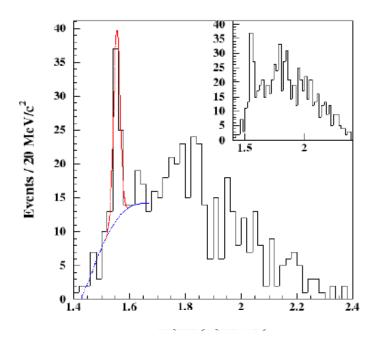
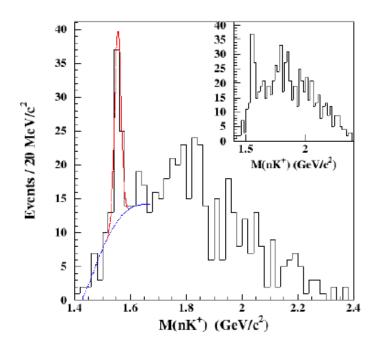
Is there evidence for a peak in this data?



Is there evidence for a peak in this data?



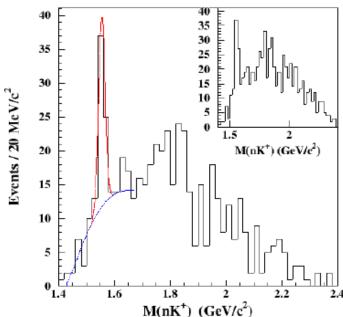
"Observation of an Exotic S=+1

Baryon in Exclusive Photoproduction from the Deuteron"

S. Stepanyan et al, CLAS Collab, Phys.Rev.Lett. 91 (2003) 252001

"The statistical significance of the peak is 5.2 \pm 0.6 σ "

Is there evidence for a peak in this data?



"Observation of an Exotic S=+1 $\frac{1.6}{M(mK^4)}$ $\frac{1.8}{(GeV/c^2)}$ Baryon in Exclusive Photoproduction from the Deuteron" S. Stepanyan et al, CLAS Collab, Phys.Rev.Lett. 91 (2003) 252001 "The statistical significance of the peak is 5.2 ± 0.6 σ "

"A Bayesian analysis of pentaquark signals from CLAS data"
D. G. Ireland et al, CLAS Collab, Phys. Rev. Lett. 100, 052001 (2008)

"The In(RE) value for g2a (-0.408) indicates weak evidence in favour of the data model without a peak in the spectrum."

Comment on "Bayesian Analysis of Pentaquark Signals from 3 CLAS Data" Bob Cousins, http://arxiv.org/abs/0807.1330

p-values and Discovery

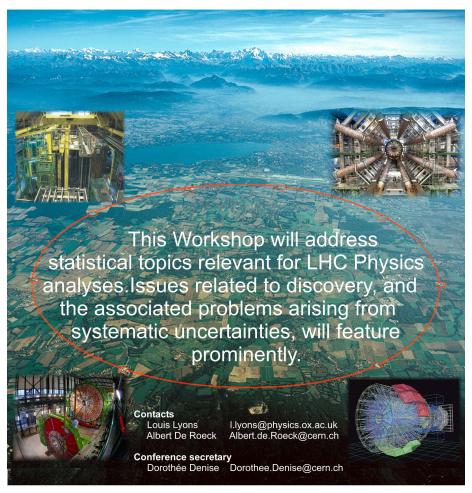
Louis Lyons
IC and Oxford
I.lyons@physics.ox.ac.uk

Dresden,

March 2010

Statistical Issues for LHC Physics

CERN Geneva June 27-29, 2007



TOPICS

Discoveries

```
H0 or H0 v H1
```

p-values: For Gaussian, Poisson and multi-variate data

Goodness of Fit tests

Why 5σ ?

Blind analyses

What is p good for?

Errors of 1st and 2nd kind

What a p-value is not

P(theory|data) ≠ P(data|theory)

THE paradox

Optimising for discovery and exclusion

Incorporating nuisance parameters

DISCOVERIES

"Recent" history:

Charm	SLAC, BNL	1974
Tau lepton	SLAC	1977
Bottom	FNAL	1977
W,Z	CERN	1983
Тор	FNAL	1995
{Pentaquarks	~Everywhere	2002 }

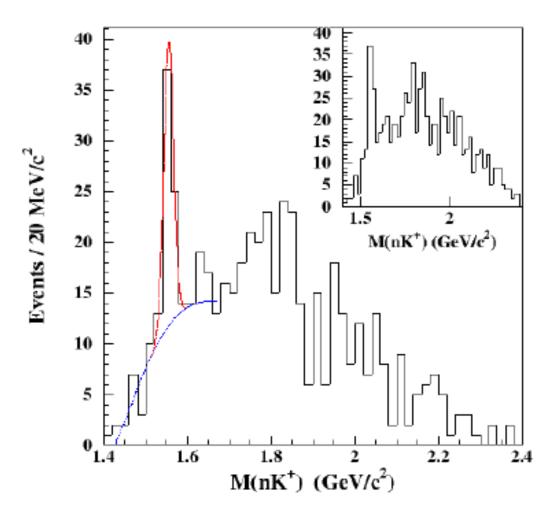
? FNAL/CERN 2010?

? = Higgs, SUSY, q and I substructure, extra dimensions, free q/monopoles, technicolour, 4th generation, black holes,.....

QUESTION: How to distinguish discoveries from fluctuations?

Penta-quarks?

Hypothesis testing: New particle or statistical fluctuation?



HO or HO versus H1?

H0 = null hypothesis e.g. Standard Model, with nothing new

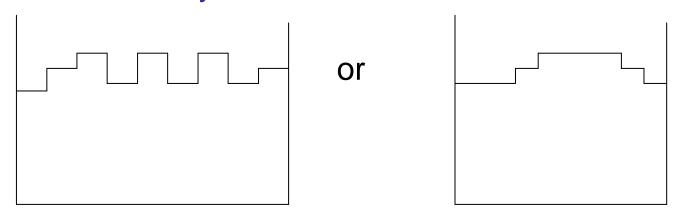
H1 = specific New Physics e.g. Higgs with $M_H = 120 \text{ GeV}$

H0: "Goodness of Fit" e.g. χ^2 , p-values

H0 v H1: "Hypothesis Testing" e.g. *L*-ratio

Measures how much data favours one hypothesis wrt other

H0 v H1 likely to be more sensitive



Testing H0: Do we have an alternative in mind?

- 1) Data is number (of observed events)"H1" usually gives larger number(smaller number of events if looking for oscillations)
- 2) Data = distribution. Calculate χ^2 .

 Agreement between data and theory gives χ^2 ~ndf

 Any deviations give large χ^2 So test is independent of alternative?

