
Advanced Computing: Numerics and Algebra

Stefan Weinzierl

Institut für Physik, Universität Mainz

I. Introduction

II. Data Structures

III. Efficiency

IV. Classical Algorithms

Literature

Books:

• D. Knuth, “The Art of Computer Programming”, Addison-Wesley, third edition, 1997

• K. Geddes, S. Czapor and G. Labahn, “Algorithms for Computer Algebra”, Kluwer,
1992

• J. von zur Gathen and J. Gerhard, “Modern Computer Algebra”, Cambridge
University Press, 1999

Lecture notes:

• S.W., “Computer Algebra in Particle Physics”, hep-ph/0209234.

The need for precision

Hunting for the Higgs and other yet-to-be-discovered particles requires accurate and
precise predictions from theory.

Theoretical predictions are calculated as a power expansion in the coupling. Higher
precision is reached by including the next higher term in the perturbative expansion.

State of the art:

• Third or fourth order calculations for a few selected quantities (R-ratio, QCD β-
function, anomalous magnetic moment of the muon).

• Fully differential NNLO calculations for a few selected 2→ 2 and 2→ 3 processes.

• Automated NLO calculations for 2→ n (n = 4..6,7) processes.

Computer algebra programs are a standard tool !

History

The early days, mainly LISP based systems:
1965 MATHLAB 1958 FORTRAN
1967 SCHOONSHIP 1960 LISP
1968 REDUCE
1970 SCRATCHPAD, evolved into AXIOM
1971 MACSYMA
1979 muMATH, evolved into DERIVE

Commercialization and migration to C:
1981 SMP, with successor MATHEMATICA 1972 C
1988 MAPLE
1992 MuPAD

Specialized systems:
1975 CAYLEY (group theory), with successor MAGMA
1985 PARI (number theory calculations)
1989 FORM (particle physics)
1992 MACAULAY (algebraic geometry)

A move to object-oriented design and open-source: 1984 C++
1999 GiNaC 1995 Java

The naive wish-list related to computer algebra systems

• Completeness: Covers every branch of modern mathematics

• Intelligence: Finds a solution we never dreamt of

• Efficiency in performance: Compilation

• Short development cycles: Interactive use and high-quality output

• Support for modern program paradigmas: Object-oriented

• Standardized programming language: Development tools exist

• Source code freely available: Portability, bug hunting

Unfortunately, these wishes contradict each other.

What computer algebra system to choose ?

The choice depends on the specific needs:

• Local problems:
Problem expands into a sum of different terms and each term can be solved
independently of the others.
Complications: The number of terms can become quite large.
Requirements: Bookkeeping, ability to handle large amounts of data.

• non-local problems:
Standarized non-local operations (e.g. factorization).
Requirements: An implementation of these algorithms.

• non-standard problems:
Dedicated algorithms, developed by the user to solve a specific problem.
Requirements: Ability to model abstract mathematical concepts in the programming
language of the computer algebra system

Requirements on a computer algebra system

Computer-intensive symbolic calculations in particle physics can be characterized by:

• Need for basic operations like addition, multiplication, sorting ...

• Specialized code usually written by the user

• No need for a system which knows “more” than the user!

CAS on the market:

• Commercial: Mathematica, Maple, Reduce, ...

• Non-commercial: FORM, GiNaC, ...

Data structures

1. Lists

2. Containers

3. Object-oriented design: A little bit C++

4. A very simple computer algebra system

Symbolic differentiation

Symbolic differentiation can be specified by a few rules:

d
dx

c = 0,

d
dx

x = 1,

d
dx

(f (x)+g(x)) =
d
dx

f (x)+
d
dx

g(x),

d
dx

(f (x)g(x)) =

(
d
dx

f (x)

)
g(x)+ f (x)

(
d
dx

g(x)

)
.

These rules are sufficient to differentiate polynomials in x.

