<u>Neutrino Pendulum</u>

Part I: General Introduction Part II: 3-flavor Neutrino Mixing

> Michael Kobel (TU Dresden) 23.3.10 Graduate School Rathen

Part I: Coupled Pendula

- Free Oscillation of one pendulum: $\omega_0^2 = \frac{g}{a}$
- 2 pendula with same length ℓ , mass m coupled by spring with strength k
- 2 Eigenmodes
 - Different eigenfrequencies = energies

Mode a (II + I) with $\omega_2^2 = \omega_0^2$ Mode b (II - I) with $\mathcal{O}_{\mathbf{L}}$

$$\omega_{0}^{2} = \omega_{0}^{2} + \Delta \omega^{2}$$

 Frequency (=energy) difference increases with stronger coupling

$$\Delta \omega^2 = \frac{kd^2}{m\ell^2}$$

Coupling can be steered by varying **k** or **d** (we'll vary d in the following)

Two bases in Hilbert-space

flavor-basis

- eigenstates of flavor
- eigenstates of weak charge
- particles take part in weak interactions as flavor-eigenstates
- Examples:
 - $\overline{K}^{0}(s \ \overline{u})$ or $K^{0}(\overline{s} u)$
 - ν_{e} , ν_{μ} , ν_{τ}

mass-basis

- eigenstates of mass
- well-defined lifetime
- Particles propagate through spacetime as mass-eigenstates $|\upsilon(t)\rangle = |\upsilon\rangle e^{i(\vec{p}\vec{x} - Et)} e^{-\Gamma t}$
- Examples:
 - K⁰_L, K⁰_S
 - $-v_1, v_2, v_3$
- Like coupled pendula, the coupling of particles leads to eigenstates with different masses and lifetimes, e.g. for linear combination of 2 states:

$$v_a = (v_\tau + v_\mu)/\sqrt{2}$$
 with $m_a^2 = m_0^2$
 $v_b = (v_\tau - v_\mu)/\sqrt{2}$ with $m_b^2 = m_0^2 + \Delta m^2$

Correspondences

pendulum	particles
Linear oscillation	complex phase rotation
Eigenmodes	Mass eigenstates
→ fixed eigenfrequencies	→ fixed phase frequencies
Frequency differences $\Delta \omega$	Frequency differences e ^{i∆Et} ~ e ^{i∆m²t}
\rightarrow different energies	→ different masses
One pendulum =	Flavor eigenstate =
lin. combination of eigenmodes	lin. combination of mass eigenstates
amplitude ² ~	amplitude ² ~
total energy in oscillation	detection probability
Beat-Frequency	Flavor-Oscillation
$\sim\Delta\omega$ of eigenmodes	$\sim \Delta m^2$ of mass eigenstates

Part II: Neutrino flavor pendulum

coupled pendula for demonstrating 3-flavor neutrino mixing as realized in nature

Idea: M.K. built 2004 at Uni Bonn, extended 2006 at TU Dresden with variable mixing angles and digital readout http://neutrinopendel.tu-dresden.de

Copies in: Hamburg, Münster, DESY(Zeuthen), ...

3-flavor neutrino mixing

 θ_{12}

(neglected in the following)

v flavor-oscillations

• Each flavor (e.g. v_e) is sum of mass eigenstates (v_1 , v_2 , v_3)

 \blacklozenge Each mass eigenstate with fixed p has a different phase frequency ω_i

• $exp(i\omega_i t) = exp(iE_i t) = exp(i(\sqrt{p^2 + m_i^2})t) \sim exp(ipt + im_i^2 t/2p + ...)$

• The differences $\Delta \omega_{ij} \sim |m_i^2 - m_j^2| =: \Delta m_{ij}^2$ lead to flavor oscillations • Δm_{ij}^2 determines the oscillation **period** • θ_{ii} determines the oscillation **amplitude** $\int_{P_{V_e \rightarrow V_e}} L = \frac{4\pi E}{|m_1^2 - m_2^2|} \int_{D_{ij}} L = 2.5m \frac{E(MeV)}{\Delta m_{ij}^2 (eV^2)}$

 $\cos^2 2\theta$

0

Current values

cf. global fit Th.Schwetz et al., NJP 10 (2008)

∆m ² ₂₃ = 2,4 x 10 ⁻³ eV ²	∆m² ₁₃ = 2,5 x 10 ⁻³ eV²	$\Delta m_{12}^2 = 0,08 \times 10^{-3} eV^2$
"fast" oscillation		"slow" oscillation
$L_{23} = 1 km \times E(MeV)$		$L_{12} = 30 \ km \times E(MeV)$
$\theta_{23} = 45^{\circ} \pm 3^{\circ}$	θ ₁₃ < 11° (90% CL)	$\theta_{12} = 33.5^{\circ} \pm 1.5^{\circ}$
$\Theta_{atmos, beam}$	θ ₁₃ , δ	$\Theta_{solar, reactor}$

consistent with so-called tri/bi-maximal mixing

 $\theta_{23} =$

45°
$$\theta_{13} = 0^{\circ} \qquad \theta_{12} = 35.3^{\circ}$$
$$U_{\text{PMNS}} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
Harrison, Perkins, Sco
Z, Xing, '02, He, Zee, '03

