Performance of the tau reconstruction at ATLAS

Marcus Morgenstern

TU Dresden

March 23, 2010

Outline

2 Tau Reconstruction and Identification

The ATLAS detector

Figure: ATLAS detector overview

Marcus Morgenstern (TU Dresden)

erformance of tau reconstruction

Tau characteristics

- m $_{ au} \sim 1.7~{
 m GeV}$
- $c\tau = 87 \mu m$
- Hadronic decays are well collimated collection of charged and neutral pions/kaons
- Mostly 1 or 3 charged tracks
- Leading pion reproduces τ direction well

- au decays well understood
- Provides an excellent probe of 'New Physics' ...
- ... if contribution of QCD background is well understood

Physics with tau leptons in many areas

Standard Model

- Measurement of W/Z production cross section
- Discovery of Higgs bosons in $H \rightarrow \tau \tau$ final states

• Minimal Supersymmetric Standard Model (MSSM)

- $h/H/A \rightarrow \tau \tau$ excellent discovery potential
- Searches for charged Higgs bosons: $H^{\pm} \rightarrow \tau \nu$

Exotic scenarios

E.g. searches for heavy gauge bosons

Tracking

- Low track multiplicity
- Collimated tracks
- Secondary vertex reconstruction for 3-prong τ candidates
- Isolation from other tracks

Calorimetry

- Collimated energy deposits in calorimeter
- Strong EM component for 1-prongs
- Possibility of π^0 cluster identification $(\pi^0 \rightarrow \gamma \gamma)$
- Use electromagnetic (EM) and hadronic (HAD) component

Reconstruction and Identification done separately

Track- and Calo- seeded tau reconstruction

- Use good quality track ($p_T > 6 \text{ GeV}$) as seed
- Candidates with ≤ 8 tracks (p_T > 1 GeV) in $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.2$
- Reconstruct η, ϕ of τ using p_T weighting of tracks
- Charge consistency check
- Find matching cone-jet with opening $\Delta R = 0.4~({\rm E_T}>10~{\rm GeV},~|\eta|<2.5)~{\rm as}~{\rm calo-seed}$
- E_T using cells from calo-seed
- Energy flow algorithm
- Reconstruct π^0 subclusters

Calorimeter-only seeded reconstruction

- Use remaining clusters as a seed
- Define η,ϕ of τ candidate from cluster
- Loser track quality selection ($p_T > 1$ GeV)

Track-only seeded reconstruction

• Very small fraction of candidates expected in collision data

			π	ν.
		-	π^0	•
/	τ			
/				

Identification of tau candidates

• Variety of identification algorithms avaliable

- Cut-based selection
- Projective likelihood
- Neural networks
- Boosted-Decision-Trees
- <u>►</u> ...
- Based on tracking and calorimetry variables
 - \Rightarrow examples later

Robust variable approach

- Safe approach for early data taking
- Based on small number of well understood (robust) variables
- Requirements: variables safe according to experts and largely uncorrelated
- Two approaches:

Calorimeter approach

- Shower radius in EM calorimeter
- Isolation fraction
- Width in strip layer
- E_T(EM)/E_T

$\begin{array}{l} {\sf Calorimeter} + {\sf tracking} \\ {\sf approach} \end{array}$

- Variables from calo-approach
- + width of track momenta
- + E_T/p_T (leading track)
- + $E_T(HAD)/\sum p_T$
- + $E_T(EM)/\sum p_T$
- $+ \sum p_T / E_T (EM + HAD)$

- Tau reconstruction is improved continously ⇒ each version has to be checked
- Here:

 \rightarrow study performance of tau reconstruction and identification with Pythia Monte-Carlo 08 samples signal: Z $\rightarrow \tau \tau$ background: QCD di-jet

Figure: EM radius for calo-seeded candidates (fake-taus from QCD di-jet)

(a) Rel. 14.2.20 QCD: 35 GeV $\leq p_T \leq$ 70 GeV

(b) Rel. 15.3.1; QCD: 0 GeV $\leq p_T \leq$ 140 GeV

EM radius

$$R_{em} = \frac{\sum_{i=1}^{n} E_{T,i} \sqrt{(\eta_i - \eta_{cluster})^2 + (\phi_i - \phi_{cluster})^2}}{\sum_{i=1}^{n} E_{T,i}}$$

where *i* runs over EMCal cells in $\Delta R < 0.4$

no change in shape for tau signal different background shape \rightarrow new QCD MC sample is more complete (J0-J3)

Marcus Morgenstern (TU Dresden)

Performance of tau reconstruction

Figure: Isolation fraction of calo-seeded candidates (fake-taus from QCD di-iet)

(a) Rel. 14.2.20 QCD: 35 GeV $\leq p_T \leq$ 70 GeV

Marcus Morgenstern (TU Dresden)

March 23, 2010 14 / 21

Figure: Strip-Layer width of calo-seeded candidates (fake-taus from QCD di-iet)