LISP

LISP is based on lists and uses the prefix notation:

a+b+ c =̂ (+ a b c)

LISP takes the first entry in a list as the name of an operation and applies this operation
to the remaining elements.

A single quote ’ in front of a list prohibits evaluation.

A backquote ‘ acts like a single quote, except that any commas that appear within the
scope of the backquote have the effect of unquoting the following expression.

A free LISP interpreter is available from http://www.gnu.org/software/gcl/gcl.html.

Symbolic differentiation in LISP

(DEFUN OPERATOR (LIST) (CAR LIST))

(DEFUN ARG1 (LIST) (CADR LIST))

(DEFUN ARG2 (LIST) (CADDR LIST))

(DEFUN DIFF (E X)
(COND ((ATOM E) (COND ((EQUAL E X) 1)

(T 0)))
((EQUAL (OPERATOR E) ’+)
‘(+ ,(DIFF (ARG1 E) X) ,(DIFF (ARG2 E) X)))
((EQUAL (OPERATOR E) ’*)
‘(+ (* ,(DIFF (ARG1 E) X) ,(ARG2 E))

(* ,(ARG1 E) ,(DIFF (ARG2 E) X))))))

Example

LISP is an interactive language and entering

(DIFF ’(* A X) ’X)

at the prompt for

d
dx

(ax)

yields

(+ (* 0 X) (* A 1))

which stands for

(0· x)+(a ·1).

Simplifications like 0 · x = 0, a ·1 = a or 0+ a = a are out of the scope of this simple
example.

Remarks

• Distinction between atoms and containers.

• The use of recursive techniques.

• Lists are used to represent data structures.

• Lists can be nested.

• The output is not necessarily in the most compact form.

Containers

Container: an object that holds other objects (lists, arrays, ...).

Various possibilities how the data can be stored in physical memory.
The time needed to access one specific element will depend on the lay-out of the data
in the memory.

O(1) cheap
O(log(n)) fairly cheap
O(n) expensive
O(n log(n)) expensive
O(n2) very expensive
O(en) unaffordable
O(n!) unaffordable

Operations of order O(1) or O(log(n)) are considered “cheap” operations.
Considerable speep-up, if an operation which naively takes O(n2) time, can be
improved to O(n log(n)).
In generally one tries to avoid operations, which take O(n2) time.

Arrays

Arrays (also called “vectors” in C++):

Data stored in consecutive slots in memory

Given the address of the first element and the size of a single
entry, the address of the j’th element is

addr j = addr1+(j−1) size

Access: O(1)

Insertion: O(n)

1
2
3
4

Lists

Often implemented as double-linked list.

Each node contains: an entry
pointer to the previous node
pointer to the next node

Access: O(n)

Insertion: O(1)

1

2

3

4

Rooted trees

Linear structure: Generalization: Specialization:
Lists Rooted trees Binary trees

Associative arrays

Store pairs (key,value), for the keys: “less-than” operation

Example: Name / Telephone number

Luca
Matteo
Roberto
Enrico
Francesco
Alberto

L

E M

A F R

Anna
Beate
Cecilia
Dora
...
Zoe

A

B

C

Z

Access: O(log(n))
Insertion: O(log(n))

Hash maps

Hash maps store again pairs (key,value).

For the keys: - a hash function
- “is-equal” operation

The hash function is used to compute from the key the address.
The “is-equal” operation is used to check for collisions.
The efficiency depends on the quality of the hash function.

Access: O(1)

Insertion: O(1)

A
C

D

E

B

Summary on containers

implementation subscription list operations back operations

vector one-dimensional array O(1) O(n) O(1)
list double-linked list O(n) O(1) O(1)
map binary tree O(log(n)) O(log(n)) —
hash map hash map O(1) O(1) —

Object-oriented programming

Object-oriented techniques invented for development and maintenance of large
software projects.

