
From the Gaudi User Guide, [3]

A priori, we see no reason why moving to a language which supports the
idea of objects, such as C++, should change the way we think of doing physics
analysis.

Why Use Object-Oriented Programming in the First Place?

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 1 / 21

Class Design Principles in Object-Oriented Programming

Wolfgang F. Mader, Peter Steinbach

Institute for Nuclear and Particle Physics, TU Dresden

March 10th, 2011

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 2 / 21



Outline

Why Object-Oriented Programming?
Procedural versus OO Programming
HEP Programming
Programming Paradigms in HEP

Orthogonality

Open-Closed Principle

Liskov Substitution Principle

Dependency-Inversion Principle

Summary

References

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 3 / 21

Why OOP? ProceduralVsOO

Procedural vs. OO Programming, from [?]

the procedural paradigm

Data function

function

function

function

function

the oo paradigm

A Class

Another Class

Data

Data

function function

function function rel
ati

on
s

1

Top-Down Bottom-Up

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 4 / 21



Hep Software Sizes

A History of Code

lines of code / 1 loc

JADE o(10 − 100)k

OPAL o(100)k

ATLAS o(1)M

◮ experiments size and complexity increases

◮ experiments analysis software size and complexity increases

◮ We need tools that deal with this complexity!

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 5 / 21

Why OOP? OOP in HEP

Programming Paradigms in HEP

physics is about ...

◮ modelling nature
◮ objects interact according to laws of nature

◮ fields, particles, atoms, molecules, solid states, liquids

object-oriented programming is about ...

◮ objects and interactions
◮ a way of thinking about software well adapted to physics

object-oriented analysis and design ...

◮ is a software engineering practice

◮ manages large projects professionally

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 6 / 21



Orthogonality

Definition

A Responsibility of a class is defined as a reason for the class to change.

Exercise 1

How many responsibilities do classes a) and b) have?

Definition

Orthogonality([2]) of a system of classes can be defined as the degree of how many
classes have independent or non-overlapping responsibilities.

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 7 / 21

Orthogonality

Single-Responsibility Principle

Theorem (from [5])

A class should only have one reason to change, i.e. try to create systems with high
orthogonality.

Looking back at Exercise 1 a)

before Modem+dial(phoneNumber:String)+hangup()+send(aCharacter:char)+receive():char
after

ModemImplementation
«interface»Connection+dial(phoneNumber:String)+hangup()«interface»DataChannel+send(aCharacter:char)+receive():char

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 8 / 21



The Open-Closed Principle

Theorem (from [5])

Software Entities (classes, modules, functions, etc) should be open for extenstion, but
closed for modification.

Open

◮ the behavior of an entity can be
extended

◮ as requirements of a system change
(that’s a fact!), the entities behavior
can be extended or modified to
satisfy these changes

Closed

◮ extension of behavior does NOT

result in changing the source code

◮ the binary executable version of a
given entity remains untouched

Exercise 2

The above is way too complicated for one slide! Let’s have a look at Exercise 2!

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 9 / 21

Open-Closed Principle

Reviewed: Open-Closed Principle

The Square/Circle Problem

◮ rigid: adding triangle requires Shape, Square, Circle, DrawAllShapes to be
recompiled and redeployed

◮ fragile: switch/case will be required by all client classes that use Shapes

◮ immobile: reusing DrawAllShapes is impossible without including Shape, Square,

Circle as well

Solution: Using Abstraction

struct Shape {
virtual void Draw() const = 0;

}

struct Square {
virtual void Draw() const;

}

void DrawAllShapes(

const std::vector<Shape*>& list) {

std::vector<Shape*>::const_iterator itr;

for(itr=list.begin();itr!=list.end(); ++itr)

{

itr->Draw();

}

}

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 11 / 21



Summary: The Open-Closed Principle

But hold on ...

◮ did the abstraction from above close DrawAllShapes against all changes?
◮ No, there is no model of abstraction that is natural to all contexts!
◮ closure can never be complete, only strategic

◮ how to deal with possible changes?
1. derive possible changes from software requirements
2. implement necessary abstractions
3. wait!

To Summarize

◮ conforming to the open-closed principle yields greatest benefits of OOP (flexibility,
reusability, maintainability)

◮ apply abstraction to parts of software that exhibit frequent change

◮ Resisting premature abstraction is as important as abstraction itself.

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 12 / 21

Liskov Substitution Principle

The Liskov Substitution Principle

Theorem (paraphrased from [4])

Subtypes must be substitutable for their base types.