(a) Rel. 14.2.20 QCD: 35 GeV $\leq p_T \leq$ 70 GeV

(b) Rel. 15.3.1; QCD: 0 GeV $\leq p_T \leq$ 140 GeV

Strip-Layer width $\Delta \eta = \sqrt{\frac{\sum_{i}^{\Delta R < 0.4} E_{T,i}(\eta_i - \eta_{cluster})}{\sum_{i}^{\Delta R < 0.4} E_{T,i}^{strip}}}$ where *i* runs over strip cells in associated

where *i* runs over strip cells in associated topoclusters

Figure: Invariant visible mass spectrum for track-seeded cand. (fake-taus from QCD di-jet)

(a) Rel. 14.2.20 QCD: 35 GeV $\leq p_T \leq$ 70 GeV

(b) Rel. 15.3.1; QCD: 0 GeV $\leq p_T \leq$ 140 GeV

Minv

using four-momenta of tracks and the barycentre of energy

- 3-prong mass distribution more narrow \rightarrow better resolution
- New QCD MC Sample has also low-pT jets

Marcus Morgenstern (TU Dresden)

Performance of tau reconstruction

March 23, 2010 17 / 21

Table: Rel. 14.2.20

	both-seeds	Only track-seeded	Only calo-seeded
	candidates	candidates	candidates
Reconstructed	50%	5%	45%
Reconstructed an matched	75%	<1%	25%
with MC tau's			

Table: Fraction of reconstructed and truth-matched τ cand. for signal Z— $\tau\tau$

Table: Rel. 15.3.1

	both-seeds	Only track-seeded	Only calo-seeded
	candidates	candidates	candidates
Reconstructed	51.1%	7.2%	41.7%
Reconstructed an matched	75.8%	<1%	23.5%
with MC tau's			

Table: Fraction of reconstructed and truth-matched τ cand. for signal Z $\rightarrow \tau \tau$

(a) Rel. 14.2.20

(b) Rel. 15.3.1

Reconstruction efficiency

$$\epsilon_{ au} = rac{N_{reco-matched}^{ au}}{N_{true}^{ au}}$$

- N^{\tau}_{true} # true, had. decaying τ 's with ${\sf E}_{\tau}{}^{\it vis}>$ 10 GeV, $|\eta|<$ 2.5
- $N^{ au}_{reco-matched}$ # of reconstructed au's matched to $N^{ au}_{true}$ within $\Delta R < 0.2$
- E_T and η cut on tracks implemented
- higher efficiency for 1-prong τ candidates

Marcus Morgenstern (TU Dresden)

Performance of tau reconstruction

Figure: Reconstruction efficiency for all reconstructed candidates

Comparison

- higher efficiency for all and 1 + 3-prong au candidates
- more flat distribution for 1-prong au candidates

$\mathsf{Summary}/\mathsf{Outlook}$

- τ leptons can be reconstructed with high efficiency:
 90% if correct identification of number of tracks is neglected
- Better performance in new reconstruction version
- This comparison will be documented in an ATLAS note
- My Diploma project: extend reconstruction and identification of τ leptons to high momentum τ leptons
 - More collimated jets
 - Use energy to categorize τ s instead of E_T
 - Development of new selection criteria

Datasets

- using TauValidation-00-04-05 in ATHENA Rel. 15.6.1
- Signal samples:
 - mc08.106052.PythiaZtautau.merge.AOD.e347_s462_s520_r809_r838
- background samples
 - mc08.105009.J0_pythia_jetjet.merge.AOD.e344_s479_s520_r809_r838
 - mc08.105010.J1_pythia_jetjet.merge.AOD.e344_s479_s520_r809_r838
 - mc08.105011.J2_pythia_jetjet.merge.AOD.e344_s479_s520_r809_r838
 - mc08.105012.J3_pythia_jetjet.merge.AOD.e344_s479_s520_r809_r838

Backup: The energy-flow approach

• energy deposits in cells divided into:

- pure em. energy E_T^{emcl}
- charged em. energy E_T^{chrgEM} , $E_T^{chrgHAD}$
- neutral em energy E_T^{neuEM}
- $E_T^{chrgEM} + E_T^{chrgHAD}$ replaced by track(s) momenta \rightarrow define energy scale of τ_{had}
- contribution of π^0 included in E_T^{emcl} and E_T^{neuEM}
- correction of effects of π^0 and π^{\pm} depositing energy in same cell by $\sum res E_T^{chrgEM}$ and $\sum res E_T^{neuEM}$

Figure: EM radius of track-seeded candidates (fake-taus from J2 (left); J0-J3 (right))

Marcus Morgenstern (TU Dresden) Perf

Figure: Reconstruction efficiency for reconstructed candidates with both seeds

Comparison

- higher efficiency for all and 1+ 3-prong τ candidates at high $|\eta|$
- $\bullet\,$ more flat distribution for all and 1-prong τ candidates