0.2$   | $0.91\pm0.02$ | 0.9          |
| $W\mu u+$ jets (MC)       | $1.6\pm0.3$   | $0.90\pm0.02$ | 0.9          |
| Zee+jets (MC)             | $2.6\pm0.4$   | $0.95\pm0.06$ | 0.9          |
| $Z\mu\mu+{\sf jets}$ (MC) | $0.11\pm0.04$ | $0.90\pm0.05$ | 0.9          |
| $t\bar{t}+$ jets (MC)     | $6.5\pm0.9$   | $1.0\pm0.2$   | 1.15         |
| other (MC)                | $2.2\pm0.9$   |               |              |
| Result                    | $20\pm 6$     |               |              |
| Expected                  | $21.6\pm0.3$  |               |              |

# Convergence plots of control ratios



Dennis Wendland (HU-Berlin)

#### Introduction to a 4th family of fermions

- Motivation
- Search signature
- Particle and event selection

## Counting analysis

- Idea
- Control samples
- Estimation of control ratios and signal yields

## 3 Results for b' (300 GeV)

- Mixing sample
- Signal and control regions
- Result
- Convergences

## Summary



- $\ell^{\pm}\ell^{\pm}/3\ell$  + jets are good search signatures
- Data driven analysis for extraction of 4th generation signal developed
- Generally applicable on analysis where background and signal pass the same event selection cuts but contribute with different efficiencies in different event categories (here: lepton charges and multiplicities)
- $\bullet\,$  Signal yield limited by statistics in SR  $\to$  Errors on control ratios negligible
- Stability: Control ratios converge after few iteration steps
- Test with pseudo-data shows no bias for control ratios and signal yield
- Not shown: Works als with no signal in pseudo data

# Thank you !!!

# Backup slides

# ATLAS detector





# Particle selections

#### Electrons

• Standard (HighPt), tight electrons

• 
$$P_T > 20$$
 GeV,  $|\eta| < 2.5$ ,  $E_T^{cone20} < 8$  GeV

#### Muons

- STACO muons
- $\chi^2 / ndf < 5$
- $P_T > 20$  GeV,  $|\eta| < 2.5$ ,  $E_T^{cone20} < 10$  GeV

#### Jets

- Cone4H1Tower jets
- Overlap removal with  $e, \mu, \tau, \gamma$  within  $\Delta R < 0.2$
- $E_T > 25$  GeV,  $|\eta| < 2.5$

# Background samples

#### Control regions and the dominating background

- $e^+/e^-$  :  $We\nu$ +jets
- $\mu^+/\mu^-$  :  $W\mu\nu+{\rm jets}$
- $e^+e^-$  : Zee+jets
- $\mu^+\mu^-$  :  $Z\mu\mu$ +jets
- $e^+\mu^-/e^-\mu^+$  :  $t\bar{t}+{
  m jets}$

#### Uncorrected samples

- $W\tau\nu$ +jets, W+bb+jets
- $Z\tau\tau$ +jets, Z+bb+jets
- WW+jets, WZ+jets, ZZ+jets
- Single top (s-channel, t-channel, Wt-production)

# b' (varied $\sigma$ ) analysis: Signal region



Figure:  $I^+I^+/I^-I^-$  SR

# b' (varied $\sigma$ ) analysis: $We\nu$ and $W\mu\nu$ control region



Figure:  $We\nu$ +jets control region

Figure:  $W\mu\nu$ +jets control region

# b' (varied $\sigma$ ) analysis: Zee and $Z\mu\mu$ control region



Figure: Zee+jets control region

Figure:  $Z\mu\mu$ +jets control region

# b' (varied $\sigma$ ) analysis: $t\bar{t}$ control region



Figure:  $t\bar{t}$  control region

### Results (b' 300 GeV)

| Sample                | Events        | Final $R_i^k$ |
|-----------------------|---------------|---------------|
| data                  | $32\pm 6$     |               |
| $We\nu+jets$ (MC)     | $0.7\pm0.2$   | $1.01\pm0.02$ |
| $W\mu u+$ jets (MC)   | $1.8\pm0.3$   | $1.01\pm0.02$ |
| <i>Zee</i> +jets (MC) | $2.8\pm0.5$   | $1.03\pm0.06$ |
| $Z\mu\mu+$ jets (MC)  | $0.11\pm0.04$ | $0.93\pm0.05$ |
| $t\bar{t}+$ jets (MC) | $5.9\pm0.8$   | $0.9\pm0.2$   |
| other (MC)            | $2.2\pm0.9$   |               |
| Result                | $19\pm 6$     |               |
| Expected              | $18.4\pm0.3$  |               |

