
‘Fortran? C++? Egal!
Ein guter Programmierer kann Spaghetti-Code

in jeder Sprache schreiben!’

Wohl nicht ganz ernstgemeinte Bemerkung eines unbekannten Software-Gurus
(Gehört irgendwann Ende der 90er Jahre)

Dr. Wolfgang F. Mader UML

Dr. Wolfgang F. Mader UML

https://indico.desy.de/conferenceDisplay.py?confId=3155

Dr. Wolfgang F. Mader UML

https://indico.desy.de/conferenceDisplay.py?confId=3155

Outline of this Course
1) UML: The Feynman Diagrams of Software Design

2) Class Design Principles: Efficient Methods of Developing Re-Usable Code in High
Energy Physics

3) Design Patterns (Selected Examples and Use-Cases in High Energy Physics)

4) Hands-on: Exercise on Software Design

I liked it a lot! First I was thinking that
software development with pen and pa-
per is absolutely boring. But in the end
it turned out to be very inspiring.

A Workshop Participant
‘Advanced Methods of Software Development in High-Energy Physics’

Dresden – 9/2010

Dr. Wolfgang F. Mader UML

Outline of this Course
1) UML: The Feynman Diagrams of Software Design

2) Class Design Principles: Efficient Methods of Developing Re-Usable Code in High
Energy Physics

3) Design Patterns (Selected Examples and Use-Cases in High Energy Physics)

4) Hands-on: Exercise on Software Design

I liked it a lot! First I was thinking that
software development with pen and pa-
per is absolutely boring. But in the end
it turned out to be very inspiring.

A Workshop Participant
‘Advanced Methods of Software Development in High-Energy Physics’

Dresden – 9/2010

Dr. Wolfgang F. Mader UML

UML – The Feynman-Diagrams of Software Design

Dr. Wolfgang F. Mader1, Peter Steinbach1

1Institut für Kern- und Teilchenphysik, TU Dresden

Blockkurs Graduiertenkolleg ‘Masse, Spektren, Symmetrie’, Rathen 2010
10.March 2011

10.March 2011Dr. Wolfgang F. Mader UML

Outline of this Lecture

1) What is UML?

2) Classes in UML

3) Relations between Classes

4) Example of Class Design

UML is a Language to Talk about the Design of your
Software Package (like Feynman Diagrams in

High-Energy Physics)

We Hope to Convince you that Thinking about the
Design of your Software before Starting to Write

Code Makes Perfect Sense...

Dr. Wolfgang F. Mader UML

Outline of this Lecture

1) What is UML?

2) Classes in UML

3) Relations between Classes

4) Example of Class Design

UML is a Language to Talk about the Design of your
Software Package (like Feynman Diagrams in

High-Energy Physics)

We Hope to Convince you that Thinking about the
Design of your Software before Starting to Write

Code Makes Perfect Sense...

Dr. Wolfgang F. Mader UML

Outline of this Lecture

1) What is UML?

2) Classes in UML

3) Relations between Classes

4) Example of Class Design

UML is a Language to Talk about the Design of your
Software Package (like Feynman Diagrams in

High-Energy Physics)

We Hope to Convince you that Thinking about the
Design of your Software before Starting to Write

Code Makes Perfect Sense...

Dr. Wolfgang F. Mader UML

What is UML? A Definition.

‘The Unified Modeling Language (UML) is a graphical
language for visualizing, specifying, constructing, and

documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a systems
blueprints, including conceptual things like business

processes and system functions as well as concrete things
such as programming language statements, database

schemas, and re-usable software components’

Grady Booch, Ivar Jacobsen, Jim Rumbaugh
Rational Software Coorporation

The Unified Modelling Language User Guide, Addison-Wesley, 2003

Dr. Wolfgang F. Mader UML

A Bit of History

1980

First Object Oriented (OO) Modeling Languages
Other Techniques, e.g. SA/SD

1990

‘OO Method Wars’
Many Modeling Languages

End of 1990s

UML as Combination of Best Practices

Strukturierte Analyse (SA)
Das Ergebnis ... ist ein hierarchisch gegliedertes Anforderungsdokument für Umfang und Inhalt der betrieblichen Anwendung, die

in dem geplanten Softwaresystem realisiert werden soll. Die Strukturierte Analyse ist eine graphische Analysemethode, die mit

Hilfe eines Top-Down-Vorgehens ein komplexes System in immer einfachere Funktionen bzw. Prozesse aufteilt und gleichzeitig eine

Datenflussmodellierung durchführt. In ihrer Grundform ist die SA eine statische Analyse ...