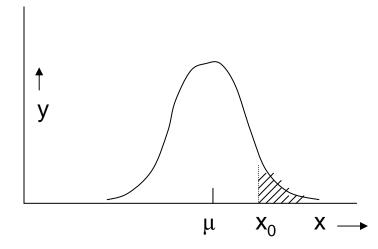
 Counter-example: Cheating undergraduate
- 3) Data = number or distribution Use \mathcal{L} -ratio as test statistic for calculating p-value
- 4) H0 = Standard Model

p-values

Concept of pdf

Example: Gaussia

Example: Gaussian



y = probability density for measurement x

$$y = 1/(\sqrt{(2\pi)\sigma}) \exp\{-0.5*(x-\mu)^2/\sigma^2\}$$

p-value: probablity that $x \ge x_0$

Gives probability of "extreme" values of data (in interesting direction)

$(x_0-\mu)/\sigma$	1	2	3	4	5
p	16%	2.3%	0.13%	0.003%	$0.3*10^{-6}$

p-values, contd

```
Assumes:
Gaussian pdf (no long tails)
Data is unbiassed
σ is correct
If so, Gaussian x ⇒ uniform p-distribution
```

(Events at large x give small p)

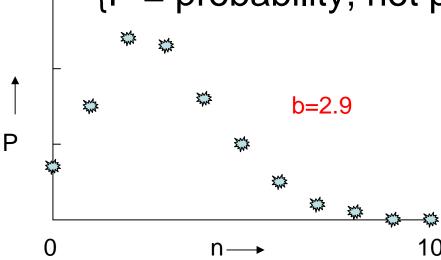
0 p → 1 ₁₂

p-values for non-Gaussian distributions

e.g. Poisson counting experiment, bgd = b

$$P(n) = e^{-b} * b^{n}/n!$$

{P = probability, not prob density}



For n=7, p = Prob(at least 7 events) = $P(7) + P(8) + P(9) + \dots = 0.03$

Poisson p-values

```
n = integer, so p has discrete values
So p distribution cannot be uniform
Replace Prob\{p \le p_0\} = p_0, for continuous p
by Prob\{p \le p_0\} \le p_0, for discrete p
(equality for possible p_0)
```

p-values often converted into equivalent Gaussian σ e.g. $3*10^{-7}$ is " 5σ " (one-sided Gaussian tail) Does NOT imply that pdf = Gaussian

Significance

Significance =
$$S/\sqrt{B}$$
 ?

Potential Problems:

- Uncertainty in B
- Non-Gaussian behaviour of Poisson, especially in tail
- Number of bins in histogram, no. of other histograms [FDR]
- Choice of cuts (Blind analyses)
- •Choice of bins (.....)

For future experiments:

• Optimising S/\sqrt{B} could give S =0.1, B = 10^{-6}

Goodness of Fit Tests

Data = individual points, histogram, multi-dimensional, multi-channel

 χ^2 and number of degrees of freedom

 $\Delta \chi^2$ (or $ln \mathcal{L}$ -ratio): Looking for a peak

Unbinned \mathcal{L}_{max} ?

Kolmogorov-Smirnov

Zech energy test

Combining p-values

Lots of different methods. Software available from: http://www.ge.infn.it/statisticaltoolkit

χ^2 with v degrees of freedom?

1) v = data - free parameters ?

Why **asymptotic** (apart from Poisson → Gaussian)?

a) Fit flatish histogram with

$$y = N \{1 + 10^{-6} \exp\{-0.5(x-x_0)^2\} \quad x_0 = \text{free param}$$

b) Neutrino oscillations: almost degenerate parameters

$$y \sim 1 - A \sin^2(1.27 \Delta m^2 L/E)$$
 2 parameters
 $1 - A (1.27 \Delta m^2 L/E)^2$ 1 parameter

χ^2 with v degrees of freedom?

2) Is difference in χ^2 distributed as χ^2 ?

H0 is true.

Also fit with H1 with k extra params

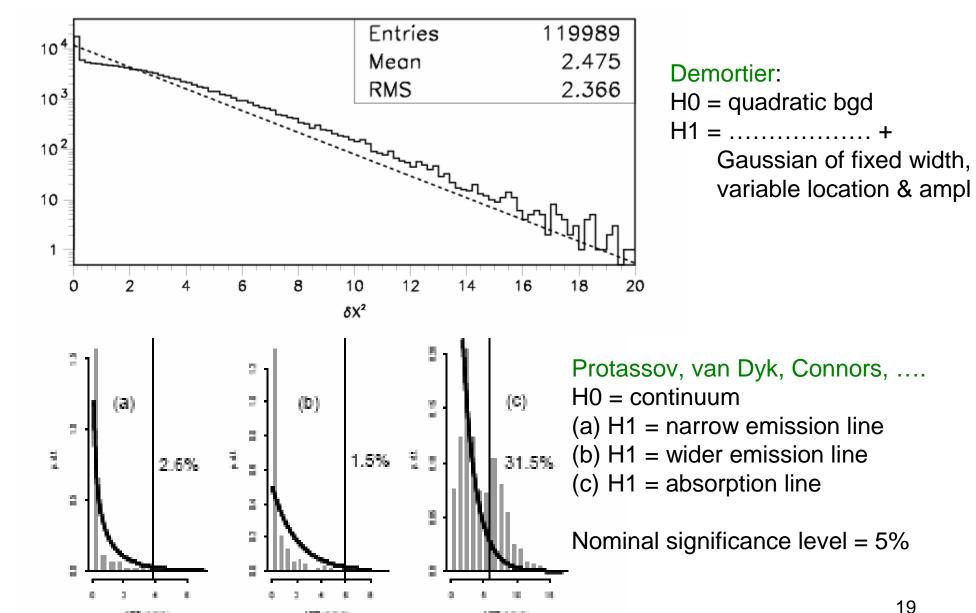
e. g. Look for Gaussian peak on top of smooth background $y = C(x) + A \exp\{-0.5 ((x-x_0)/\sigma)^2\}$

Is χ^2_{H0} - χ^2_{H1} distributed as χ^2 with $\nu = k = 3$?

Relevant for assessing whether enhancement in data is just a statistical fluctuation, or something more interesting

N.B. Under H0 (y = C(x)): A=0 (boundary of physical region) x_0 and σ undefined

Is difference in χ^2 distributed as χ^2 ?



Is difference in χ^2 distributed as χ^2 ?, contd.

So need to determine the $\Delta \chi^2$ distribution by Monte Carlo N.B.

