
PROBLEMS FOR LL’s PRACTICAL STATISTICS LECTURES 

1)      An experiment is searching for quarks of charge 2/3, which are expected to 
produce 4/9  the ionisation I0 of unit charged particles. In an exposure in which 105 

cosmic ray tracks are observed, 1 track has its ionisation measured as 0.44I0. The 
detector is such that ionisation measurements are Gaussian distributed about their true 
values with standard deviation σ. Calculate the probability that this could be a 
statistical fluctuation on the ionisation of a unit charged particle for the following 
different assumptions: 

a)      σ = 0.07I0 for all 105 track, 

b)      For 99% of the tracks σ = 0.07I0, while for the remainder it is 0.14I0.  

  

2)      An experiment is determining the decay rate λ for a new particle X, whose 

probability density for decay at time t is proportional to exp(-λt). A total of nine 

decays are observed at decay times 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 

picoseconds. Calculate the likelihood function L(λ ) at suitable values of λ (most 

easily done by a simple computer program), and draw a graph of the results. Find the 

best estimate of λ from the maximum of the likelihood curve, and a “±σ” range for λ 

by finding the values of λ where the logarithm to the base e of the likelihood 

function decreases by 0.5 units from its maximum value.  

  

3)      i) A tracker has detector 6 elements at x = -11, -10, -9, +9, +10 and +11 cms, 

which each measure a track’s y-coordinate to an accuracy of ±1 cm. A straight line y 

= a + bx is fitted (for example by chi-squared) to the data from the 3 elements at 

positive x (L1); a second (L2) for the data at negative x; and a third (L3) to all 6 

detector elements. The inverse error matrix for a and b has elements       Maa
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 ,    where the measurements are yi ± σi at xi. 

Evaluate the error matrix for a and b for each of the 3 fits. How do the errors and 

correlations compare with what you expect? 

ii) When two measurements for a pair of quantities are combined optimally, the 

errors on the combined parameters are such that Mc = M1 + M2, where Mc is the 

inverse error matrix for the combination, and M1 and M2 are those for the separate 

measurements. Determine the error matrix for the combination of the parameters 

of  L1 and L2. Explain why the errors for the combination are considerably smaller 

than those for L1 and L2 separately. 

 

      



4)      The coverage C(µ) is a property of a statistical technique for estimating a range 

for a parameter µ  at a confidence level α (e.g. 68%, 90% or whatever). It is the 

fraction of times that, in repetitions of the procedure with different data, the 

estimated range contains the true value µ. 

In a Poisson counting experiment with n observed events, one method of estimating 

a range for the Poisson parameter µ uses the estimate n +- sqrt(n) i.e. from n - 

sqrt(n) to n + sqrt(n). This is supposed to have 68% coverage. Determine the actual 

coverage C(µ) at µ = 3.41 and 3.42 as follows: 

Determine for which measured values, the nominal range from the "n+-sqrt(n)" 

procedure includes the specified true value, and then add up the Poisson 

probabilities for obtaining these measured values, again assuming the specified 

value of the Poisson parameter. 
Explain why plots of the coverage C(µ) as a function of the Poisson parameter value 

µ have discontinuities. 

  

5)      An experiment is searching for the SM Higgs. With no Higgs production, 100 

events are expected; if the Higgs is produced, 110 events are expected. The 

experiment observes 130 events, which is 3σ above the ‘No Higgs’ prediction, so the 

p-value for the null hypothesis is 0.1%. The Lab Publicity Officer announces that we 

now are 99.9% certain that the Higgs has been discovered. 

Comment. 

 