Languages: C++, Java;

C++ allows operator overloading:

fourvector v,w;
v + w;

Java doesn’t:

fourvector v,w;
v.add_vec(w);

Operator overloading makes programs more readable, specially in science.

C++ in 3 seconds

C++ supports object-oriented programming:

• Classes consists of data members and member functions operating on the data.

• Separation of the implementation from the interface by private and public members.

• Modelling of similar concepts through derived classes and inheritance.

• Polymorphic behaviour through virtual functions

• Run-time type information

• Backwards compatible with C.

Modular approach

Split the program into independent entities.

In C++: classes

Distinguish between information other modules have to know about the class (“header
files”) and implementations of methods, whose details can be hidden.

Example: complex numbers

class complex {
public:
double norm();

private:
double x,y;

};

Data abstraction

Can define new data types: complex numbers, Feynman diagrams, ...

Inheritance: Model similar concepts through derived classes in a class hierarchy:

strongly-interacting-particle

gluon quark

Virtual functions

Re-use and extension of a given program:
traditional: new code calls old code
object-oriented: old code calls new code

class employee
{
virtual void transfer_salary();

}

class professor : public employee
{
void transfer_salary();

};

class secretary : public employee
{
void transfer_salary();

};

void pay_salary(employee * name)
{
name->transfer_salary();

}

class junior_professor : public professor
{
void transfer_salary();
};

Generic algorithms: Templates

Example: Sorting a list of integers (int) or real numbers (double). The algorithm is
the same and does only require a “less-than” operation.

Templates allow to code this algorithm, where the data type (int, double, ...) is
variable.

The C++ Standard Template Library (STL) offers a wide range of data types and
algorithms (vector, list, map, ...).

Data storage

• static: Data is stored at a fixed address during the complete execution of the
program.

• automatic on the stack: For temporary variables in a subroutine, storage space is
created on the stack when entering the subroutine and deleted automatically when
leaving the subroutine.

• dynamically on the heap: Memory can also be allocated dynamically on the heap
from everywhere inside the program. If it is not freed when it is not needed any
more, it blocks the memory until the program ends.

A simple computer algebra system

Should know about: symbols a, b, c, ...
integers 1, 2, 3, ...
addition, multiplication

and simple evaluation rules like

5a+3b+2a → 7a+3b

Objects: Expressions
atomic: symbols, numbers
containers: add, mul

Class structure

ex basic

symbol numeric

One long expression can be pointed to
by more than one pointer.

class symbol: public basic
{
protected:
std::string name;

};

class numeric : public basic
{
protected:
int value;

};

class ex
{
public:
basic * bp;

};

The base class “basic”

Objects of type “basic” or derived types can potentially contain large amounts of data.

Allocate the memory dynamically on the heap.

Use reference counting:

class ex
{
public:
basic * bp;

};

class basic
{
protected:
unsigned refcount;

};

Copy-on-write semantics

• Since an instance of the class “ex” consists basically only of a pointer, it is extremely
light-weight.

• The object pointed to is reference counted. No copying takes place in the following
lines of code:

ex e1 = 3*x + 42; // refcount is 1
ex e2 = e1; // refcount is 2

• Copying is necesarry when one expression is changed:

e2 = e2 + 1; // refcount of 3*x + 42 is 1
// refcount of 3*x + 43 is 1

• Simple garbage collection: If an object is no longer referenced, it is deleted and the
memory is freed.

Container classes

Containers can be nested, but deep trees are inefficient.

2d3(4a+5b−3)

naive: pairs (number, rest): in reality:

power

muld 3 mul

2

−3

4 a 5 b

add

mul

1

2

1

add

b

5

a

4

−3

1

d

3

mul

d

3 1

b

5

a

4 −3

2

mul

add

Container classes

Data representation of

3a+2b+5c and a3b2c5

is identical: (3,a) (2,b) (5,c)

Use common base class:

class expairseq : public basic
{
protected:
std::vector<expair> seq;

}

The containers add and mul are then derived from expairseq.

