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Topics

What it is

How it works: Resonance

Error estimates

Detailed example: Lifetime

Several Parameters

Extended maximum L

Do’s and Dont’s with L ****************
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• NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• ∆(ln L) = 0.5 RULE

• Lmax AND GOODNESS OF FIT

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

90.0 dp =∫
p
p

U

L

 L

DO’S AND DONT’S WITH L
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How it works: Resonance

y ~               Γ/2
(m-M0)2 + (Γ/2)2

m                                 m

Vary M
0

Vary Γ
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Maximum likelihood error

Range of likely values of param µ from width of L or l dists.
If L(µ) is Gaussian, following definitions of σ are equivalent:
1) RMS of L(µ)

2) 1/√(-d2lnL / dµ2) (Mnemonic)

3) ln(L(µ0±σ) = ln(L(µ0)) -1/2
If L(µ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter µ with 68% probability”

Errors from 3) usually asymmetric, and asym errors are messy.

So choose param sensibly 

e.g 1/p rather than p;       τ or λ
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Several Parameters
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• NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• ∆(ln L) = 0.5 RULE

• Lmax AND GOODNESS OF FIT

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

90.0 dp =∫
p
p

U

L

 L

DO’S AND DONT’S WITH L
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NORMALISATION FOR LIKELIHOOD

∫ dx )|P(x µ

data         param

e.g.  Lifetime fit to t1, t2,………..tn ]/[ Nt i∑=τ

t

∞=τ

big  tooτ

τ Reasonable

MUST be independent of µµµµ

/1Missing

/)|(

τ

ττ
↑

−= tetPINCORRECT
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2) QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% con f 
upper limit is …..”

Need to specify method   e.g.

L

ChiChiChiChi----squared (data or theory error)squared (data or theory error)squared (data or theory error)squared (data or theory error)

FrequentistFrequentistFrequentistFrequentist (Central or upper limit)(Central or upper limit)(Central or upper limit)(Central or upper limit)

FeldmanFeldmanFeldmanFeldman----CousinsCousinsCousinsCousins

BayesBayesBayesBayes with prior = const, with prior = const, with prior = const, with prior = const, 

“Show your L”

1) Not always practical

2) Not sufficient for frequentist methods 

etc                  1/          /1 µµµ
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90% C.L. Upper Limits

x

µ

x0
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∆lnL = -1/2 rule
If L(µ) is Gaussian, following definitions of σ are 

equivalent:
1) RMS of L(µ)

2) 1/√(-d2L/dµ2)

3) ln(L(µ0±σ) = ln(L(µ0)) -1/2
If L(µ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter µ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics 
Committee Web-page)

Barlow: Phystat05
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COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with µ

Study coverage of different methods of Poisson parameter  µ, from 
observation of number of events n

Hope for:
Nominal
value

100%

µ

)(µC



21

COVERAGE

If true for all      :      “correct coverage”µ

P<     for some        “undercoverage”α µ
(this is serious !)

P>     for some        “overcoverage”α µ
Conservative

Loss of rejection 
power
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Coverage : L approach (Not frequentist)

P(n,µ) = e-µµn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,µ)/P(n,µbest)       UNDERCOVERS
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Frequentist central intervals, NEVER 
undercovers

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Frequentist, so NEVER undercovers
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Probability ordering

Frequentist, so NEVER undercovers



26

 = (n-µ)2/µ Δ = 0.1              24.8% coverage?

 NOT frequentist :  Coverage = 0% � 100%

2χ2χ
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Great?Good?Bad

Lmax

Frequency

Unbinned Lmax and Goodness of Fit?

Find params by maximising L

So larger L better than smaller L

So Lmax gives Goodness of Fit??

Monte Carlo distribution

of unbinned Lmax
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Not necessarily:                                                pdf
L(data,params) 

fixed    vary                                         L

Contrast    pdf(data,params)                param

vary  fixed

e.g. p(λ) = λ exp(-λt)                                                              data

Max at t = 0                                        Max at λ=1/t
p L

t λ

τ
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Example 1

Fit exponential to times t1, t2 ,t3 …….            [ Joel Heinrich, CDF 5639 ]

L =  Π λ exp(-λti)

lnLmax = -N(1 + ln tav)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for……..)

(Average t is a sufficient statistic)

Variation of Lmax in Monte Carlo is due to variations in samples’ average t , but

NOT TO BETTER OR WORSE FIT

pdf

Same average t            same Lmax

t
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Example 2

L =

cos θ

pdf (and likelihood) depends only on cos2θi

Insensitive to sign of cosθi

So data can be in very bad agreement with expected distribution

e.g. all data with cosθ < 0 

and Lmax does not know about it.

Example of general principle

3/1
c
o
s

1
c
o
s

2

α+
θα+=

θd
d
N

∏ α+
ϑα+

i
3/1

c
o
s

1 i2
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Example 3

Fit to Gaussian with variable µ, fixed σ

lnLmax = N(-0.5 ln2π – lnσ) – 0.5 ( i a )  

constant           ariance( )

i e  Lma depends only on ariance( ),

which is not rele ant or ittin  ( est = a )

maller than e pected ariance( ) results in lar er Lma

 

orse it, lar er Lma Better it, lower Lma
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Lma and oodness o  Fit

Conclusion

L has sensi le properties with respect to parameters

with respect to data

Lma within onte Carlo pea  is C

not FF C

( ecessary doesn t mean that you ha e to do it )
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Binned data and Goodness of Fit using L-ratio

∏ µ

i
iPni )(ni L =

i                                                      L est

ln L-ratio  = ln L L est

lar e i -0.5χ i e  oodness o  Fit    

best is independent of parameters of fit,

and so same parameter values from L or L-ratio

Baker and Cousins, NIM A221 (1984) 437

)(
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L and pdf

Example 1: Poisson
pdf = Probability density function for observing n, given µ

P(n;µ) = e -µ µn/n!
From this, construct L as

L(µ;n) = e -µ µn/n!

