Electroweak and Higgs Physics

Klaus Mönig

(klaus.moenig@desy.de)

GK Blockkurs Rathen, März 2010

Isospin and hypercharge of SM-fermions

	I_3	Y	Q
ν_L	$+\frac{1}{2}$	-1	0
e_L	$-\frac{1}{2}$	-1	-1
ν_R	0	0	0
e_R	0	-2	-1
u_L	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{2}{3}$
d_L	$-\frac{1}{2}$	$+\frac{1}{3}$	$-\frac{1}{3}$
u_L	0	$+\frac{4}{3}$	$+\frac{2}{3}$
d_L	0	$-\frac{2}{3}$	$-\frac{1}{3}$

Machines for precision electroweak physics

LEP:

- e⁺e⁻ ring at CERN (in the now-LHC tunnel)
- 1989-1995 running at or close to the Z-peak
 - $-\,17000000$ recorded Z-decays
 - -30% luminosity taken off-peak for Z-mass and width
 - beam energy precision of $2 \cdot 10^{-5}$

- 1996-2000 running above W-pair threshold
 - $-\sim 700~{\rm pb}^{-1}$ per experiment at 161 GeV $<\sqrt{s}<207\,{\rm GeV}$
 - $\Longrightarrow \sim 12000$ W-pairs per experiment
 - Higgs sensitivity up to $m_{\rm H} = 115 \,{\rm GeV}$

<u>SLC:</u>

- \bullet Linear collider at SLAC, running on the Z-pole from 1989 to 1998
- Only 500000 Z-decays recorded
- \bullet However up to 80% beam polarisation known to 0.5%
- Small bean size and beam pipe allowed for superb b-tagging

Tevatron:

- $\bullet\ensuremath{\mathrm{p}\bar{\mathrm{p}}}$ collider at Fermilab
- $\sqrt{s} = 1.96 \,\text{TeV}, \, \mathcal{L} \approx 6 \,\text{fb}^{-1}$ up to now
- Access to t, W, H

The Z lineshape

- LEP was scanning around the Z-peak to measure the resonance parameters
- Cross section:

$$\sigma = \frac{N_{meas} - N_{bg}}{\epsilon \mathcal{L}}$$

• Need to

- count events
- $-\operatorname{calculate}$ efficiency and background
- measure luminosity
- measure beam energy

Measurement of the beam energy

At the end of each off-peak fill the beam energy was measured by resonance depolarisation ($\Delta E_b \approx 0.2 \,\text{MeV}$)

Corrections have to be applied for:

- RF-status (few MeV, anticorrelated between experiments)
- earth-tides (< 15 MeV from moon and sun)

due to trains between Geneva and Bellegarde

and complicated temperature dependence of the magnets

Total uncertainty from beam energy:

$$\Delta m_Z = 1.5 \,\mathrm{MeV}$$

 $\Delta \Gamma_Z = 1.5 \,\mathrm{MeV}$

Measurement of the luminosity

- In principle luminosity can be calculated from machine parameters
- However, if a gauge reaction is available with known cross section, luminosity can be obtained much more precise from this
- Bhabha scattering (e⁺e⁻ → e⁺e⁻) at low angles is, apart from small corrections, a pure QED process with a large cross section
 → Ideal for luminosity determination
- Typical LEP acceptance: $30 \text{ mrad} < \theta < 180 \text{ mrad}$
- Total cross section above θ_{\min} : $\sigma \propto 1/\theta_{\min}^3$
- \bullet Need to know very precisely the lower acceptance cut ($\sim~20\mu{\rm m}$ is needed for <0.1% error)
- Efficiency/background not a problem