Class structure

All classes are derived from an abstract base class “basic”:

basic

symbol numeric expairseq

add mul

In addition there is a “smart pointer” to these classes:

ex basic

The user deals only with the class “ex”.

Virtual functions make sure that the appropriate method is called.

Automatic evaluation

Implementation of some simple evaluations like:

5a+3b+2a → 7a+3b

Evaluation happens at the first assignment of an object:

• The class basic has a status flag evaluated.

• Every time an object is assigned, this flag is checked.

• If the flag is not set, the appropriate method eval() is called.

In the example above, eval() does first a sorting: (2,a), (5,a), (3,b).

Second step: items with identical second entry are combined: (2,a), (5,a)→ (7,a).

GiNaC

The GiNaC library (GiNaC is Not a CAS) allows symbolic calculations in C++.

The Standard Template Library for C++ offers already good support for the
manipulation of lists and vectors.

GiNaC does not try to provide extensive algebraic capabilities and a simple
programming language
but instead accepts a given language (C++) and extends it by a set of algebraic
capabilities.

available at: http://www.ginac.de

Summary

• CPU time depends on the representation of the data in the memory.

• Object-oriented techniques for large projects.

• Structure of a simple computer algebra system.

Efficiency

1. Recursion

2. Multiplication of large numbers

3. The greatest common divisor

Recursion

The Fibonacci numbers:

f (1) = 1, f (2) = 1,

f (n) = f (n−1)+ f (n−2).

As a program:

ex fibonacci(int n)
{
if ((n == 1) || (n == 2)) return 1;

return fibonacci(n-1) + fibonacci(n-2);
}

Suppose we want to know f (1000). How often does this program then call f (10) ?

Unrolling the recursion

ex fibonacci(ex n)
{
if (n==1) return 1;

std::vector<ex> f(n);

f[0] = 1; // the first entry is f[0]
f[1] = 1;
for (int j=2; j<n; j++)
{
f[j] = f[j-1] + f[j-2];
}

return f(n-1);
}

Now every value is calculated exactly once.

The Fibonacci numbers

Formula from Binet:

f (n) =
1√
5

[(
1+

√
5

2

)n

−
(

1−
√

5
2

)n]

Generating function:

1
1− z− z2

=
∞

∑
n=0

f (n) zn,

f (n) =
n

∑
k=0

(
n− k

k

)
.

Multiplication of large numbers

Let (a0,a1, ...,an−1) represent a number with n digits in base B:

a = an−1Bn−1+ ...+a1B+a0

Can also write

a = ahB
n
2 +al

ah and al have n/2 digits.

Multiplication (as in primary school):

ab = ahbhBn +(ahbl +albh)Bn/2+albl

Requires n2 one-digit multiplications: O(n2)

Karatsuba multiplication

Addition costs less than multiplication.

Rewrite:

ab = ahbhBn +[ahbh +albl − (ah−al)(bh−bl)]B
n/2+albl

Requires only 3 multiplications of integers with n/2 digits.

Grows like

O(nlog23) ≈ O(n1.58)

with the number of digits n.

Schönhage-Strassen multiplication

Can consider the sequence (a0,a1, ...,an) as defining a polynomial:

a(x) = a0+a1x+a2x2+ ...+anxn.

Polynomial of degree n is uniquely defined by the values at n+1 distinct points:

(a(x0),a(x1), ...,a(xn)) (modular representation)

Polynomial a(x) of degree n, b(x) of degree m. Then the product is of degree n+m.

a(x) = (a(x0), ...,a(xn+m)) , b(x) = (b(x0), ...,b(xn+m)) .

Then

a(x)b(x) = (a(x0) ·b(x0), ..., a(xn+m) ·b(xn+m)) , only O(n+m) operations!

In the modular representation, multiplication of two polynomials of degree n is an O(n)
operation.

Fast Fourier transform

Need to convert between the standard representation and the modular one.