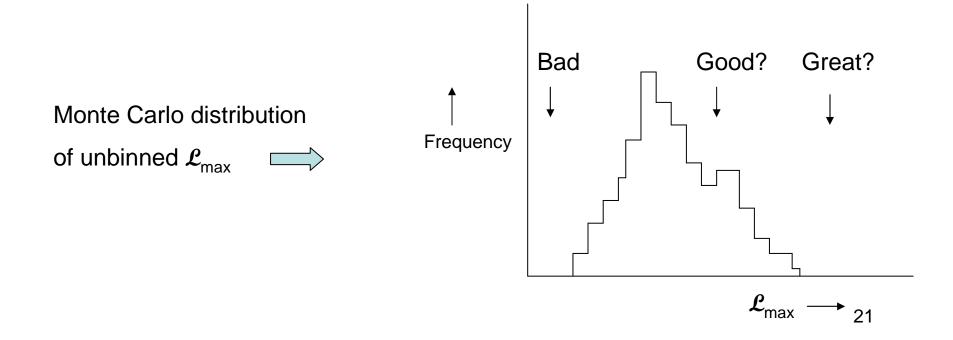
- 1) Determining $\Delta \chi^2$ for hypothesis H1 when data is generated according to H0 is not trivial, because there will be lots of local minima
- 2) If we are interested in 5σ significance level, needs lots of MC simulations (or intelligent MC generation)

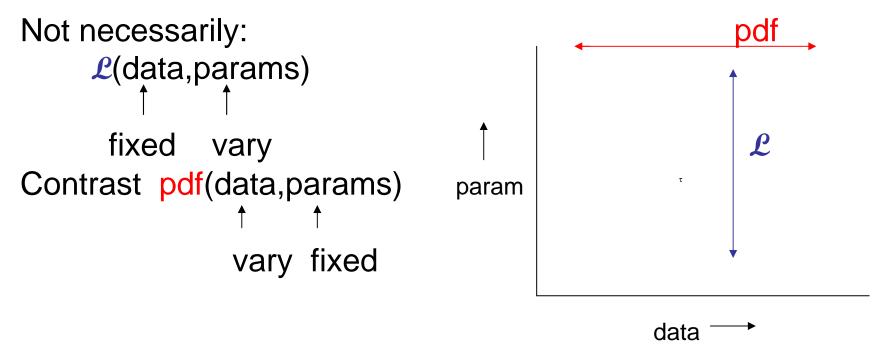
Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising \mathcal{L}

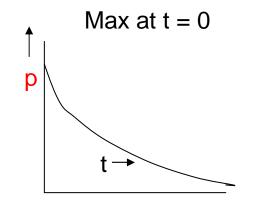
So larger $\mathcal L$ better than smaller $\mathcal L$

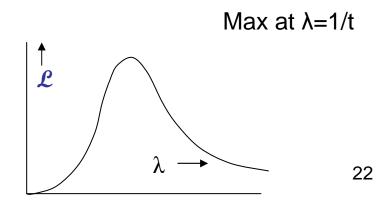
So \mathcal{L}_{max} gives Goodness of Fit ??





e.g. $p(t,\lambda) = \lambda *exp(-\lambda t)$





Example 1: Exponential distribution

Fit exponential λ to times $t_1, t_2, t_3 \dots$ [Joel Heinrich, CDF 5639]

$$\mathcal{L} = \prod \lambda e^{-\lambda t}$$

$$\ln \mathcal{L}_{\text{max}}^{i} = -N(1 + \ln t_{\text{av}})$$

i.e. $ln\mathcal{L}_{max}$ depends only on AVERAGE t, but is

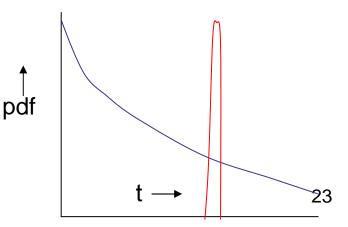
INDEPENDENT OF DISTRIBUTION OF t (except for......)

(Average t is a sufficient statistic)

Variation of \mathcal{L}_{max} in Monte Carlo is due to variations in samples' average t, but

NOT TO BETTER OR WORSE FIT

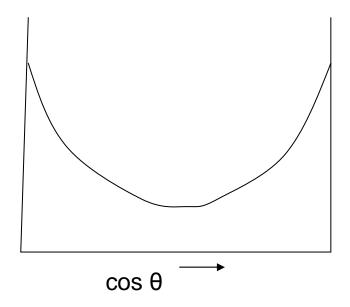
Same average t \Longrightarrow same \mathcal{L}_{max}



Example 2

$$\frac{d}{d^{1}c} = \frac{1+\alpha c^{2} \theta}{1+\alpha c^{3} \theta}$$

$$\mathcal{L} = \prod_{j} \frac{1 + \alpha c}{1 + \alpha c + 3 \frac{2}{3} \frac{\vartheta_{j}}{3}}$$



pdf (and likelihood) depends only on $\text{cos}^2\theta_i$

Insensitive to sign of $cos\theta_i$

So data can be in very bad agreement with expected distribution e.g. all data with $\cos\theta < 0$, but \mathcal{L}_{max} does not know about it.

Example of general principle

Example 3

Fit to Gaussian with variable μ , fixed σ

$$p = \frac{1}{\sigma\sqrt{2\pi}} e - \frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}$$

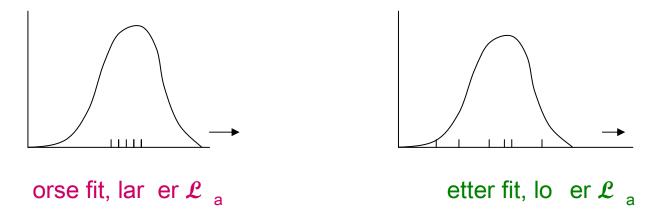
$$ln \mathcal{L}_{max} = N(-0.5 \ln 2\pi - \ln \sigma) - 0.5 \quad (i \text{ av}) \quad \sigma$$

$$constant \qquad variance()$$

i e \mathcal{L}_{a} depends only on variance(),

ic is not relevant for fittin $(_{est} = _{av})$

aller t an e pected variance() results in lar er ${\cal L}_{\rm a}$



L and Goodness of it

onclusion

as sensible properties it respect to para eters
 it respect to data

 ${\cal L}_{\rm a}$ it in onte arlo pea is not

Goodness of Fit: Kolmogorov-Smirnov

Compares data and model cumulative plots Uses largest discrepancy between dists. Model can be analytic or MC sample

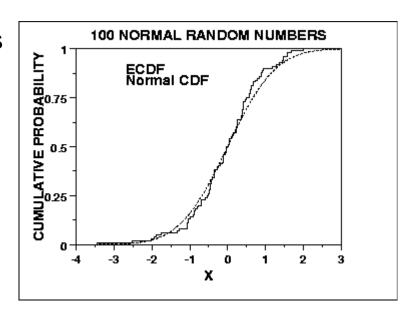
Uses individual data points

Not so sensitive to deviations in tails (so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n

(but not when free parameters involved – needs MC)



Goodness of fit: 'Energy' test

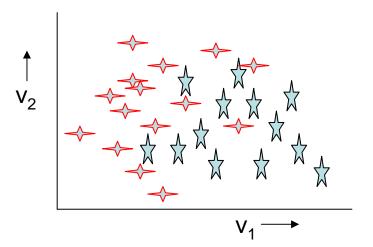
Assign +ve charge to data → ; -ve charge to M.C. ☆

Calculate 'electrostatic energy E' of charges

If distributions agree, E ~ 0

If distributions don't overlap, E is positive

Assess significance of magnitude of E by MC



N.B.