# b' analysis: Signal region



Figure: Signal region

## b' analysis: $We\nu$ and $W\mu\nu$ control region



Figure:  $We\nu$ +jets control region



Figure:  $W\mu\nu$ +jets control region

# b' analysis: Zee and $Z\mu\mu$ control region



Figure: Zee+jets control region

Figure:  $Z\mu\mu$ +jets control region

ATLAS work in progress

MC tr+jets

MC Z+jets

MC W+iets

MC WW+jets

MC WZ+jets

MC ZZ+jets

MC single-top

MC Z+bb+iets

MC W+bb+jets

MC b' (300GeV)

N<sub>Jets</sub>

Mixing sample (b' 300GeV)

×



Figure:  $t\bar{t}$  control region



Figure: Ratio for b' signal

# b' analysis: Convergence plots of control ratios



Ratio for  $Z \rightarrow ee$ 

Ratio for  $Z \rightarrow \mu \mu$ 

# b' analysis: Trilepton categories



Figure:  $I^+I^+I^+/I^-I^-I^-$ 

Figure:  $I^+I^+I^-/I^-I^-I^+$ 

## Results (t' 400 GeV)

| Sample                | Events        | Final $R_i^k$ |
|-----------------------|---------------|---------------|
| data                  | $23\pm5$      |               |
| $We\nu+jets$ (MC)     | $0.7\pm0.2$   | $1.00\pm0.02$ |
| $W\mu u+$ jets (MC)   | $1.8\pm0.3$   | $1.01\pm0.02$ |
| <i>Zee</i> +jets (MC) | $2.8\pm0.5$   | $1.04\pm0.06$ |
| $Z\mu\mu+$ jets (MC)  | $0.11\pm0.04$ | $0.93\pm0.05$ |
| $t\bar{t}+$ jets (MC) | $5.9\pm0.7$   | $0.9\pm0.2$   |
| other (MC)            | $2.2\pm0.9$   |               |
| Result                | $10\pm5$      |               |
| Expected              | $8.39\pm0.07$ |               |



Figure: Signal region

## Results @ 50pb<sup>-1</sup>

| Sample                | Events        | Final $R_i^k$ |
|-----------------------|---------------|---------------|
| data                  | $14\pm4$      |               |
| $We\nu+jets$ (MC)     | $0.7\pm0.2$   | $1.00\pm0.02$ |
| $W\mu u+$ jets (MC)   | $1.8\pm0.3$   | $1.00\pm0.02$ |
| Zee+jets (MC)         | $2.8\pm0.5$   | $1.03\pm0.06$ |
| $Z\mu\mu+$ jets (MC)  | $0.11\pm0.04$ | $0.92\pm0.05$ |
| $t\bar{t}$ +jets (MC) | $6.3\pm0.8$   | $1.0\pm0.2$   |
| other (MC)            | $2.2\pm0.9$   |               |
| Result                | 0 ± 4         |               |
| Expected              | 0             |               |

# b' (w/o signal) analysis: Signal region **<u>before</u>** correction





# b' (w/o signal) analysis: $t\bar{t}$ CR before/after correction



Figure: Before correction

Figure: After correction





Figure:  $I^+I^+/I^-I^-$  SR with anti-cut on leading jet  $E_T$ 

# SR with $E_T^{LeadingJet} < 85$ GeV and $P_T^{LeadingLep} > 0$ GeV



Figure:  $l^+l^+/l^-l^-$  SR with anti-cut on leading jet  $E_T$  and no cut on leading lepton  $P_T$