Experimental accuracy: $\approx 0.1\%$

Theoretical accuracy: $\approx 0.11\%$

Results: du] مhad (nb) 30 2v $m_{\rm Z} = 91.1867 \pm 0.0021 \,{\rm GeV}$ 3v $\Gamma_Z = 2.4952 \pm 0.0023 \,\text{GeV}$ ALEPH **DELPHI** $\Gamma_{\text{had}} = 1744.2 \pm 2.0 \,\text{MeV}$ 4ν **L3** $\Gamma_e = 83.92 \pm 0.12 \,\text{MeV}$ **OPAL** $\Gamma_{\mu} = 83.99 \pm 0.18 \,\text{MeV}$ 20 $\Gamma_{\tau} = 84.08 \pm 0.22 \,\text{MeV}$ average measurements, error bars increased by factor 10 $\Gamma_l = 83.99 \pm 0.09 \,\text{MeV}$ 10 $\Gamma_{\rm inv} = 499.2 \pm 1.5 \,\mathrm{MeV}$

Taking $\Gamma_{\nu}/\Gamma_{\ell} = 1.991 \pm 0.001$ from the Standard Model yields

 $N_{\nu} = 2.984 \pm 0.008$

There exist exactly three fermion generations with $m_{\nu} < 45 \,\text{GeV}$ in the universe!

90

88

94

E_{cm} [GeV]

92

0

86

Measurements of $\sin^2 \theta_{eff}^l$

LEP

- \bullet Forward-backward asymmetry of $\mu,\,\tau,\,({\rm e})$
- Forward backward asymmetry of b- and c-quarks
- $\bullet \, \tau\text{-polarisation}$ and its angular dependence

SLD

- left-right asymmetry with polarised beams
- (polarised forward-backward asymmetries)

W-mass measurements

LEP

- $\bullet \sim 10000$ W-pairs /experiment
- ~ 45% mixed ($WW \rightarrow \ell \nu q q$ decays
 - $-\operatorname{for} \ell = \mu, e \nu \text{ can be reconstructed from}$ energy-momentum constraint \Rightarrow clean measurement with good precision
- ~ $45\% WW \rightarrow 4$ -jet decays
 - -full information available
 - limited jet resolution can be improved with constrained fit
 - some problems with jet-pairing
 - -still experimentally most precise measurement
 - however significant uncertainty from colour reconnection

Tevatron:

- Large statistics from $q\overline{q'} \to W \to \ell \nu$
- \bullet Only transverse ν momentum can be reconstructed using hadronic recoil
- Main uncertainty from lepton energy-scale
- Can be calibrated using Z- y production → limited by statistics
- $m_{\rm W}$ can be measured from lepton transverse momentum or from transverse mass
- Precision now at same level as LEP

$m_{\rm W}$ combination

Summer 2006 - LEP Preliminary

The top-quark mass

• The top mass enters only at 1-loop level

- However the dependence is quadratic and at percent-level measurement is needed to match the other observables
- Tevatron measurement on the 1 GeV level from reconstruction of the top-quarks

• Open issues:

- colour reconnection effects: first estimates indicate 0.5 GeV uncertainty, included in world average
- $-\max$ definition: could also be around $0.5\,{\rm GeV},$ not yet included

 $m_{\rm H} - m_{\rm H}$ bands allowed by the different observables

Result of the SM fit:

$$m_{\rm H} = 83^{+30}_{-23} \,\text{GeV}$$
$$m_{\rm t} = 173.2 \pm 1.2 \,\text{GeV}$$
$$\alpha_s(m_{\rm Z}) = 0.1192 \pm 0.0028$$
$$\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}) = 0.02772 \pm 0.0022$$

 $\chi^2/ndf = 16.4/13 \implies \text{Prob} = 23\%$

- Overall good agreement of data with SM
- Largest deviation 2.5 σ ($A_{\rm FB}^{\rm b}$) not unexpected

Higgs limit from the SM fit

 $m_{\rm H} \lesssim 160 \,{\rm GeV}$ at 2σ

ST contours for the different observables

ST in a 4th generation scenario

Higgs physics

Higgs branching ratios and total width in the SM

Combined Higgs limit of the LEP experiments

Background compatibility of the Higgs searches

ALEPH Higgs candidate

Another ALEPH Higgs candidate

Higgs cross section at the LHC

Higgs cross section at the Tevatron

 $m_{\rm H}$ reconstruction from $Hqq \rightarrow \tau^+ \tau^- qq$

ΔR for lepton pairs from $H \to WW$

Higgs searches at the Tevatron

Light Higgs:

- \bullet Main decay to $b\bar{b}$
- Main channel $gg \to H \to b\bar{b}$ hopeless
- Possible channels $WH \to \ell \nu b \bar{b}, ZH \to \ell \ell b \bar{b}, ZH \to \nu \nu b \bar{b},$

Medium Higgs

- $gg \to WW \to \ell \nu \ell \nu$ becomes accessible
- In addition some signal from $WH \rightarrow \ell \nu \ell \nu + \dots$

Heavy Higgs $(m_{\rm H} > 200 \,{\rm GeV})$

• No chance because cross section too low

Search for $gg \to WW \to \ell \nu \ell \nu$

- Many variables with low separation power
- E.g. leptons correlated because of Higgs spin (=0)
- Combined with multivariate techniques, here NN
- Small signal under huge bg, WW and Drell-Yan dominant

Neural Net output

<u>Results</u>

- Low mass region dominated by $WH \rightarrow \ell \nu b\bar{b}$ and $WH, ZH \rightarrow MET b\bar{b}$
- Higher masses only $H \to \ell \nu \ell \nu$
- Exclusion at low masses still around $2 3\sigma(SM)$
- At 163 GeV $< m_{\rm H} < 166$ GeV SM-Higgs excluded!

Within SM $m_{\rm H} < 160 \,\text{GeV}$ strongly favoured

Higgs searches at the LHC

- Easiest channel: $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$: sensitive for 120 GeV < $m_{\rm H} < 160 \,\text{GeV}$ and $m_{\rm H} > 180 \,\text{GeV}$
- 170 GeV hole can be more than filled with $H \to WW$
- \bullet Low masses can be probed with $H \to \gamma \gamma$ and $H \to \tau \tau$ in fusion channel
- Unfortunately the most probable region is the most difficult
- Nevertheless the Higgs can be discovered in the full region with 100 $\,\mathrm{fb}^{-1}$

ATLAS Higgs search expectations for 10 fb⁻¹ at 14 TeV

Higgs properties

LHC has discovered a particle compatible with a Higgs, what can be measured?

Mass: Modes with complete Higgs reconstruction $(H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4\ell)$ allow mass measurement with 0.1% precision.

Spin:

Coupling Hvv forbidden if H has spin 1 and v is massless vector particle (e.g. g or γ) (angular momentum conservation and Pauli principle)

10

2

 \rightarrow visibility of $H \rightarrow \gamma \gamma$ or $gg \rightarrow H$ excludes spin 1

10³

m_H (GeV)

H. WH. ttH $(H \rightarrow \gamma \gamma)$

 $WH(H\rightarrow WW\rightarrow |v|v)$

all channels

ATLAS + CMS $\int L dt = 300 \text{ fb}^{-1}$

/H. ttH (H→bb) I→ZZ→4I I→WW→IvIv If $H \to ZZ \to 4\ell$ is visible spin/CP can be obtained from decay angle distributions:

- Add CP odd coupling to SM coupling with strength $\tan \xi/m_{T^{r}}^{2r}$ Most background-ressed
 - pressed by cuts
 - Can distinguish the extreme cases

The width of the Higgs

Higgs couplings

- Ratios of production rates measure ratios of partial widths
- \bullet Can obtain ratios of decay widths with >10% accuracy

- For absolute partial widths need additional assumptions.
- Precisions of couplings depend on assumptions
- Minimal assumption $\Gamma_V < \Gamma_V^{SM} V = W, Z$
- Again precision > 10 20%
- Better precision with additional assumptions

The future of Higgs physics

- If a roughly SM like Higgs exists LHC will find it
- However the parameter determination at LHC is marginal
- \bullet This could be improved by a future e⁺e⁻ collider
- Two LC projects are under study
 - **ILC** LC in superconducting technology. 1st stage $\sqrt{s} \leq 500$ GeV, upgradable to 1 TeV.
 - **CLIC** LC in two-beam technology $\sqrt{s} \leq 3$ TeV
- A LC could be e.g. the next project at CERN following the LHC

Questions to be answered for the Higgs

First key measurement: Unbiased $e^+e^- \rightarrow HZ$ measurement from recoil mass