- 1) Works in many dimensions
- 2) Needs metric for each variable (make variances similar?)
- 3) $E \sim \Sigma q_i q_j f(\Delta r = |r_i r_j|)$, $f = 1/(\Delta r + \epsilon)$ or $-\ln(\Delta r + \epsilon)$ Performance insensitive to choice of small ϵ

See Aslan and Zech's paper at:

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml

Combining different p-values

Several results quote p-values for same effect: p_1 , p_2 , p_3 e.g. 0.9, 0.001, 0.3

What is combined significance? Not just $p_{1*}p_{2*}p_3....$

If 10 expts each have p ~ 0.5, product ~ 0.001 and is clearly **NOT** correct combined p

$$S = z * \sum_{j=0}^{n-1} (-\ln z)^j / j!$$
, $z = p_1 p_2 p_3$
(e.g. For 2 measurements, $S = z * (1 - \ln z) \ge z$)

Slight problem: Formula is not associative

Combining $\{\{p_1 \text{ and } p_2\}, \text{ and then } p_3\}$ gives different answer from $\{\{p_3 \text{ and } p_2\}, \text{ and then } p_1\}$, or all together

Due to different options for "more extreme than x_1 , x_2 , x_3 ".

Combining different p-values

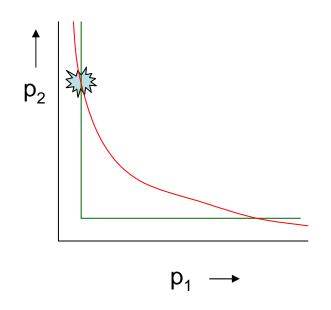
Conventional:

Are set of p-values consistent with H0?

SLEUTH:

How significant is smallest p?

$$1-S = (1-p_{\text{smallest}})^n$$



$$p_1 = 0.01 \qquad p_1 = 10^{-4} \\ p_2 = 0.01 \qquad p_2 = 1 \qquad p_2 = 10^{-4} \qquad p_2 = 1 \\ \text{Combined S} \\ \text{Conventional} \qquad 1.0 \ 10^{-3} \qquad 5.6 \ 10^{-2} \qquad 1.9 \ 10^{-7} \qquad 1.0 \ 10^{-3} \\ \text{SLEUTH} \qquad 2.0 \ 10^{-2} \qquad 2.0 \ 10^{-2} \qquad 2.0 \ 10^{-4} \qquad 2.0 \ 10^{-4} \\ \end{cases}$$

Why 5σ ?

- Past experience with 3σ, 4σ,... signals
- Look elsewhere effect:

Different cuts to produce data

Different bins (and binning) of this histogram

Different distributions Collaboration did/could look at

Defined in SLEUTH

Bayesian priors:

$$\frac{P(H0|data)}{P(H1|data)} = \frac{P(data|H0) * P(H0)}{P(data|H1) * P(H1)}$$
Bayes posteriors

Likelihoods Priors

Prior for {H0 = S.M.} >>> Prior for {H1 = New Physics}

Why 5σ?

BEWARE of tails, especially for nuisance parameters

Same criterion for all searches?

Single top production

Higgs

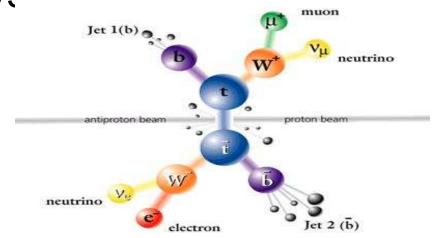
Highly speculative particle

Energy non-conservation

Sleuth

Assumptions:

- 1. Exclusive final state
- Large ∑p⊤
- 3. An excess

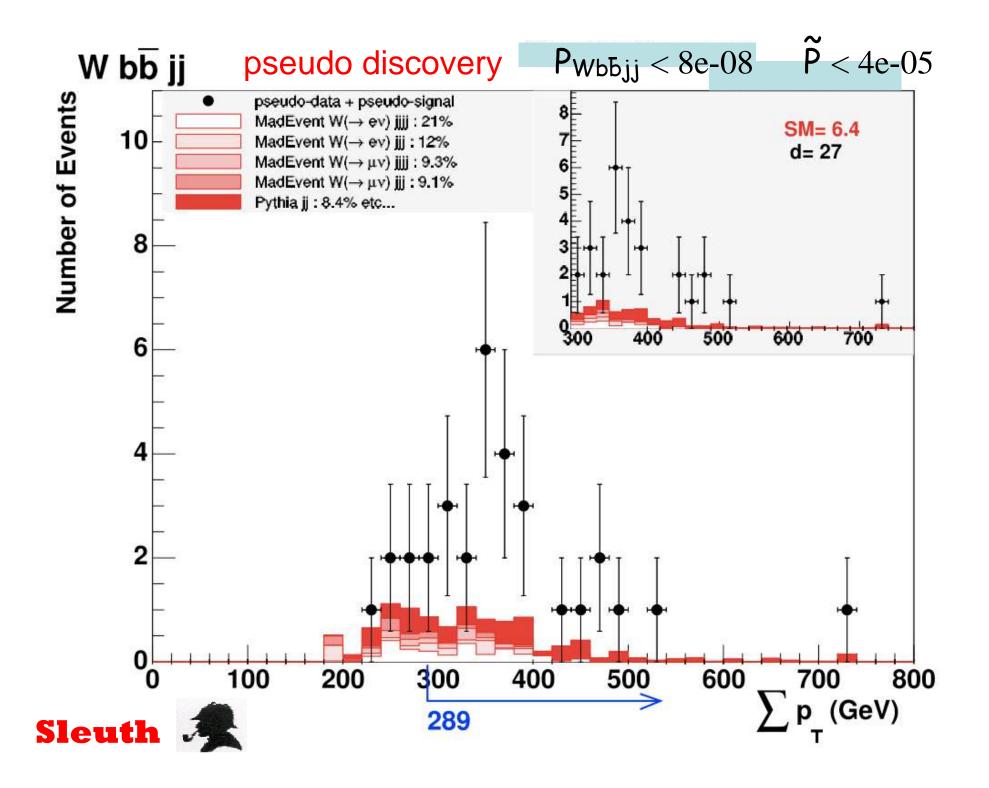


0608025

(prediction) d(hep-ph)

0001001

Rigorously compute the trials factor associated with looking everywhere 33



BLIND ANALYSES

Why blind analysis? Methods of blinding

Selections, corrections, method

Add random number to result *

Study procedure with simulation only

Look at only first fraction of data

Keep the signal box closed

Keep MC parameters hidden

Keep unknown fraction visible for each bin

After analysis is unblinded,

* Luis Alvarez suggestion re "discovery" of free quarks

What is p good for?