Strukturiertes Design (SD)
...ist ein Entwurfsmuster in der Softwaretechnik ... welches modulares Design unterstützt, um neben der reinen Funktionshierarchie

auch die Wechselwirkungen von übergeordneten Modulen zu beschreiben. SD wird mit der Strukturierten Analyse (SA) in der

Softwaretechnik verwendet. Das Strukturierte Design schlägt eine Brücke zwischen der technologieneutralen Analyse und der

eigentlichen Implementierung. Im Strukturierten Design werden technische Randbedingungen eingebracht und die Grobstruktur des

Systems aus technischer Sicht festgelegt. Es stellt damit die inhaltliche Planung der Implementierung dar.

Dr. Wolfgang F. Mader UML

Why Using UML...?

Physicists Know Formal Graphical Modeling
Mathematics to Describe Nature
Feynman Diagrams to Calculate e.g. Cross Sections of Physics Processes

g

g

b

φ

b̄

b

b̄

φ

b

g

φ

b

g

q

q̄

b

φ

b̄

g

g

φ

A Common Language is Needed to Talk about Software Design

Discuss Software Design on Blackboard
Documentation of Software Packages
UML is Important Part of that Language
UML Provides the ‘Words and Grammar’

Dr. Wolfgang F. Mader UML

Classes in UML

Classes Describe Objects
Interface to the Class (Member Function Signature)
Behavior (Member Function Implementations)
State of Book-Keeping (Values of Data Members)
Creation and Destruction of Classes

Collaboration between Classes
Class Relations (Object Relations)
Dependencies between Classes

Dr. Wolfgang F. Mader UML

Classes in UML

Dr. Wolfgang F. Mader UML

Classes in UML

Top Compartment Contains Name of Class

Abstract Classes have Name in Italics

Abstract Methods have Name in Italics

Or: ‘Stereotypes’ to Identify Groups of Classes (e.g. Interfaces)

Parameter Type (T) in Top-Compartment

Operations Compartment as Usual, but May Have Type Parameter instead of
Concrete Type

Dr. Wolfgang F. Mader UML

Classes in UML

Top Compartment Contains Name of Class

Abstract Classes have Name in Italics

Abstract Methods have Name in Italics

Or: ‘Stereotypes’ to Identify Groups of Classes (e.g. Interfaces)

Parameter Type (T) in Top-Compartment

Operations Compartment as Usual, but May Have Type Parameter instead of
Concrete Type

Dr. Wolfgang F. Mader UML

Visibility of Class Methods and Members

+: Public
Accessible by other Classes
Interface Operations
Not Data Members

-: Private
Only Accessible by Class Itself
Data Members
Helper Functions
‘Friends’ are Allowed to Access

#: Protected
Subclasses Can Access Method/Data Member
Operations where Sub-Classes Collaborate
Not Data Members
(Dependency of Subclasses on Implementation of Parent Class)

Dr. Wolfgang F. Mader UML

Visibility of Class Methods and Members

+: Public
Accessible by other Classes
Interface Operations
Not Data Members

-: Private
Only Accessible by Class Itself
Data Members
Helper Functions
‘Friends’ are Allowed to Access

#: Protected
Subclasses Can Access Method/Data Member
Operations where Sub-Classes Collaborate
Not Data Members
(Dependency of Subclasses on Implementation of Parent Class)

Dr. Wolfgang F. Mader UML

Visibility of Class Methods and Members

+: Public
Accessible by other Classes
Interface Operations
Not Data Members

-: Private
Only Accessible by Class Itself
Data Members
Helper Functions
‘Friends’ are Allowed to Access

#: Protected
Subclasses Can Access Method/Data Member
Operations where Sub-Classes Collaborate
Not Data Members
(Dependency of Subclasses on Implementation of Parent Class)

Dr. Wolfgang F. Mader UML

Class Attributes and Operations

Class Attributes
Attributes are Instance and Class Data Members
Underlined Class Data Members are Shared between all Instances of Given Class
Data Type is Shown after ‘:’

Class Operations
Operations are Class Methods with Arguments and Return-Types
Public (+) Operations Define Class Interface
Underlined Methods Have only Access to Class Data Members (No Need for Class
Instance)

Dr. Wolfgang F. Mader UML

Class Attributes and Operations

Class Attributes
Attributes are Instance and Class Data Members
Underlined Class Data Members are Shared between all Instances of Given Class
Data Type is Shown after ‘:’

Class Operations
Operations are Class Methods with Arguments and Return-Types
Public (+) Operations Define Class Interface
Underlined Methods Have only Access to Class Data Members (No Need for Class
Instance)

Dr. Wolfgang F. Mader UML

Relations between Classes in UML

Association

Aggregation

Composition

Parametric and Friendship

Inheritance

Dr. Wolfgang F. Mader UML

Binary Association between Classes

A depends on Implementation of B

If A is Changed (Data Members or Access Method) B Needs to Adapt

Implies Dependency Cyle

Dr. Wolfgang F. Mader UML

Unary Association between Classes

A Knows about B, but ...