Harrison, Perkins, Scott '99,'02 Z.Xing,'02, He, Zee, '03, Koide '03 Chang, Kang, Kim '04, Kang '04

Realisation as coupled pendula

inverted hierarchy

 v_2

 v_1

V₃

•
$$\mathbf{v}_3 = (\mathbf{v}_{\mu} + \mathbf{v}_{\tau})/\sqrt{2}$$

•
$$\mathbf{v}_2 = (-\mathbf{v}_e + \mathbf{v}_\mu + \mathbf{v}_\tau)/\sqrt{3}$$

•
$$\mathbf{v}_1 = (2\mathbf{v}_e + \mathbf{v}_\mu + \mathbf{v}_\tau)/\sqrt{6}$$

normal

m

 $|v_3|$

 v_2

The solar neutrino "deficit"

Ray Davis

Nobelpreis 2002

380000 I Perchlorethylen in der Homestake- Mine

$$\nu_{e}$$
 + ${}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}$ + e^{-2}

Ausspülen des ³⁷Ar (0.5 Atome/Tag)

• <u>Davis:</u> only sensitive to v_e Result: Only 32% of expected v_e detected

Modify θ_{12}

Need for enhancement (MSW effect)

7.6+1.3

5.1+1.0 x10⁶/cm²s

SNO NC

128 +9 SNU

- nuclear fusion: 100% v_e leave the sun (w/o MSW effect) 4p \rightarrow ⁴He + 2e⁺ + 2 v_e + 27 MeV
- "slow" oscillation via θ_{12} and small Δm_{12}^2 (pendula: weak coupling)

T/2

 \rightarrow

• oscillation only to $(v_{\tau} + v_{\mu})/\sqrt{2}$

2222222222

- transition to $(v_{\tau} v_{\mu})/\sqrt{2}$ not possible, since v_{e} not in v_{3}
- $P(v_e \rightarrow v_e) > 50\%$ since just v_1 and v_2 involved \rightarrow need for enhancement (MSW effect)

Problems solved 1985 by MSW (Mikheyev–Smirnov–Wolfenstein) effect

- Historical Prejudice: mixing angle should be small
 - Problem: How to get large neutrino deficit w/ small mixing?
 - Today no problem: 2 mixing angles are large!
- Knowing about large θ_{12} , but having $\theta_{13} = 0$
 - Effective 2-flavor mixing!
 → min detection rate should be >= 50%
 - Problem: Observed rate of Homestake ~ 32% !

hep-ph/0601198

slide from Stephen Parke http://boudin.fnal.gov/AcLec/AcLecParke.html

Atmospheric neutrinos

look at ν_{e} and ν_{μ} from air showers:

- $\boldsymbol{\cdot}$ no deficit for v_{e}
- $\boldsymbol{\cdot}$ clear deficit for $\boldsymbol{\nu}_{\mu}$
- fully compatible with $\nu_\mu \not \rightarrow \nu_\tau$

atmospheric neutrinos

- pendula:
 - v_e : weak coupling to v_{μ} , v_{τ}
 - ν_{μ} : weak coupling to ν_{e}

strong coupling to \mathbf{v}_{τ}

Interactive Neutrino Oscillation Laboratory

Modify θ_{23}

Abbildung 53: Atmosphärische Neutrino-Oszillation mit =0,98rad (56,2°), Java-Applet.

Impact of θ_{13}

2222222222

•
$$\mathbf{v}_3 = (\sin\theta_{13}\mathbf{v}_e - \mathbf{v}_\mu + \mathbf{v}_\tau)/\sqrt{2.01}$$

- reactor $\overline{\nu}_e \rightarrow \overline{\nu}_{\tau} + \overline{\nu}_{\mu}$ disappearance and atmospheric or beam $\nu_{\mu} \rightarrow \nu_{e}$ appearance
 - "slow" directly via Δm_{12} (weak coupling)
 - "fast" modulation via $v_{\tau} v_{\mu}$ with Δm_{23} (strong coupling)

Interactive Neutrino Oscillation Laboratory

Modify θ_{13}

Are neutrino pendula a perfect model?

- Few "features"
 - Need "creative" sign convention, leading to
 - imperfection for understanding sequence of masses
 - imperfection for $\theta_{23} \neq 45^{\circ}$
 - some $(\mathbf{v}_{\tau} \mathbf{v}_{\mu})$ present in \mathbf{v}_1 and \mathbf{v}_2
 - but $v_e \rightarrow (v_\tau v_\mu)$ still not possible!
- Else perfect!

The END !