
From the Gaudi User Guide, [3]

A priori, we see no reason why moving to a language which supports the
idea of objects, such as C++, should change the way we think of doing physics
analysis.

Why Use Object-Oriented Programming in the First Place?
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Why OOP? ProceduralVsOO

Procedural vs. OO Programming, from [?]

the procedural paradigm

Data function

function
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function
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Hep Software Sizes

A History of Code

lines of code / 1 loc

JADE o(10 − 100)k

OPAL o(100)k

ATLAS o(1)M

◮ experiments size and complexity increases

◮ experiments analysis software size and complexity increases

◮ We need tools that deal with this complexity!
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Why OOP? OOP in HEP

Programming Paradigms in HEP

physics is about ...

◮ modelling nature
◮ objects interact according to laws of nature

◮ fields, particles, atoms, molecules, solid states, liquids

object-oriented programming is about ...

◮ objects and interactions
◮ a way of thinking about software well adapted to physics

object-oriented analysis and design ...

◮ is a software engineering practice

◮ manages large projects professionally
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Orthogonality

Definition

A Responsibility of a class is defined as a reason for the class to change.

Exercise 1

How many responsibilities do classes a) and b) have?

Definition

Orthogonality([2]) of a system of classes can be defined as the degree of how many
classes have independent or non-overlapping responsibilities.
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Orthogonality

Single-Responsibility Principle

Theorem (from [5])

A class should only have one reason to change, i.e. try to create systems with high
orthogonality.

Looking back at Exercise 1 a)

before Modem+dial(phoneNumber:String)+hangup()+send(aCharacter:char)+receive():char
after

ModemImplementation
«interface»Connection+dial(phoneNumber:String)+hangup()«interface»DataChannel+send(aCharacter:char)+receive():char
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The Open-Closed Principle

Theorem (from [5])

Software Entities (classes, modules, functions, etc) should be open for extenstion, but
closed for modification.

Open

◮ the behavior of an entity can be
extended

◮ as requirements of a system change
(that’s a fact!), the entities behavior
can be extended or modified to
satisfy these changes

Closed

◮ extension of behavior does NOT

result in changing the source code

◮ the binary executable version of a
given entity remains untouched

Exercise 2

The above is way too complicated for one slide! Let’s have a look at Exercise 2!
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Open-Closed Principle

Reviewed: Open-Closed Principle

The Square/Circle Problem

◮ rigid: adding triangle requires Shape, Square, Circle, DrawAllShapes to be
recompiled and redeployed

◮ fragile: switch/case will be required by all client classes that use Shapes

◮ immobile: reusing DrawAllShapes is impossible without including Shape, Square,

Circle as well

Solution: Using Abstraction

struct Shape {
virtual void Draw() const = 0;

}

struct Square {
virtual void Draw() const;

}

void DrawAllShapes(

const std::vector<Shape*>& list) {

std::vector<Shape*>::const_iterator itr;

for(itr=list.begin();itr!=list.end(); ++itr)

{

itr->Draw();

}

}
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Summary: The Open-Closed Principle

But hold on ...

◮ did the abstraction from above close DrawAllShapes against all changes?
◮ No, there is no model of abstraction that is natural to all contexts!
◮ closure can never be complete, only strategic

◮ how to deal with possible changes?
1. derive possible changes from software requirements
2. implement necessary abstractions
3. wait!

To Summarize

◮ conforming to the open-closed principle yields greatest benefits of OOP (flexibility,
reusability, maintainability)

◮ apply abstraction to parts of software that exhibit frequent change

◮ Resisting premature abstraction is as important as abstraction itself.
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Liskov Substitution Principle

The Liskov Substitution Principle

Theorem (paraphrased from [4])

Subtypes must be substitutable for their base types.

Exercise 3

Try to answer question 3 a) and b) !
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Review & Summary: The Liskov Substitution Principle

Observations from Exercise 3

◮ Violations of Liskov Substitution Principle result in Run-Time Type Information to
be used

◮ violates the Open-Closed Principle

◮ an (inheritance) model can never be validated in isolation
◮ but rather with its use (users) in mind
◮ Is-A relationship within inheritance refers to behavior that can be assumed or that

clients depend upon.

◮ how to ensure/enforce Liskov Substitution Principle?
◮ Design-by-Contract
◮ in C++: only by assertions or Unit Tests

Summary

◮ this principle ensures: maintainability, reusability, robustness

◮ Liskov Substitution Principle enables the Open-Closed Principle

◮ the contract of a base type has to be well understood, if not even enforced by the
code
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Dependency-Inversion Principle

The Dependency-Inversion Principle

Theorem (from [5])

1. High level modules should not depend upon low level modules. Both should
depend upon abstractions.

2. Abstractions should not depend upon details. details should depend upon
abstractions.

Exercise 4

Please complete 4 a)!

P. Steinbach (IKTP) Class Design Principles March 10th, 2011 15 / 21



Observations: The Dependency-Inversion Principle

Exercise 4 continued

1. The vendor of Lamp changes it’s definition. All methods containing Turn are
renamed to Ramp! Face your design with that!

2. Look at Button: Can it be reused for classes of type Signal?

Exercise 4: A Solution

Naive Ansatz Lamp+TurnOn()+TurnOff()Button+poll()
Inverted Dependency«interface»ButtonServer+TurnOn()+TurnOff()Lamp+TurnOn()+TurnOff()
Button+poll()
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Dependency-Inversion Principle

Review: The Dependency-Inversion Principle

Dynamic and Static Polymorphism

in C++, both can help to invert dependencies

Dynamic Polymorphism through
Abstract Interfaces«interface»ButtonServer+TurnOn()+TurnOff()Lamp+TurnOn()+TurnOff()
Button+poll()

Static Polymorphism through
template classes
template <class TurnableObject>

class Button {

TurnableObject* itsTurnable;

public:

Button(TurnableObject* _object = 0 ):

itsTurnable(_object)

{};

void poll() {

if(/*some condition*/)

itsTurnable.TurnOn();

}

};

◮ compile-time polymorphism

◮ design-by-policy, see [1]
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Summary: The Dependency-Inversion Principle

Summary

◮ dependency of policies on details is natural to procedural design

◮ inversion of dependencies is hallmark of (good) object-oriented design

◮ Dependency-Inversion Principle is at the heart of reusable frameworks (no matter
what size)

◮ enables the Open-Closed Principle
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Summary

Summary

What is left to say ...

did not cover:

◮ module design principles

◮ clean code principles

◮ useful coding conventions

What I tried to say ...

◮ although having a slow learning curve, OOP can help do highly-sophisticated physics
analysis

◮ learning OO Class Design prevents sleepless nights of debugging or copy-and-past’ing

◮ Coding may not be our profession, but we do it everyday anyhow, so we better know
our craft!
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