... B Knows Nothing about A

Arrow Shows Direction of Association in Direction of Dependency

Dr. Wolfgang F. Mader UML

Aggregation

Aggregation: Association with ‘whole-part’ Relationship

Symbolized by hollow Diamond

‘Create’ Does not Control the Lifetime of ‘Module’

Dr. Wolfgang F. Mader UML

Composition

Composition: Aggregation with Lifetime Control

Symbolized by Filled Diamond

‘Particle’ Responsible for Creation and Destruction of ‘FourVector’ (Might be
Delegated)

Dr. Wolfgang F. Mader UML

Friendship between Classes

‘Friends’ Have Access to Private Data Members and Functions

Friendship Breaks Data Hiding Policy (Use with Care)

Dr. Wolfgang F. Mader UML

Parametric Association

A Depends on B (it Uses B)

No Data Member of Type B in A

Dr. Wolfgang F. Mader UML

Inheritance

A is Called ‘Base Class’ or ‘Super Class’

Arrow Shows Direction of Dependency

B Inhertis A’s Methods and Data Members

B Can Extend A

B Depends on A, but...

... A Know Nothing about B

Dr. Wolfgang F. Mader UML

Multiple Inheritance

Derived Class Inherits Interfaces, Data Members and Behavior of all its Base
Classes

Extension and Overriding Works as Well

B Implements the Interfaces of A and is also a Countable Class

Dr. Wolfgang F. Mader UML

Class Diagrams vs. Object Diagrams

Class Diagrams (Top) Never Change

Used to Show Specific Relations between (a Part of the) Classes of a Software
Package at Given Instant in Time

Object Relations are Drawn Using Class Association Lines

Dr. Wolfgang F. Mader UML

Some Comments Close to the End...

Design-Heavy Development Process
Substantial Amount of Person-Power Spent on Design of Software Package Using UML
Start Coding ONLY when Design is Consistent
Recommended Way for Really Large Software Packages

Light-Weight Development Process
Limited (but not Negligible) Amount of Person-Power Spent on Design
UML Used as a Tool to Discuss Program Structure AND to Document the
Implementation
Probably More Adequate in Day-to-Day Work of High-Energy Physicists

Dr. Wolfgang F. Mader UML

... and now a Real-Life Example: The Copy Routine

Code Rots!!!!

The Are Many Reasons for Code to Rot...

Case-Study Based on an Example by Bob Martin

A Routine which Reads the Keyboard and Writes to a Printer

Dr. Wolfgang F. Mader UML

... and now a Real-Life Example: The Copy Routine

Code Rots!!!!

The Are Many Reasons for Code to Rot...

Case-Study Based on an Example by Bob Martin

A Routine which Reads the Keyboard and Writes to a Printer

Dr. Wolfgang F. Mader UML

... and now a Real-Life Example: The Copy Routine

Code Rots!!!!

The Are Many Reasons for Code to Rot...

Case-Study Based on an Example by Bob Martin

A Routine which Reads the Keyboard and Writes to a Printer

Dr. Wolfgang F. Mader UML

The Copy Routine (First Version)

Simple Solution to Simple Problem

ReadKeyboard and WritePrinter Probably Easily Re-Usable

Dr. Wolfgang F. Mader UML

The Copy Routine (Slightly Revised Version)

Well...

...Maybe Users Want to Read Files as well w/ Changing their Code

Used Global Variable (;-)) but Backwards-Compatible

Dr. Wolfgang F. Mader UML

The Copy Routine (...Revised again!?!?!!???)

Backwards-Compatible, but...

...another Global Variable ;-((Things Get Increasingly Complicated...)

Dr. Wolfgang F. Mader UML

The Copy Routine (Doing it Properly!)

Dependency between Readers/Writers Broken

Easy to Add New Features without Need to Change ‘Copy’ Itself!!

Dr. Wolfgang F. Mader UML

Thank you for your Attention!!!!!!!!

Dr. Wolfgang F. Mader UML

References

1) Design Patterns. Elements of Reusable Object-Oriented Software
E. Gamma, R. Helm, R.Johnson, and J. Vlissden
Addison-Wesley Longman, Amsterdam

2) Agile Software Development. Principles, Patterns, and Practices
R. Marting
Prentice Hall International

3) Communicating Software Patterns
Dr.Stefan Kluth
Presentation at Workshop on Advanced Software Design, Dresden, 9/2011

4) Software Packages for UML
4a) Dia

http://projects.gnome.org/dia/

4b) BOUML
http://bouml.free.fr/

4c) Umbrello UML Modeller
http://uml.sourceforge.net/

Dr. Wolfgang F. Mader UML

http://projects.gnome.org/dia/
http://bouml.free.fr/
http://uml.sourceforge.net/

