Do's and Dont's with Likelihoods

> Louis Lyons IC and Oxford CDF and CMS

Dresden March 2010

Topics

What it is How it works: Resonance Error estimates Detailed example: Lifetime Several Parameters Extended maximum *L*

Do's and Dont's with \mathcal{L}

DO'S AND DONT'S WITH *L*

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$
- $\boldsymbol{\pounds}_{\text{max}}$ AND GOODNESS OF FIT
- $\int_{p_L}^{p_u} \mathcal{L} dp = 0.90$
- BAYESIAN SMEARING OF ${\boldsymbol{\mathcal L}}$
- USE CORRECT \mathcal{L} (PUNZI EFFECT)

MAXIMUM LIKELIHOD

$$y = N(1+ \frac{b}{a} \cos^2 \theta)$$

 $y_i = N(1+ \frac{b}{a} \cos^2 \theta)$
 $\sim Probability (9) observing θ_i , given $\frac{b}{a}$
 $\mathcal{L}(\frac{b}{a}) = T y_i$
 $\sim Probability (9) observing given set (9) θ_i
For that $\frac{b}{a}$
 $For that $\frac{b}{a}$
 $For that $\frac{b}{a}$
 $For that $\frac{b}{a}$
 $Freeising (9) \frac{b}{a}$ from width (9) \mathcal{K} distribution
 $CRUCIAL TO NUMBER
 $\frac{y}{2}$
 $\frac{b}{a}$
 $\frac{b}{a}$$$$$$$

How it works: Resonance

Vary **Γ**

Maximum likelihood error

Range of likely values of param μ from width of \mathcal{L} or 1 dists. If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

- 2) $1/\sqrt{(-d^2 \ln \mathcal{L} / d\mu^2)}$ (Mnemonic)
- 3) $\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0)) 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Errors from 3) usually asymmetric, and asym errors are messy.

So choose param sensibly

e.g 1/p rather than p; $\tau \text{ or } \lambda$

LIFETIME DETERMINATION

$$\frac{dn}{dt} = \frac{1}{2} e^{-\frac{t}{2}t}$$
Normalisation
Observe t_1, t_2, \dots, t_N
Use part to construct
 $\chi = TT \left(\frac{dn}{dt}\right); = TT \frac{1}{2} e^{-\frac{t}{2}t}$
 $\therefore l = \sum_{i} (-\frac{t}{2}t); = TT \frac{1}{2} e^{-\frac{t}{2}t}$
 $\frac{\partial l}{\partial \tau} = \sum_{i} (\frac{t}{2}t); = -\frac{t}{2} = 0 = \frac{\sum_{i} \frac{t}{2}}{2} - \frac{N}{2}$
 $\Rightarrow \tau = \sum_{i} (-\frac{t}{2}t) = 0 = \frac{\sum_{i} \frac{t}{2}}{2} - \frac{N}{2}$
 $\Rightarrow \tau = \sum_{i} (N = t; 0 \text{ by ions})$
 $\frac{\partial^2 l}{\partial \tau^2} = -\sum_{i} \frac{2t}{2}; + \sum_{i} \frac{1}{2} = -2 \frac{N}{2}; + \frac{N}{2} = -\frac{N}{2}$
 $\Rightarrow t_{i} = \frac{1}{\sqrt{-\frac{\partial N}{\partial \tau^2}}} = \frac{\pi}{\sqrt{N}}$
N.B. 1) Usual $1/\sqrt{N}$ behaviout
2) $\nabla_{\tau} \neq \tau_{est}$
BEVARE FOR AVERAGE RESOLTS

VUMPR

In
$$z = ln \tau_{ner} = Universal Fn of z/τ_{ner}
 $l(z) = \overline{z} \cdot ti/z - N ln z$
 $l(z) - l(\tau_{ner}) = -N \tau_{ner}/z - N ln \overline{z}$
 $l(z) - l(\tau_{ner}) = -N \tau_{ner}/z - N ln \overline{z}$
 $= N \overline{z} + N + N ln \tau_{ner}$
 $= N \overline{z} + ln (\tau_{ner}/z) - \tau_{ner}/z$
 $\vdots For given N, \sigma_{4} = \varepsilon$
 $are defined (~ There as N + \sigma_{0})$
For small N, $\sigma_{4} > \sigma_{5}$
 $- u - u$
 $l(\tau_{ner}) = -N(1 + ln \overline{z})$
N. B. $l(\tau_{ner})$ defends only on \overline{c} ,
but not an distribution of t_{i}
Relevant for whether long is useful
for testing goodness of fit$$

Several Parameters

EXTENDED MAXIMUM LIKEZIHOD Maximum Likelihood uses shape => params Extended Max Like uses shape + normalisation ie. EML uses prob of Dobsetting sample size of N events a 2) given distribution in K...... => shape parameters & normalisation