Standard → modular: Freedom of choice for the points x0,x1, Choose

{
1,ω,ω2, ...,ωn−1

}
,

where ω is a primitive n-th root of unity, e.g. ωn = 1, but ωk 6= 1 for 0 < k < n.
Nice feature:

ωi+n
2 = −ωi,

(
ωi+n/2

)2
=
(
ωi
)2

Write the polynomial a(x) in the form

a(x) = b(x2)︸ ︷︷ ︸
even

+x · c(x2)︸ ︷︷ ︸
odd

,

Need to evaluate b(x2) and c(x2) only at n/2 distinct points instead of n.
If n = 2m: O(n logn).

CLN, NTL and GMP

CLN, NTL and GMP are libraries to handle large numbers. GiNaC is built on CLN:

• Memory effiency: Small integers immediate, garbage collection

• Speed effiency: Assembler language kernel, Karatsuba and Schönhage-Strassen
multiplication

available at: http://www.ginac.de/CLN

NTL is a powerful library for the factorization of univariate polynomials.

available at: http://www.shoup.net/ntl

GMP is written in C.
available at: http://gmplib.org

The greatest common divisor

Consider

(x+ y)2(x− y)3

(x+ y)(x2− y2)
= (x− y)2.

For humans: One factor of (x+ y) is trivially removed.
For remaining factors note that (x2− y2) = (x+ y)(x− y).

For a computer algebra system:

- Factorization into irreducible polynomials is very expensive and actually not required.

- To cancel the common factors it is sufficient to calculate the greatest common divisor
(gcd) of the two expressions.

- The efficient implementation of an algorithm for the calculation of the gcd is essential
for many other algorithms.

Polynomial algebra

Most gcd calculations are done in polynomial rings.

A ring (R,+, ·) is a set R with two operations + and ·, such that:

(R,+) is an abelian group
multiplication is associative and distributive

We also assume that

R is commutative
has a unit element for the multiplication

Rings

Field: every non-zero element has an inverse: Q, R, C, Zp

Euclidean domain: division with remainder a = bq+ r, example Z

Unique factorization domain: example Z[x]

Integral domain: example {a+bi
√

5|a,b ∈ Z}, here 21= 3·7 = (1−2i
√

5)(1+2i
√

5)

Commutative ring: example Z8, in this ring 2·4 = 0

Polynomial rings

Structure of polynomial rings in one variable and several variables depending on the
underlying coefficient ring R:

R R[x] R[x1,x2, ...,xn]

commutative ring commutative ring commutative ring
integral domain integral domain integral domain
unique factorization domain unique factorization domain unique factorization domain
euclidean domain unique factorization domain unique factorization domain
field euclidean domain unique factorization domain

The algorithm of Euclid

In an Euclidean domain: a = bq+ r with r < b. It follows:

gcd(a,b) = gcd(b,r).

Proof: Let c = gcd(a,b) and d = gcd(b,r).

c divides r, since r = a−bq; therefore c divides d.

d divides a, since a = bq+ r; therefore d also divides c.

Algorithm: Set

r0 = a, r1 = b and ri = rem(ri−2,ri−1) until rk+1 = 0.

Then

gcd(a,b) = gcd(r0,r1) = gcd(r1,r2) = ... = gcd(rk−1,rk) = rk.

Example

Let us compute gcd(21,6):

r0 = 21, r1 = 6, r0 = 3r1+3, r2 = 3,
r1 = 6 r2 = 3, r1 = 2r1+0, r3 = 0.

Therefore

gcd(21,6) = 3.

gcd in polynomial rings

Polynomial rings usually only unique factorization domains, but not Euclidean domains:

a(x) = x2+2x+3∈ Z[x], b(x) = 5x+7∈ Z[x].

Division with remainder not possible:

a(x) 6= b(x)q(x)+ r(x), with q(x),r(x) ∈ Z[x].