Used to test whether data is consistent with H0
Reject H0 if p is small : p≤ (How small?)
Sometimes make wrong decision:
Reject H0 when H0 is true: Error of 1st kind
Should happen at rate

OR

Fail to reject H0 when something else (H1,H2,...) is true: Error of 2nd kind Rate at which this happens depends on...........

Errors of 2nd kind: How often?

e.g.1. Does data line on straight line? χ^2 Reject if $\chi^2 \ge 20$

Error of 1st kind: $\chi^2 \ge 20$ Reject H0 when true

Error of 2^{nd} kind: $\chi^2 \le 20$ Accept H0 when in fact quadratic or.. How often depends on:

Size of quadratic term

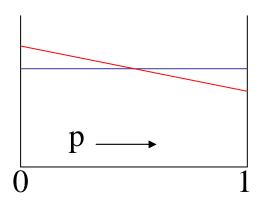
Magnitude of errors on data, spread in x-values,......

How frequently quadratic term is present

Errors of 2nd kind: How often?

e.g. 2. Particle identification (TOF, dE/dx, Čerenkov,.....) Particles are π or μ

Extract p-value for $H0 = \pi$ from PID information



 π and μ have similar masses

Of particles that have p ~ 1% ('reject H0'), fraction that are π is

- a) ~ half, for equal mixture of π and μ
- b) almost all, for "pure" π beam
- c) very few, for "pure" µ beam

What is p good for?

Selecting sample of wanted events

e.g. kinematic fit to select t t events

$$t \rightarrow bW$$
, $b \rightarrow jj$, $W \rightarrow \mu\nu$ $\underline{t} \rightarrow \underline{b}W$, $\underline{b} \rightarrow jj$, $W \rightarrow jj$

Convert χ^2 from kinematic fit to p-value

Choose cut on χ^2 to select t \underline{t} events

Error of 1st kind: Loss of efficiency for t t events

Error of 2nd kind: Background from other processes

Loose cut (large χ^2_{max} , small p_{min}): Good efficiency, larger bgd

Tight cut (small χ^2_{max} , larger p_{min}): Lower efficiency, small bgd

Choose cut to optimise analysis:

More signal events: Reduced statistical error

More background: Larger systematic error

p-value is not

```
Does NOT measure Prob(H0 is true)
i.e. It is NOT P(H0|data)
It is P(data|H0)
N.B. P(H0|data) \neq P(data|H0)
P(theory|data) \neq P(data|theory)
```

```
"Of all results with p ≤ , alf ill turn out to be ron ot in ron it t is state ent
e 000 tests of ener y conservation
0 s ould ave p ≤ , and so re ect 0 = ener y conservation
f t ese 0 results, all are li ely to be ron
```

 $P (Data; Theory) \neq P (Theory; Data)$

Theory = male or female

Data = pregnant or not pregnant

P (pregnant; female) ~ 3%

 $P (Data; Theory) \neq P (Theory; Data)$

Theory = male or female

Data = pregnant or not pregnant

P (pregnant; female) ~ 3%

but

P (female; pregnant) >>>3%

Aside: Bayes' Theorem

```
P(A \text{ and } B) = P(A|B) * P(B) = P(B|A) * P(A)
N(A \text{ and } B)/N_{tot} = N(A \text{ and } B)/N_B * N_B/N_{tot}
If A and B are independent, P(A|B) = P(A)
Then P(A \text{ and } B) = P(A) * P(B), but not otherwise
e.g. P(Rainy and Sunday) = P(Rainy)*P(Sunday)
But P(Rainy and Dec) = P(Rainy | Dec) * P(Dec)
                      = 25/31 * 31/365
           25/365
```

P(A|B) = P(B|A) * P(A) / P(B)Bayes' Th: 43

More and more data

Eventually p(data|H0) will be small, even if data and H0 are very similar.
 p-value does not tell you how different they are.

2) Also, beware of multiple (yearly?) looks at data.

"Repeated tests eventually sure to reject H0, independent of value of α "

Probably not too serious – < ~10 times per experiment.

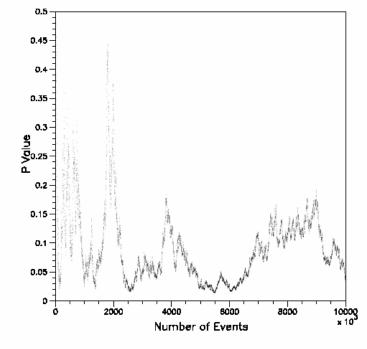
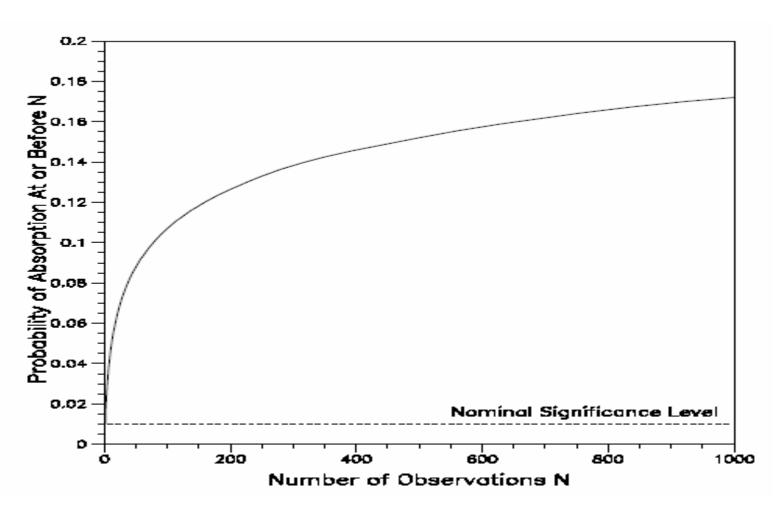


Figure 1: P value versus sample size.