Example 1:

Angular distribution Observe N counts total e.g. 100 F forward 96 B baleword 4 Rote estimates ML EML Total - 100 ± 10

> Forward 96 ± 2 96 ± 10 Backword 4 ± 2 4 ± 2

Maximum likelihood uses fixed normalisation Extended Max Like has normalisation as formular

2) Max like
Prob for fixed
$$N = Binomial$$

Prob for fixed $N = finomial$
Prob for fixed $N = finomial$
Provides
 $finomials = finomial$
Maximise hP_{a} with $f \Rightarrow f = F/N$
Error $n f : V_{\sigma^{2}} = -\frac{\partial^{2} lm P_{a}}{\partial f^{2}}$
 $= \frac{N}{f(l-f)}$ $f = f$
 $\Rightarrow Estimate of $\hat{F} = Nf = F \pm \sqrt{F6/N} = Conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
 $= --- \cdot \hat{B} = N(l-f) = B \pm |F6/N| = conflictly$
Provide $lm P_{b}(s, f)$
 $= D \quad \hat{S} = N \pm \sqrt{N}$
Provide $lm P_{b}(s, f)$
 $= f = F_{b} \pm \sqrt{f(l-f)}$
For $\hat{F} = \hat{B}$, with project errors for $\hat{F} = \hat{S} \hat{F}$
 $= \hat{F} = F \pm \sqrt{F}$
 $\hat{B} = B \pm \sqrt{F}$
 $\hat{B} = B \pm \sqrt{F}$$

DO'S AND DONT'S WITH *L*

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$
- $\boldsymbol{\pounds}_{\text{max}}$ AND GOODNESS OF FIT
- $\int_{p_L}^{p_U} \mathcal{L} dp = 0.90$
- BAYESIAN SMEARING OF $\mathcal L$
- USE CORRECT \mathcal{L} (PUNZI EFFECT)

NORMALISATION FOR LIKELIHOOD

2) QUOTING UPPER LIMIT

"We observed no significant signal, and our 90% conf upper limit is"

Need to specify method e.g.

 \mathcal{L} Chi-squared (data or theory error)
Frequentist (Central or upper limit)
Feldman-Cousins
Bayes with prior = const, $1/\mu$ $1/\sqrt{\mu}$ μ etc
"Show your \mathcal{L} "
1) Not always practical

2) Not sufficient for frequentist methods

90% C.L. Upper Limits

 $\Lambda \ln \mathcal{L} = -1/2$ rule

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent:

1) RMS of $\mathcal{L}(\mu)$

2) $1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)}$

3) $\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0)) - 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same "Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page)

Barlow: Phystat05

COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with $\boldsymbol{\mu}$

Study coverage of different methods of Poisson parameter μ , from observation of number of events n

COVERAGE

- If true for all μ : "correct coverage"
 - $P < \alpha$ for some μ "undercoverage" (this is serious !)
 - $P > \alpha$ for some μ "overcoverage"
 - Conservative
 - Loss of rejection power

Coverage : *L* approach (Not frequentist)

 $P(n,\mu) = e^{-\mu}\mu^{n}/n!$ (Joel Heinrich CDF note 6438) -2 ln $\lambda < 1$ $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS

Frequentist central intervals, NEVER undercovers

(Conservative at both ends)

Feldman-Cousins Unified intervals

Probability ordering

$\chi^2 = (n-\mu)^2/\mu \quad \Delta \chi^2 = 0.1 \longrightarrow 24.8\%$ coverage?

NOT frequentist : Coverage = $0\% \rightarrow 100\%$

Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising $\mathcal L$

So larger $\mathcal L$ better than smaller $\mathcal L$

So \mathcal{L}_{max} gives Goodness of Fit??

t

Example 1

Fit exponential to times t_1, t_2, t_3 [Joel Heinrich, CDF 5639] $\mathcal{L} = \prod \lambda \exp(-\lambda t_i)$ $\ln \mathcal{L}_{max} = -N(1 + \ln t_{av})$ i.e. Depends only on AVERAGE t, but is INDEPENDENT OF DISTRIBUTION OF t (except for.....) (Average t is a sufficient statistic)

Variation of \mathcal{L}_{max} in Monte Carlo is due to variations in samples' average t , but NOT TO BETTER OR WORSE FIT

Same average t \implies same \mathcal{L}_{max}

pdf (and likelihood) depends only on $\cos^2\theta_i$

Insensitive to sign of $\cos\theta_i$

So data can be in very bad agreement with expected distribution

e.g. all data with $\cos\theta < 0$

and \mathcal{L}_{max} does not know about it.