- Select events $e^+e^- \to ZX$ with $Z \to \ell^+\ell^-$
- Can see Higgs peak in recoil-mass spectrum without any link to Higgs decay products

Higgs quantum numbers

- The Higgs spin can be measured from a threshold scan (few remaining ambiguities can be figured out from angular correlations of the decay products)
- CP can be measured from spin correlations in $H \rightarrow \tau \tau$

Higgs couplings

- \bullet The HZZ coupling can be directly obtained on the 3% level from the recoil measurement
- If the Higgs is reasonably light ($m_{\rm H} \lesssim 140 \,{\rm GeV}$) the branching ratios to many fermions can be measured with good accuracy
- $Hb\bar{b}$ remains visible up to around $m_{\rm H} \lesssim 200 \,{\rm GeV}$
- The $t\bar{t}H$ coupling can be measured from $t\bar{t}H$ final states

Advantage of high energy (CLIC): fusion cross section rises

 \Rightarrow rare decays can be measured with better precision

H → µ⁺µ⁻: 4.2% precision for m_H = 120 GeV
H → bb̄: 3.4% precision for m_H = 220 GeV

The Higgs self-coupling

- 0.3 SM Double Higgs-strahlung: $e^+e^- \rightarrow ZHH$ • The HHH coupling can be mea- σ [fb] sured from ZHH events at $\sqrt{s} = 0.2$ 500 GeV and $\nu\nu HH$ events at $\sqrt{s} = 800 \text{ GeV}$ $\sqrt{s} \sim 1 \,\mathrm{TeV}$ 0.1 • Studies up to now use $H \rightarrow bb$ 0 120 140 100 • Combining both energies gives $\Delta \lambda_{HHH} = 12\%$ for $m_{\rm H} =$ 1.5 1/0 Ja/2/ 1.4 120 GeV degrading with higher $M_{H} = \mathbf{\nabla} 240 \text{ GeV}$ 1.3 ▲180 GeV Higgs masses 1.2 140 GeV 1.1 •120 GeV • For higher energies the larger cross 1 0.9 section gets partly compensated 0.8
 - by a lower sensitivity → significant gain only for heavier
 - Higgses

 $\sqrt{s} = 500 \text{ GeV}$

160

180

M_H[GeV]

0.7

0.6

0.5

2

3

4

5

√s (TeV)

This can show that the Higgs really couples to mass

Applications of precision Higgs measurements

- Many coupling measurements lead way to new physics looking at patterns
- In a model (SUSY) precision couplings allow measurements of model parameters
- Similarly mass measurements allow determination of model parameters

Electroweak and Higgs Physics

Problems with the EW theory

The hierarchy problem

 \bullet Contributions from loop-corrections to Higgs mass with cutoff Λ

$$m_{\rm H}^2 = (m_{\rm H}^0)^2 + \frac{3\Lambda^2}{8\pi^2 v^2} \left[m_{\rm H}^2 + 2m_{\rm W}^2 + m_{\rm Z}^2 - 4m_{\rm t}^2 \right]$$

- \rightarrow Higgs mass naturally at cutoff scale (= m_{Planck} ???)
 - Enormous fine-tuning required to keep Higgs at weak scale

<u>Dark matter</u>

- We have many pieces of evidence that there is more matter in the universe than we can see (flatness of the universe, structure of galaxies, rotation curves around galaxies)
- This matter cannot be baryonic (contradiction to big-bangnucleosynthesis)
- \Longrightarrow We need a new form of matter that is not in the Standard Model

Baryogenesis

- The universe started in a matter-antimatter symmetric phase
- To generate the matter-antimatter asymmetry we need (Sacharov): baryon-number violation, CP-violation, out of equilibrium conditions
- The SM contains baryon-number violation in a non-perturbative way
- It also contains CP-violation in the CKM matrix
- Detailed calculations show that the CP violation is not sufficient to explain the observed asymmetry

Conclusions

- The electroweak Standard Model describes a vast amount of data with very good precision
- \bullet The Higgs boson is still missing, but data indicate that its mass is $115-160\,{\rm GeV}$
- However there are significant problems with this model that require new physics