More "More and more data"



PARADOX

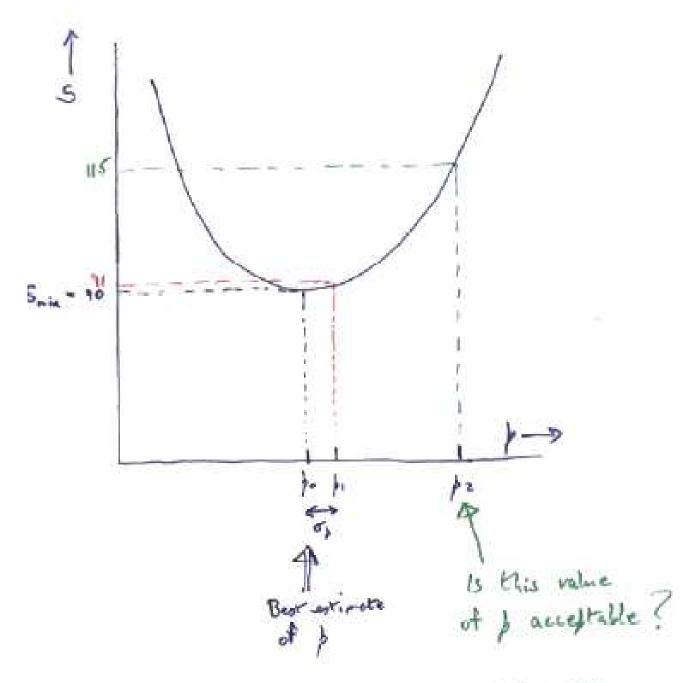
Histogram with 100 bins

Fit 1 parameter

$$S_{min}$$
: χ^2 with NDF = 99 (Expected $\chi^2 = 99 \pm 14$)

For our data, $S_{min}(p_0) = 90$ Is p_1 acceptable if $S(p_1) = 115$?

- 1) YES. Very acceptable χ^2 probability
- 2) NO. σ_p from $S(p_0 + \sigma_p) = S_{min} + 1 = 91$ But $S(p_1) - S(p_0) = 25$ So p_1 is 5σ away from best value



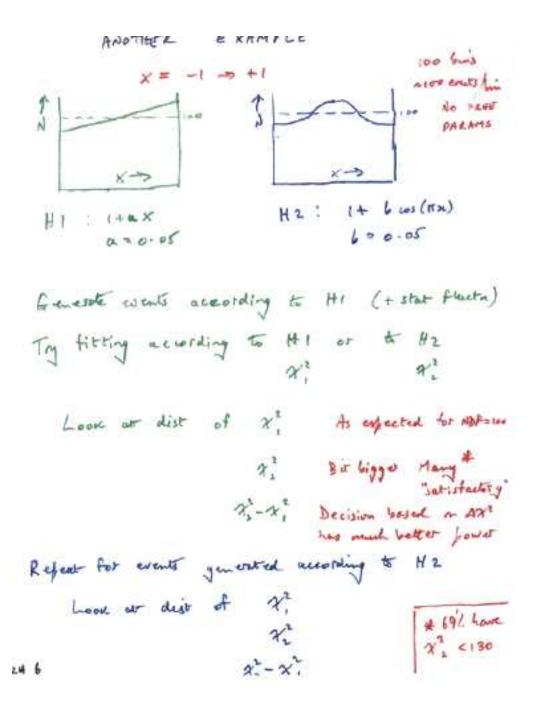
47

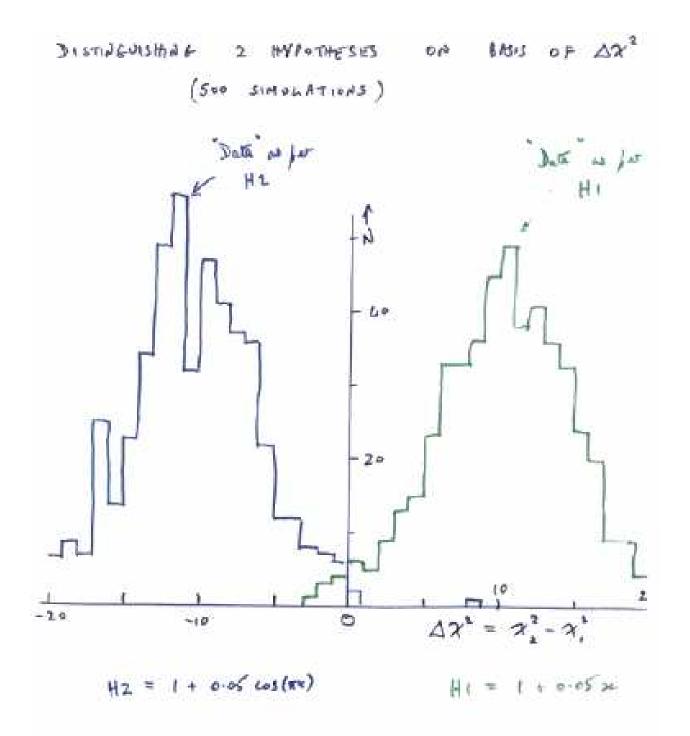
SELECTING BETWEEN TWO HYPOTHESES

Louis Lyons

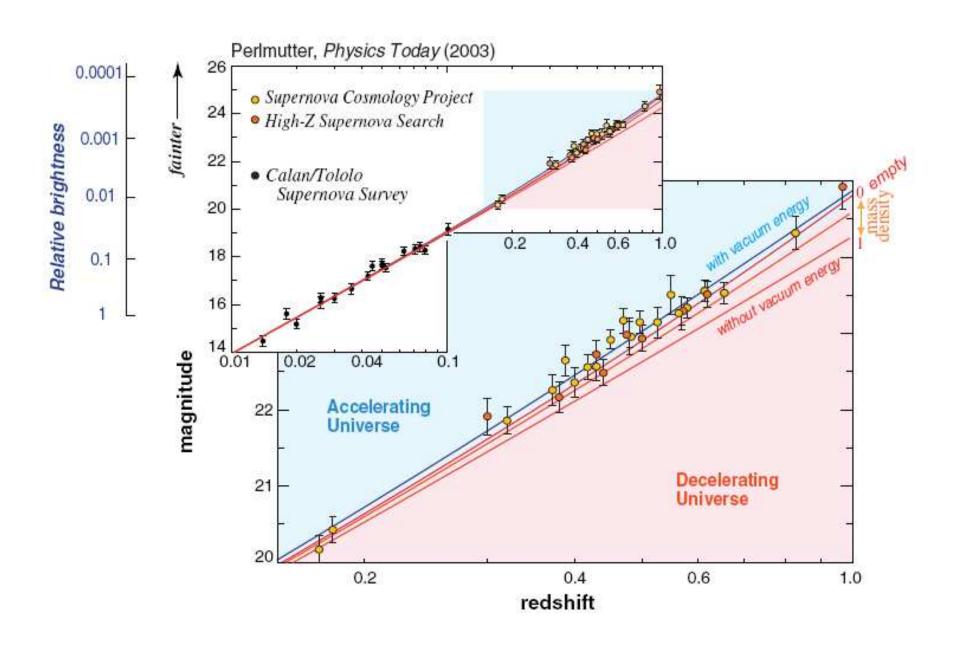
MATHEMATICAL FORMULATION
$$S(x) = \sum_{G \in \mathcal{I}} (x; -x)^2 = \sum_{G \in \mathcal{I}} (x; -x)^2 + \sum_{G \in \mathcal{I}}$$