Example 3

Fit to Gaussian with variable $\mu,$ fixed σ

$$p = \frac{1}{\sigma\sqrt{2\pi}} e_{p} - \frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2} \}$$

$$m\mathcal{L}_{max} = N(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = N(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma) - 0.5 \ (i = a)$$

$$max = n(-0.5 \ m2\pi - m\sigma)$$

$$max = n(-0.5 \ m2\pi - m\alpha)$$

$$max = n(-0.5 \ m2\pi - m2\pi - m\alpha)$$

$$max = n(-0.5 \ m2\pi - m2\pi -$$

er \mathcal{L}_{ma}

orse it, lar er \mathcal{L}_{ma}

Better it, lower \mathcal{L}_{ma}

\mathcal{L}_{ma} and oodness o Fit

Conclusion

 \mathcal{L} has sensi le properties with respect to parameters with respect to data

 \mathcal{L}_{ma} within onte Carlo pea is C not FF C

(ecessary doesn t mean that you ha e to do it)

Binned data and Goodness of Fit using *L*-ratio

$$\mathcal{L} = \prod_{i} P_{ni} \mu_{i}^{i}$$

$$\mathcal{L} = \prod_{i} P_{ni} \mu_{i,b}^{i}$$

$$= \prod_{i} P_{ni} \mu_{i,b}^{i}$$

$$= \prod_{i} P_{ni} \eta_{i}^{i}$$

 $\ln \mathcal{L}$ -ratio = $\ln \mathcal{L} \mathcal{L}_{est}$

 $\downarrow_{\text{lar e i}}$ -0.5 χ i e oodness o Fit

best is independent of parameters of fit,

and so same parameter values from \mathcal{L} or \mathcal{L} -ratio

Baker and Cousins, NIM A221 (1984) 437

L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given μ

 $P(n;\mu) = e^{-\mu} \mu^{n}/n!$ From this, construct \mathcal{L} as $\mathcal{L}(\mu;n) = e^{-\mu} \mu^{n}/n!$ i.e. use same function of μ and n, but
for pdf, μ is fixed, but
for \mathcal{L} , n is fixed μ \mathcal{L}

N.B. $P(n;\mu)$ exists only at integer non-negative n $\mathcal{L}(\mu;n)$ exists only as continuous function of non-negative μ

n —►

E ample i etime distri ution

pd $p(t) = e^{-t}$

So $L(\lambda;t) = \lambda e^{-\lambda t}$ (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

 \mathcal{L} maximises at $\lambda = t$

N.B Functional orm o (t) and (λ) are different

o i you consider ust aussians, can e con used etween pd and \mathcal{L}

o e amples and are use ul

Transformation properties of pdf and \mathcal{L}

Lifetime example: $dn/dt = \lambda e^{-\lambda t}$

Change observable from t to
$$y = \sqrt{t}$$

 $\frac{d}{n_d} = \frac{d}{n_d} \frac{d}{t_d} = 2y\lambda e^{-\lambda y^2}$
 $\frac{d}{n_d} = \frac{d}{n_d} \frac{d}{t_d} = 2y\lambda e^{-\lambda y^2}$
So (a) pdf changes, BUT
(b) $\int_{t_0}^{\infty} \frac{d}{n_d} \frac{d}{t} = \int_{\sqrt{t_0}}^{\infty} \frac{d}{y} \frac{d}{y}$

i.e. corresponding integrals of pdf are INVARIANT

ow or $\boldsymbol{\mathcal{L}}i$ elihood

hen parameter chan es rom λ to $\tau = 1/\lambda$

(a) \mathcal{L} does not chan e

dn dt = $\tau \exp\{-t/\tau\}$

and so $\mathcal{L}(\tau;t) = \mathcal{L}(\lambda=1/\tau;t)$

because identical numbers occur in evaluations of the two \mathcal{L} 's

BUT
(b')
$$\int_{0}^{\lambda_{0}} \lambda(t) d\lambda \neq \int_{\tau_{0}}^{\infty} \tau(t) d\tau$$

So it is NOT meaningful to integrate $\boldsymbol{\mathcal{L}}$

(However,.....)

	pdf(t;λ)	£ (λ;t)
Value of function	Changes when observable is transformed	INVARIANT wrt transformation of parameter
Integral of function	INVARIANT wrt transformation of observable	Changes when param is transformed
Conclusion	Max prob density not very sensible	Integrating £ not very sensible

С С

 $\int_{a}^{p_u} Ld = \alpha$ reconsed statistical procedure

etric dependent

 τ range agrees with τ_{pred} λ range inconsistent with $1/\tau_{pred}$]

BUT

- Could regard as "black box" 1)
- Make respectable by \mathcal{L} Bayes' posterior 2)