But in Q[x]:

a(x) =

(
1
5

x+
3
25

)
b(x)+

54
25

Obstruction arrises from the leading coefficent of b(x).

Extension of the Euclidean algorithm

Introduce a pseudo-division with remainder. Let

a(x) = anxn + ...+a0,

b(x) = bmxm + ...+b0

with n ≥ m and b(x) 6= 0. There exists q(x),r(x) such that

bn−m+1
m a(x) = b(x)q(x)+ r(x)

with deg(r(x)) < deg(b(x)).

This pseudo-divison property is sufficient to extend the Euclidean algorithm to
polynomial rings over unique factorization domains.

Drawback

Intermediate expressions can become quite long:

a(x) = x8+ x6−3x4−3x3+8x2+2x−5,

b(x) = 3x6+5x4−4x2−9x+21,

Calculate the pseudo-remainder sequence:

r2(x) = −15x4+3x2−9,

r3(x) = 15795x2+30375x−59535,

r4(x) = 1254542875143750x−1654608338437500,

r5(x) = 12593338795500743100931141992187500.

This implies that a(x) and b(x) are relatively prime, but the numbers which occur in the
calculation are large.

Subresultant polynomial remainder sequence

Can avoid large numbers, if each polynomial is split into a content part and a primitive
part:

r3 = 15795x2+30375x−59535= 1215
(
13x2+25x+49

)

Find balance between: - keep expressions small
- avoid extra gcd calculation in the coefficient domain

Subresultant polynomial remainder sequence:

cδi+1
i ri−1(x) = qi(x)ri(x)+diri+1(x)

ci leading coefficient of ri(x).

Heuristic gcd algorithm

Example:

a(x) = 6x4+21x3+35x2+27x+7, b(x) = 12x4−3x3−17x2−45x+21.

Evaluate at ξ = 100: a(100) = 621352707and b(100) = 1196825521.
The gcd of these two numbers is

c = gcd(621352707,1196825521) = 30607.

Write 30607in ξ-adic representation:

30607 = 3·1002+6·100+7.

Candidate for gcd is g(x) = 3x2+6x+7.

Theorem: If ξ is chosen large enough and g(x) divides a(x) and b(x), then g(x) =
gcd(a(x),b(x)).

Summary on efficieny

Divide and conquer: - associative arrays with binary trees
- Karatsuba multiplication
- Fast Fourier transform

Solve simpler problem first: original problem

simpler problem

solution of original problem

solution of simpler problem

reduction reconstruction

computation

Classical algorithms

1. Factorization

2. Symbolic integration

3. Gröbner bases

Factorization

Factorization of u(x) ∈ Z[x] due to Berlekamp:

a) Factor out the gcd of the coefficients and perform a square-free decomposition.

b) Factor the polynomial in the ring Zp, where p is a prime number. If p were
sufficiently large, the factorization over Z could be read off from the factorization
over Zp.

c) Lifting: Construct a factorization over Zpr from a factorization over Zp.

State-of-the-art: - Cantor-Zassenhaus
- Kaltofen-Shoup
- NTL-library (Shoup)

Square-free decomposition

Suppose a polynomial u(x) contains a factor v(x) to some power:

u(x) = [v(x)]m r(x).

Take the derivative

u′(x) = m [v(x)]m−1v′(x)r(x)+ [v(x)]m r′(x)

and calculate the gcd

g(x) = gcd(u(x),u′(x)) .

[v(x)]m−1 is a factor of the gcd. Therefore

u(x) =

(
u(x)
g(x)

)
g(x).

Computational cost: one (or several) gcd calculation(s).

Berlekamp’s algorithm

After square-free decomposition:

u(x) = p1(x)p2(x)...pk(x), deg u(x) = n.

Factorization in Zp: Define the entries qk, j of a n×n matrix Q by

xkp =
(
qk,n−1xn−1+ ...+qk,1x+qk,0

)
mod u(x).