CONCLUSION FOR THIS CASE





Comparing data with different hypotheses



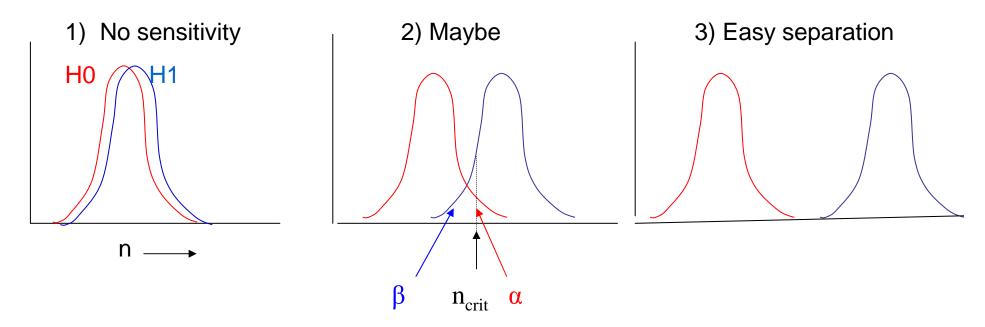
Choosing between 2 hypotheses

Possible methods:

```
\Delta \chi^2
p-value of statistic \rightarrow
ln\mathcal{L}-ratio

Bayesian:
Posterior odds
Bayes factor
Bayes information criterion (BIC)
Akaike ........................(AIC)

Minimise "cost"
```



Procedure: Choose α (e.g. 95%, 3σ , 5σ ?) and CL for β (e.g. 95%)

Given b, α determines n_{crit}

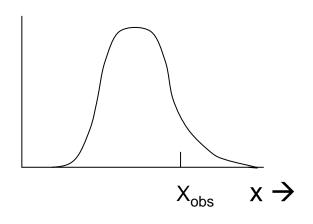
s defines β . For s > s_{min}, separation of curves \rightarrow discovery or excln

 s_{min} = Punzi measure of sensitivity For $s \ge s_{min}$, 95% chance of 5 σ discovery Optimise cuts for smallest s_{min}

Now data: If $n_{obs} \ge n_{crit}$, discovery at level α

If $n_{obs} < n_{crit}$, no discovery. If $\beta_{obs} < 1 - CL$, exclude H1

p-values or £ikelihood ratio?



 \mathcal{L} = height of curve

p = tail area

Different for distributions that

- a) have dip in middle
- b) are flat over range

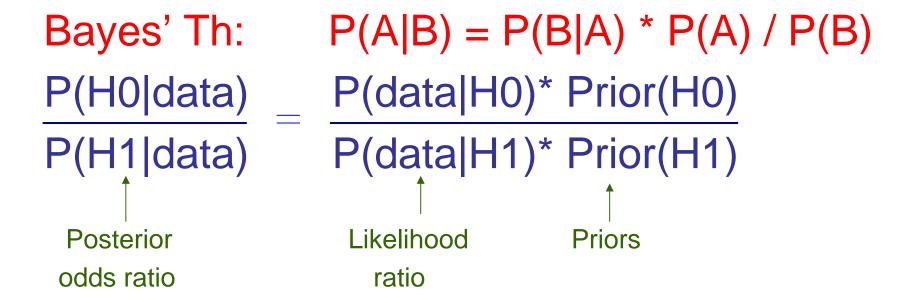
Likelihood ratio favoured by Neyman-Pearson lemma (for simple H0, H1)

Use *L*-ratio as statistic, and use p-values for its distributions for H0 and H1

Think of this as either

- i) p-value method, with \mathcal{L} -ratio as statistic; or
- ii) \mathcal{L} -ratio method, with p-values as method to assess value of \mathcal{L} -ratio

Bayes' methods for H0 versus H1



N.B. Frequentists object to this (and some Bayesians object to p-values)

Bayes' methods for H0 versus H1

- Profile likelihood ratio also used but not quite Bayesian (Profile = maximise wrt parameters.
 Contrast Bayes which integrates wrt parameters)
- 2) Posterior odds
- 3) Bayes factor = Posterior odds/Prior ratio (= Likelihood ratio in simple case)
- 4) In presence of parameters, need to integrate them out, using priors. e.g. peak's mass, width, amplitude

Result becomes dependent on prior, and more so than in parameter determination.

- 5) Bayes information criterion (BIC) tries to avoid priors by $BIC = -2 *ln{\mathcal{L} ratio} +k*ln{n}$ k= free params; n=no. of obs
- 6) Akaike information criterion (AIC) tries to avoid priors by AIC = -2 *In{L ratio} + 2k

Why p ≠ Bayes factor

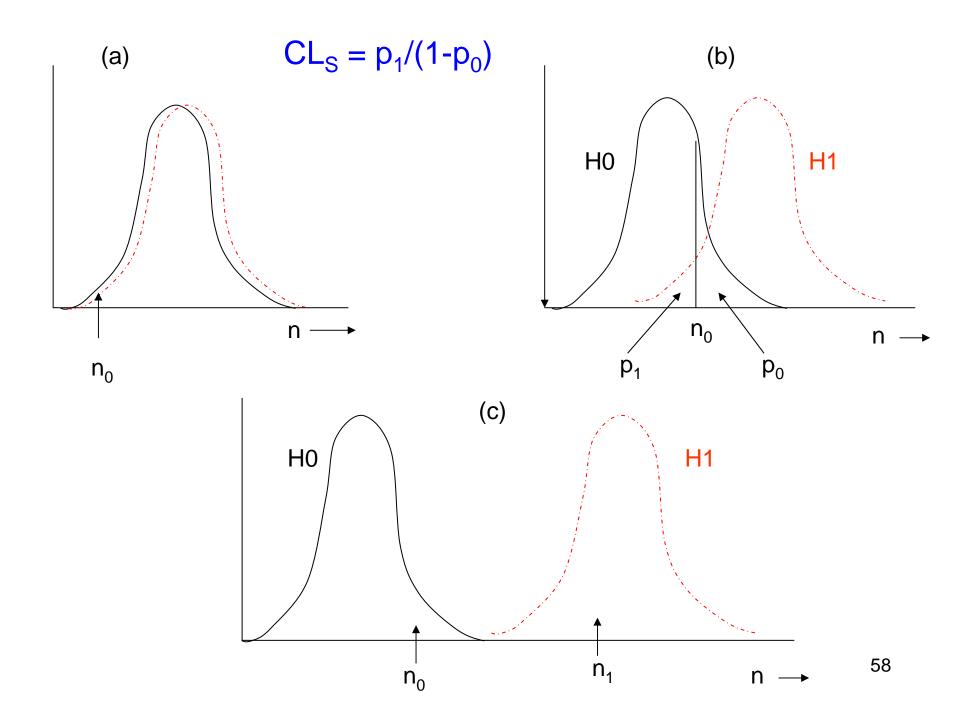
Measure different things:

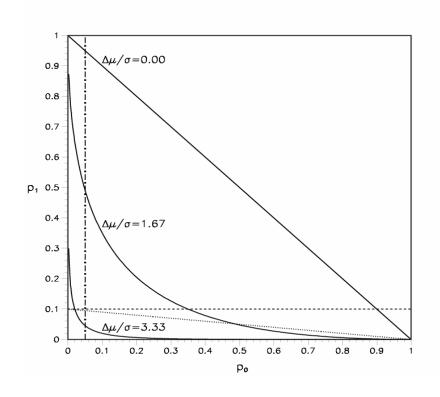
p₀ refers just to H0; B₀₁ compares H0 and H1

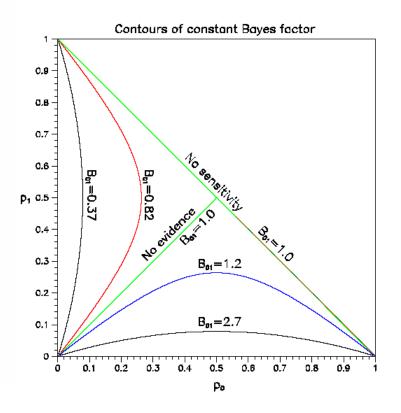
Depends on amount of data:

e.g. Poisson counting expt little data:

```
For H0, \mu_0 = 1.0. For H1, \mu_1 =10.0 
Observe n = 10 p_0 \sim 10^{-7} B_{01} \sim 10^{-5} 
Now with 100 times as much data, \mu_0 = 100.0 \mu_1 =1000.0 
Observe n = 160 p_0 \sim 10^{-7} B_{01} \sim 10^{+14}
```







p₀ versus p₁ plots

Optimisation for Discovery and Exclusion

Giovanni Punzi, PHYSTAT2003:

"Sensitivity for searches for new signals and its optimisation" http://www.slac.stanford.edu/econf/C030908/proceedings.html

Simplest situation: Poisson counting experiment,

Bgd = b, Possible signal = s, n_{obs} counts

(More complex: Multivariate data, In£-ratio)

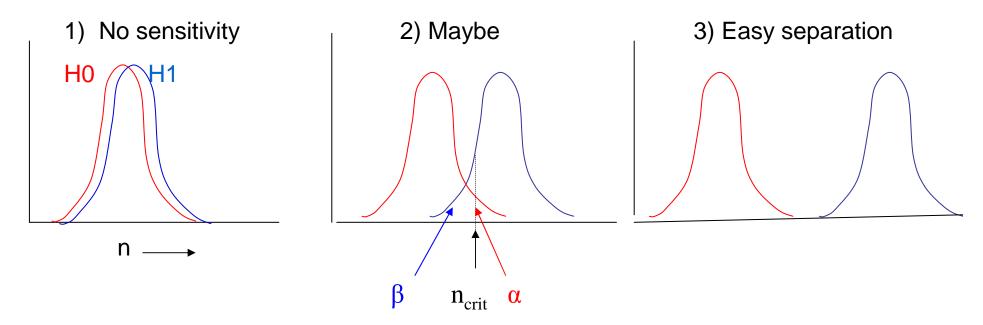
Traditional sensitivity:

Median limit when s=0

Median σ when $s \neq 0$ (averaged over s?)

Punzi criticism: Not most useful criteria

Separate optimisations



Procedure: Choose α (e.g. 95%, 3σ , 5σ ?) and CL for β (e.g. 95%)

Given b, α determines n_{crit}

s defines β . For s > s_{min}, separation of curves \rightarrow discovery or excln

 s_{min} = Punzi measure of sensitivity For $s \ge s_{min}$, 95% chance of 5 σ discovery Optimise cuts for smallest s_{min}

Now data: If $n_{obs} \ge n_{crit}$, discovery at level α

If
$$n_{obs} < n_{crit}$$
, no discovery. If $\beta_{obs} < 1 - CL$, exclude H1

1) No sensitivity

Data almost always falls in peak

 β as large as 5%, so 5% chance of H1 exclusion even when no sensitivity. (CL_s)

2) Maybe

If data fall above n_{crit}, discovery

Otherwise, and $n_{obs} \rightarrow \beta_{obs}$ small, exclude H1

(95% exclusion is easier than 5σ discovery)

But these may not happen → no decision

3) Easy separation

Always gives discovery or exclusion (or both!)

Disc	Excl	1)	2)	3)
No	No			
No	Yes			
Yes	No		(□)	
Yes	Yes			<u>-!</u>

Incorporating systematics in p-values

Simplest version:

Observe n events

Poisson expectation for background only is b $\pm \sigma_b$

 σ_b may come from:

acceptance problems

jet energy scale

detector alignment

limited MC or data statistics for backgrounds

theoretical uncertainties

Luc Demortier, "p-values: What they are and how we use them", CDF memo June 2006

http://www-cdfd.fnal.gov/~luc/statistics/cdf0000.ps

Includes discussion of several ways of incorporating nuisance parameters

Desiderata:

Uniformity of p-value (averaged over v, or for each v?)

p-value increases as σ_v increases

Generality

Maintains power for discovery

Ways to incorporate nuisance params in p-values

• Supremum Maximise p over all v. Very conservative

Conditioning Good, if applicable

Prior Predictive Box. Most common in HEP

$$p = \int p(v) \pi(v) dv$$

Posterior predictive Averages p over posterior

Plug-in
 Uses best estimate of v, without error

• *L*-ratio

• Confidence interval Berger and Boos.

 $p = Sup{p(v)} + β$, where 1-β Conf Int for v

Generalised frequentist Generalised test statistic

Performances compared by Demortier

Summary

- P(H0|data) ≠ P(data|H0)
- p-value is NOT probability of hypothesis, given data
- Many different Goodness of Fit tests
 Most need MC for statistic → p-value
- For comparing hypotheses, $\Delta \chi^2$ is better than $\chi^2_{\ 1}$ and $\chi^2_{\ 2}$
- Blind analysis avoids personal choice issues
- Different definitions of sensitivity
- Worry about systematics

PHYSTAT-LHC Workshop at CERN, June 2007 "Statistical issues for LHC Physics Analyses"

Proceedings at http://phystat-lhc.web.cern.ch/phystat-lhc/2008-001.pdf₆₆

Final message

Send interesting statistical issues to I.lyons@physics.ox.ac.uk