Posterior(λ) ~ $\mathcal{L}(\lambda)$ * **Prior**(λ) [and Prior(λ) can be constant]

6) BAYESIAN SMEARING OF X
"USE In I FOR
$$\beta \neq \delta_{p}$$

SMEAR IT TO INCORORATE
SYSTEMATIC UNCERTAINTIES
SLEAARIO:
 $M = POISSON(m = s \in + b)$
PARAM OF INTEREST I BACKGROUND
GFPIC/ACCEPTANCE//SC
UNCERTAINTIES
MERSURED IN SUBSIDIARY'EXPT
 $P(s, \in In) = \frac{n!(n \mid s, \epsilon)}{N!} T(s, \epsilon)$
 $f(s, \epsilon) = \int P(s, \epsilon) T(s, \epsilon)$
 $\int \int (s, \epsilon) = \int P(s, \epsilon) ds d\epsilon$
 $= \int X T(s) T(\epsilon) d\epsilon$
 $i.e. SMEAR X (not InX) by prior for $\epsilon$$

Getting *L* wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003 "Comments on \mathcal{L} fits with variable resolution"

Separate two close signals, when resolution σ varies event by event, and is different for 2 signals e.g. 1) Signal 1 1+cos² θ Signal 2 Isotropic and different parts of detector give different σ

2) M (or τ) Different numbers of tracks \rightarrow different σ_{M} (or σ_{τ}) Events characterised by x_i and σ_i

A events centred on x = 0

B events centred on x = 1

 $\mathcal{L}(f)_{wrong} = \Pi [f * G(x_i, 0, \sigma_i) + (1-f) * G(x_i, 1, \sigma_i)]$ $\mathcal{L}(f)_{right} = \Pi [f^* p(x_i, \sigma_i; A) + (1-f) * p(x_i, \sigma_i; B)]$

$$p(S,T) = p(S|T) * p(T)$$

$$p(x_i,\sigma_i|A) = p(x_i|\sigma_i,A) * p(\sigma_i|A)$$

$$= G(x_i,0,\sigma_i) * p(\sigma_i|A)$$

So

 $\mathcal{L}(f)_{\text{right}} = \Pi[f * G(x_i, 0, \sigma_i) * p(\sigma_i | A) + (1 - f) * G(x_i, 1, \sigma_i) * p(\sigma_i | B)]$

If $p(\sigma|A) = p(\sigma|B)$, $\mathcal{L}_{right} = \mathcal{L}_{wrong}$

Giovanni's Monte Carlo for		A : G(x,0, c	у _А)		
		B: G(x,1, c	σ _B)		
		$f_{A} = 1/3$			
		\mathcal{L}_{wrong}		\mathcal{L}_{right}	
$\sigma_{\rm A}$	$\sigma_{\rm B}$	f _A	$\sigma_{\rm f}$	f _A σ	f
1.0	1.0	0.336(3)	0.08	Same	
1.0	1.1	0.374(4)	0.08	0.333(0) 0	
1.0	2.0	0.645(6)	0.12	0.333(0) 0	
1) 2	1.5 →3	0.514(7)	0·14	0.335(2) 0.0	3
1.0	1 → 2	0.482(9)	0.09	0.333(0) 0	

1) \mathcal{L}_{wrong} OK for $p(\sigma_A) = p(\sigma_B)$, but otherwise BIASSED

- 2) \mathcal{L}_{right} unbiassed, but \mathcal{L}_{wrong} biassed (enormously)!
- 3) \mathcal{L}_{right} gives smaller σ_{f} than \mathcal{L}_{wrong}

Fit gives upward bias for N_A/N_B because (i) that is much better for A events; and (ii) it does not hurt too much for B events

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not appear in \mathcal{L}

Avoiding Punzi Bias

BASIC RULE:

Write pdf for ALL observables, in terms of parameters

 Include p(σ|A) and p(σ|B) in fit (But then, for example, particle identification may be determined more by momentum distribution than by PID)

OR

• Fit each range of σ_i separately, and add $(N_A)_i \rightarrow (N_A)_{total}$, and similarly for B

Incorrect method using \mathcal{L}_{wrong} uses weighted average of $(f_A)_j$, assumed to be independent of j

Talk by Catastini at PHYSTAT05

Conclusions

- How it works, and how to estimate errors
- $\Delta(\ln \mathcal{L}) = 0.5$ rule and coverage
- **Several Parameters**
- $\boldsymbol{\mathcal{L}}_{max}$ and Goodness of Fit
- Use correct \mathcal{L} (Punzi effect)

Next time: χ^2 and Goodness of Fit

Least squares best fit **Resume of straight line Correlated errors** Errors in x and in y Goodness of fit with χ^2 Errors of first and second kind Kinematic fitting Toy example THE paradox