A Measurement of $\mathcal{R} = \sigma(\mu\mu + b)/\sigma(\mu\mu + {\sf jets})$ with 2010 ATLAS data

Ulrich Husemann, Michael Kobel, Peter Steinbach, Anja Vest

Institute for Nuclear and Particle Physics, TU Dresden

March 7th, 2011

Introduction

Motivation

The Quark Parton Model

total cross-section of hard scattering by two hadrons P_1, P_2

$$\sigma(P_1, P_2) = \sum_{i,j}^{N_q} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(\mu^2), Q^2/\mu^2)$$

- P_i ... momentum of incoming hadron i
- ▶ x_i ... momentum fraction of parton *i* extracted from hadron *i*
- \triangleright N_q ... number of quark flavors to be considered
- μ^2 ... factorisation scale
- $\hat{\sigma}_{ij}$.. total cross-section of parton-parton interaction
- *p_i* ... momentum of initial state parton *i*
- $\alpha_s(\mu^2)$... strong coupling constant
- Q^2 ... energy scale of the interaction (momentum transfer during hard scattering)

Motivation

The Quark Parton Model

total cross-section of hard scattering by two hadrons P_1, P_2

$$\sigma(P_1, P_2) = \sum_{i,j}^{N_q} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(\mu^2), Q^2/\mu^2)$$

- *P_i* ... momentum of incoming hadron *i*
- ▶ x_i ... momentum fraction of parton *i* extracted from hadron *i*
- \triangleright N_q ... number of quark flavors to be considered
- μ^2 ... factorisation scale
- $\hat{\sigma}_{ij}$.. total cross-section of parton-parton interaction
- *p_i* ... momentum of initial state parton *i*
- $\alpha_s(\mu^2)$... strong coupling constant
- ▶ Q^2 ... energy scale of the interaction (momentum transfer during hard scattering)

Motivation

The Quark Parton Model

total cross-section of hard scattering by two hadrons P_1, P_2

$$\sigma(P_1, P_2) = \sum_{i,j}^{N_q} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(\mu^2), Q^2/\mu^2)$$

Fixed Flavor Number Scheme (FNS)

- N_q is fixed (e.g. $N_q = 4$)
- for $i < N_q$: $m_Q = 0$
- for $i = N_q$: $m_Q > 0$
- for $i > N_q$: flavor generated only through gluon splitting

Variable Flavor Number Scheme (VNS)

- N_q varies depending on $Q^2 \sim m_q$
- series of Fixed Flavor Number Scheme
- requires heavy flavor PDF in the proton

Heavy Quarks in Initial and Final states

Theoretical Observations

- in full theory, both schemes give equivalent results
- ▶ for "low" orders in perturbative expansion, this does not hold

Heavy Quarks in Initial and Final states

Theoretical Observations

- in full theory, both schemes give equivalent results
- ▶ for "low" orders in perturbative expansion, this does not hold

Figure 1: p_{t,Z^0} distribution in Z + b final states at NLO, calculated in the VFS and FFS, from [5]. The **black dashed** curve shows the contribution of $q\bar{q} \rightarrow Z^0 b\bar{b}$.

Heavy Quarks in Initial and Final states

Theoretical Observations

- in full theory, both schemes give equivalent results
- ▶ for "low" orders in perturbative expansion, this does not hold

- measure bPDF at LHC to validate these schemes
- impact on Higgs predictions at LHC

Getting ready to find the Higgs

Figure 2: Invariant muon-muon mass distribution of b-associated MSSM neutral Higgs boson events including background in proton-proton collisions at $\sqrt{s} = 14 \,\mathrm{TeV}$ from [6].

Getting ready to find the Higgs

Figure 2: Invariant muon-muon mass distribution of b-associated MSSM neutral Higgs boson events including background in proton-proton collisions at $\sqrt{s} = 14 \text{ TeV}$ from [6].