Solve

(v0,v1, ...,vn−1)Q = (v0,v1, ...,vn−1)

This defines v(x) = vn−1xn−1+ ...+ v1x+ v0.
Calculate

gcd(u(x),v(x)− s) , 0≤ s < p.

This will detect the non-trivial factors of u(x) in Zp.

Hensel lifting

Have: u(x) = v1(x)w1(x) mod p, want: u(x) = vr(x)wr(x) mod pr.

u(x) square-free ⇒ gcd(v1,w1) = 1 mod p ⇒ can find a(x), b(x) such that

a(x)v1(x)+b(x)w1(x) = 1 mod p, deg a < deg w1, deg b < deg v1.

Step from (vr,wr) to (vr+1,wr+1):

compute cr : prcr(x) = vr(x)wr(x)−u(x) mod pr+1

compute qr,ar : a(x)cr(x) = qr(x)w1(x)+ar(x) mod p
compute br : br(x) = b(x)cr(x)+qr(x)v1(x) mod p
compute vr+1,wr+1 : vr+1(x) = vr(x)− prbr(x) mod pr+1,

wr+1(x) = wr(x)− prar(x) mod pr+1.

Example

Factorization of u(x) = x2+27x+176∈ Z[x].

Step 1: u(x) is already square-free.

Step 2: Factorization in Z3:

u(x) = x2+2 mod 3

= (x+1)(x+2) mod 3.

Step 3: Hensel lifting

u(x) = (x+7)(x+2) mod 9

= (x+16)(x+11) mod 27.

The factorization in Z27 agrees already with the factorization in Z.

Symbolic integration

Example: Integration of rational functions

f (x) =
a(x)
b(x)

=
amxm + ...+a1x+a0

bnxn + ...+b1x+b0
.

Suppose we know the factorization of b(x) over C:

b(x) = bn(x− c1)
m1...(x− cr)

mr,

After polynomial division and partial fraction decomposition:

f (x) = p(x)+
r

∑
i=1

mi

∑
j=1

di j

(x− ci) j
,

where p(x) is a polynomial in x and the di j are complex numbers.
The integration of p(x) is trivial.

Symbolic integration

For the pole terms we have

Z

dx
(x− ci) j

=

{
ln(x− ci) , j = 1,
1

(1− j)
1

(x−ci) j−1, j > 1.

Major inconvenience: Need to factor the denominator completely and thereby introduce
algebraic extensions (like square roots or complex numbers), which drop out in the final
result:

1− x2

(1+ x2)2
= −1

2
1

(x+ i)2
− 1

2
1

(x− i)2
,

but

Z

dx
1− x2

(1+ x2)2
=

x
1+ x2

.

Symbolic integration

Better: - compute as much as possible in the domain of the integrand
- find the minimal algebraic extension necessary to express the integral

Step 1: Hermite’s reduction method
Step 2: Rothstein-Trager algorithm

Hermite’s reduction method (analog to square-free decomposition):

f (x) = p(x)+
a(x)
b(x)

, with deg a < deg b and gcd(a,b) = 1.

Let b(x) = u(x) [v(x)]m. Compute polynomials r and s (Euclid’s algorithm) such that

r(x)u(x)v′(x)+ s(x)v(x) =
1

1−m
a(x).

Then we obtain for the integral

Z

dx
a(x)

u(x) [v(x)]m
=

r(x)

[v(x)]m−1 +

Z

dx
(1−m)s(x)−u(x)r′(x)

u(x) [v(x)]m−1 .

The algorithm by Rothstein and Trager

We are left with an integral of the form

Z

dx
a(x)
b(x)

with deg a < deg b and b is square-free.

The result will be

Z

dx
a(x)
b(x)

=
n

∑
i=1

ri ln(x− ci)

where the ci’s are the zeros of b and the ri’s are the residues at the ci’s.

An efficient algorithm to determine the ci and ri was invented by Rothstein and Trager
and later improved by Trager, Lazard and Rioboo.