Exercise 3

Try to answer question 3 a) and b) !

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 13 / 21



Review & Summary: The Liskov Substitution Principle

Observations from Exercise 3

◮ Violations of Liskov Substitution Principle result in Run-Time Type Information to
be used

◮ violates the Open-Closed Principle

◮ an (inheritance) model can never be validated in isolation
◮ but rather with its use (users) in mind
◮ Is-A relationship within inheritance refers to behavior that can be assumed or that

clients depend upon.

◮ how to ensure/enforce Liskov Substitution Principle?
◮ Design-by-Contract
◮ in C++: only by assertions or Unit Tests

Summary

◮ this principle ensures: maintainability, reusability, robustness

◮ Liskov Substitution Principle enables the Open-Closed Principle

◮ the contract of a base type has to be well understood, if not even enforced by the
code

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 14 / 21

Dependency-Inversion Principle

The Dependency-Inversion Principle

Theorem (from [5])

1. High level modules should not depend upon low level modules. Both should
depend upon abstractions.

2. Abstractions should not depend upon details. details should depend upon
abstractions.

Exercise 4

Please complete 4 a)!

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 15 / 21



Observations: The Dependency-Inversion Principle

Exercise 4 continued

1. The vendor of Lamp changes it’s definition. All methods containing Turn are
renamed to Ramp! Face your design with that!

2. Look at Button: Can it be reused for classes of type Signal?

Exercise 4: A Solution

Naive Ansatz Lamp+TurnOn()+TurnOff()Button+poll()
Inverted Dependency«interface»ButtonServer+TurnOn()+TurnOff()Lamp+TurnOn()+TurnOff()
Button+poll()

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 16 / 21

Dependency-Inversion Principle

Review: The Dependency-Inversion Principle

Dynamic and Static Polymorphism

in C++, both can help to invert dependencies

Dynamic Polymorphism through
Abstract Interfaces«interface»ButtonServer+TurnOn()+TurnOff()Lamp+TurnOn()+TurnOff()
Button+poll()

Static Polymorphism through
template classes
template <class TurnableObject>

class Button {

TurnableObject* itsTurnable;

public:

Button(TurnableObject* _object = 0 ):

itsTurnable(_object)

{};

void poll() {

if(/*some condition*/)

itsTurnable.TurnOn();

}

};

◮ compile-time polymorphism

◮ design-by-policy, see [1]

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 18 / 21



Summary: The Dependency-Inversion Principle

Summary

◮ dependency of policies on details is natural to procedural design

◮ inversion of dependencies is hallmark of (good) object-oriented design

◮ Dependency-Inversion Principle is at the heart of reusable frameworks (no matter
what size)

◮ enables the Open-Closed Principle

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 19 / 21

Summary

Summary

What is left to say ...

did not cover:

◮ module design principles

◮ clean code principles

◮ useful coding conventions

What I tried to say ...

◮ although having a slow learning curve, OOP can help do highly-sophisticated physics
analysis

◮ learning OO Class Design prevents sleepless nights of debugging or copy-and-past’ing

◮ Coding may not be our profession, but we do it everyday anyhow, so we better know
our craft!

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 20 / 21



References

[1] Andrei Alexandrescu.
Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley Professional, 2001.

[2] Andrew Hunt and David Thomas.
The Pragmatic Programmer.
Addison Wesley, 2000.
pragmaticprogrammer.com.

[3] Stefan Kluth.
Class design principles.
Terascale Workshop on Advanced Methods of Software Development 2010.

[4] LHCb Collaboration.
Gaudi User Guide.
cern.ch/prof-gaudi.

[5] Barbara Liskov.
Keynote address - data abstraction and hierarchy.
SIGPLAN Not., 23:17–34, January 1987.

[6] Robert C. Martin, James W. Newkirk, and Robert S. Koss.
Agile Software Development.
Prentice Hall, 2003.
Class Design Principles at Author’s Homepage.

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 21 / 21

http://www.pragmaticprogrammer.com
http://indico.desy.de/getFile.py/access?contribId=8&resId=0&materialId=slides&confId=3155
http://cern.ch/prof-gaudi
http://www.objectmentor.com/resources/publishedArticles.html

	Why Object-Oriented Programming?
	ProceduralVsOO
	Hep Software
	OOP in HEP

	Orthogonality
	Open-Closed Principle
	Liskov Substitution Principle
	Dependency-Inversion Principle
	Summary
	References