i.e. use same function of µ and n, but            .  .  .  .  .  .  .  .  .  . pdf
for pdf, µ is fixed,   but
for L,    n is fixed                             µ L

n

N.B. P(n;µ) exists only at integer non-negative n
L(µ;n) exists only as continuous function of non-negative µ
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Ε ample       i etime distri ution

pd p(t ) = e - t

So       L(λ;t) = λ e –λt (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

L maximises at λ = t

Ν.Β  Functional orm o  (t) and (λ) are different

Fixed λ Fixed t

p                                                        L

t                           λ
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ample      aussian

B  n this case, same unctional orm or pd and L

o i  you consider ust aussians, can e con used etween pd and L

o e amples  and  are use ul 
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Transformation properties of pdf and L

Lifetime example:  dn/dt = λ e –λt

Change observable from t to y = √t

So (a) pdf changes, BUT
(b) 

i.e. corresponding integrals of pdf are 
INVARIANT

2
2 yey

d
y

d
td

t

d
nd

y

d
n

λ−λ==

d
yd

y

d
nd

td
t

d
n

tt ∫∫
∞∞

=
00
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ow or Li elihood

hen parameter chan es rom λ to τ = 1/λ

(a ) L does not chan e

dn dt = τ exp{-t/τ}

and so L(τ;t)  =  L(λ=1/τ;t)

because identical numbers occur in evaluations of the two L’s

BUT

(b’) 

So it is NOT meaningful to integrate L

(However,………)

∫∫
∞

τ

λ

ττ≠λλ
0

0
);();(

0
dtLdtL
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Integrating L
not very 
sensible

Max prob
density not very 
sensible

Conclusion

Changes when 
param is 
transformed

INVARIANT wrt
transformation 
of observable

Integral of 
function

INVARIANT wrt
transformation 
of parameter

Changes when 
observable is 
transformed

Value of 
function

L(λ;t)pdf(t;λ)
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C C

reco nised statistical procedure

etric dependent

τ range agrees with τpred

λ range inconsistent with 1/τpred]

BUT

1) Could regard as “black box”

2) Make respectable by L                Bayes’ posterior 

Posterior(λ) ~ L(λ)* Prior(λ)             [and Prior(λ) can be constant]

∫ α=
u

l

p

p
d

p
L
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Getting L wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on L fits with variable resolution”

Separate two close signals, when resolution σ varies event 
by event, and is different for 2 signals

e.g. 1) Signal 1     1+cos2θ
Signal 2      Isotropic
and different parts of detector give different σ

2) M (or τ)
Different numbers of tracks � different σM (or στ)
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Events characterised by xi and σi

A events centred on x = 0

B events centred on x = 1

L(f)wrong = Π [f * G(x i,0,σi) + (1-f) * G(xi,1,σi)]

L(f)right = Π [f*p(x i,σi;A) + (1-f) * p(xi,σi;B)]

p(S,T) = p(S|T) * p(T)

p(xi,σi|A) = p(xi|σi,A) * p(σi|A)

= G(xi,0,σi) * p(σi|A)

So

L(f)right = Π[f * G(x i,0,σi) * p(σi|A) + (1-f) * G(xi,1,σi) * p(σi|B)]

If p(σ|A) = p(σ|B), Lright = Lwrong

but NOT otherwise
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Giovanni’s Monte Carlo for       A :  G(x,0, σΑ)

B :  G(x,1, σΒ)

fA = 1/3 

Lwrong Lright

σΑ σΒ                                           fA σf fA σf 

1.0               1.0                    0.336(3)    0.08             Same

1.0 1.1                    0.374(4)    0.08 0. 333(0)    0

 1.0 2.0 0.645(6)    0.12 0.333(0) 0

 1 � 2        1.5 �3                 0.514(7)    0.14             0.335(2)   0.03

 1.0            1 � 2                 0.482(9)    0.09             0.333(0)    0

 1)  Lwrong OK for  p(σΑ) = p(σΒ) , but otherwise BIASSED

 2)  Lright unbiassed, but  Lwrong biassed (enormously)!

 3)  Lright gives smaller σf than Lwrong



45

Explanation of Punzi bias

σA = 1 σB = 2

A events with σ = 1

B events with σ = 2

x  � x �

ACTUAL DISTRIBUTION                             FITTING FUNCTION

[NA/NB variable, but same for A and B events]

Fit gives upward bias for NA/NB because  (i) that is much better for A events; and 

(ii) it does not hurt too much for B events  
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Another scenario for Punzi problem: PID
A      B                                       π K

M                                            TOF
Originally:

Positions of peaks = constant K-peak � π-peak at large momentum

σi variable,    (σi)A =  (σi)B σi ~ constant,    pK = pπ

COMMON FEATURE: Separation/Error = Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf’s do not 

appear in L
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Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

• Include p(σ|A) and p(σ|B) in fit
(But then, for example, particle identification may be determined more 
by momentum distribution than by PID)

OR
• Fit each range of σi separately, and add (NA)i�

(NA)total, and similarly for B

Incorrect method using Lwrong uses weighted average 
of (fA)j, assumed to be independent of j 

Talk by Catastini at PHYSTAT05
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Conclusions

How it works, and how to estimate errors

∆(ln L) = 0.5 rule and coverage

Several Parameters

Lmax and Goodness of Fit

Use correct L (Punzi effect)
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Next time: χ2 and Goodness of Fit

Least squares best fit
Resume of straight line
Correlated errors
Errors in x and in y

Goodness of fit with χ2

Errors of first and second kind
Kinematic fitting

Toy example
THE paradox