The Risch integration algorithm

Integration of rational functions ⇒ generalization to elementary functions.

Elementary functions: rational functions
logarithms
exponentials
algebraic functions (square roots, ...)

Risch algorithm: Given elementary function f

- decides whether
R

dx f (x) can be expressed as elementary function,
- if so, constructive method.

If this is not the case, we know at least that the integral cannot be expressed in terms
of elementary functions.

Gröbner bases

Motivation: Simplification with respect to side relations

s j(x1, ...,xk) = 0, j = 1, ...,r.

Want to write

f = a1s1+ ...+arsr +g,

where g is “simpler” than f .

The precise meaning of “simpler” requires the introduction of an order relation.

Example: Lexicographic ordering, e.g. x is “more complicated” as y, and x2 is “more
complicated” than x.

Gröbner bases

Example: consider the expressions

f1 = x+2y3, f2 = x2,

which we would like to simplify with respect to the siderelations

s1 = x2+2xy2, s2 = xy+2y3−1.

Naive approach: - take each siderelation,
- determine its “most complicated” element,
- replace each occurence in f by the simpler terms of the siderelation.

Example: Simplification of f2 with respect to s1 and s2:

f2 = x2 = s1−2xy2 = s1−2ys2+4y4−2y,

and f2 would simplify to 4y4−2y.

Gröbner bases

Expressions:

f1 = x+2y3, f2 = x2.

Siderelations:

s1 = x2+2xy2, s2 = xy+2y3−1.

But: If s1 and s2 are siderelations, any linear combination is again a siderelation:

s3 = ys1− xs2 = x

is a siderelation which can be deduced from s1 and s2.

Therefore f2 simplifies to 0.

Gröbner bases

Consider multivariate polynomials in the ring R[x1, ...,xk].
Each element can be written as a sum of monomials of the form cxm1

1 ...xmk
k .

Define a lexicographic order of these terms by

cxm1
1 ...xmk

k > c′x
m′

1
1 ...x

m′
k

k ,

if the leftmost nonzero entry in (m1−m′
1, ...,mk−m′

k) is positive.

Can write any element f ∈ R[x1, ...,xk] as

f =
n

∑
i=0

hi with hi+1 > hi.

Leading term:

lt(f) = hn

Ideals

Let B = {b1, ...,br} be a finite set of polynomials. The set

〈B〉 = 〈b1, ...,br〉 =

{
r

∑
i=1

aibi

∣∣∣∣∣ai ∈ R[x1, ...,xk]

}

is called the ideal generated by the set B.

The set B is also called a basis for this ideal.

Denote by lt(B) the set of leading terms of B.

Gröbner bases

Consider an ideal I generated by the finite set G:

I = 〈G〉.

G is a basis for I. G is called a Gröbner basis, if in addition

〈lt(G)〉 = 〈lt(I)〉

Algorithm to compute a Gröbner basis by Buchberger.

Example

f1 = x+2y3, f2 = x2, s1 = x2+2xy2, s2 = xy+2y3−1.

{s1,s2} is not a Gröbner basis, since lt(s1) = x2 and lt(s2) = xy and

lt(ys1− xs2) = x ∈/ 〈lt(s1), lt(s2)〉.

A Gröbner basis is given by {b1,b2}, where

b1 = x, b2 = 2y3−1.

f1 and f2 can be written as:

f1 = b1+b2+1,

f2 = xb1+0,

e.g. f1 simplifies to 1 and f2 simplifies to 0.

Summary

• Structures

– Containers: Arrays, lists, associative arrays, hash maps, ...
– Design for a large programming project: modular
– Structure of a simple computer algebra system

• Efficiency

– CPU time depends on the representation of the data in the memory
– Efficiency of algorithms: Divide and conquer

Solve simpler problem first

• Algorithms

– Factorization
– Symbolic integration
– Gröbner bases