- ► $Z^0 + b$ is irreducible background to neutral MSSM Higgs bosons produced in association with b quarks
- worthwhile to measure this background with high precision before looking for the Higgs

P. Steinbach (IKTP)

Published Measurments

results

$$\mathcal{R} = \frac{\sigma(\mu\mu+b)}{\sigma(\mu\mu+\text{jets})}$$

$$D0[3] \qquad 0.023 \pm 0.004(\text{stat})^{+0.002}_{0.003}(\text{syst})$$

$$CDF[4] \qquad 0.0236 \pm 0.0074(\text{stat}) \pm 0.0053(\text{sys})$$

Published Measurments

results

$$\mathcal{R} = \frac{\sigma(\mu\mu+b)}{\sigma(\mu\mu+\text{jets})}$$
D0[3] 0.023 ± 0.004(stat)^{+0.002}_{0.003}(syst)
CDF[4] 0.0236 ± 0.0074(stat) ± 0.0053(sys)

observed events						
		N(Z+b)	$\mathcal{L}_{\textit{int}}/1\mathrm{pb}^{-}1$			
	D0[3]	$27(ee)+22(\mu\mu)$	180			
	CDF[4]	45 ± 14^{a}	330			
define have been and an internet in a statement in a						

^aafter background and mistag subtraction

Experimental Setup

Experiment

ATLAS

Heavy Flavor Tagging

From theory we learn, [5]

On the experimental side, ... the [Z + b] final state is relatively easy to identify.

Heavy Flavor Tagging

From theory we learn, [5]

On the experimental side, ... the [Z + b] final state is relatively easy to identify.

Heavy Flavor Tagging

- tagging algorithms provide a weight w_{tag} (which is not necessarily a probability)
- ▶ tagging algorithms can be complicated, I opted for the simple ones to start with
- data-driven estimation of (mis-)tagging efficiencies is non-trivial
- it's tagging, not identification!

SV0 as an Example for Secondary Vertex Taggers

The Algorithm

- 1. use high quality tracks associated to calorimeter jet
- 2. discard displaced vertices attributed to V^0 decays
- 3. discard displaced vertices attributed to material interactions

4. with
$$L = |\vec{x}_{\rho\nu} - \vec{x}_{s\nu}|$$
, use $S_L = sign(L) \frac{L}{\sigma(L)}$ as discriminating variable

SV0 as an Example for Secondary Vertex Taggers

The Algorithm

- 1. use high quality tracks associated to calorimeter jet
- 2. discard displaced vertices attributed to V^0 decays
- 3. discard displaced vertices attributed to material interactions
- 4. with $L = |\vec{x}_{pv} \vec{x}_{sv}|$, use $S_L = sign(L) \frac{L}{\sigma(L)}$ as discriminating variable

TrackCounting2D as an example of Impact Parameter Based Taggers

The Algorithm

- 1. use high quality tracks associated to calorimeter jet
- 2. use $S_{d0} = sign(d_0) \cdot \frac{d_0}{\sigma(d_0)}$ of second highest S_{d0} track as discriminating variable

TrackCounting2D as an example of Impact Parameter Based Taggers

The Algorithm

1. use high quality tracks associated to calorimeter jet

2. use $S_{d0} = sign(d_0) \cdot \frac{d_0}{\sigma(d_0)}$ of second highest S_{d0} track as discriminating variable

Figure 4: Distribution of the second highest impact parameter significance S_{d0} for data (black points) and Monte Carlo (plain histograms) from [2].

Analysis

Analysis

Goal of Our Measurement

Want to measure ...

$$\mathcal{R} = rac{\sigma(\mu\mu+b+(N_{
m jets}-1))}{\sigma(\mu\mu+N_{
m jets})}|_{m_{\mu\mu}pprox m_{Z^0}}$$
 vs. $N_{
m jets}$

- ratio measurement cancels systematic uncertainties
 - need to check correlations to prove which do and which don't cancel
- Iuminosity uncertainty cancels as well

Analysis Event

Event Selection

Analysis Event

Event Selection

trigger	data periods	$\mathcal{L}_{\it int}/1{ m pb}^{-1}$
L1_MU10	A-E3	0.698
EF_mu10_MG	E4-G1	3.024
EF_mu13_MG ^a	G2- I1	15.829
EF_mu13_MG_tight	1 - 2	15.572

^aused in MC as well

Analysis Event

Event Selection

trigger	data periods	$\mathcal{L}_{int}/1\mathrm{pb}^{-1}$	Runs chosen
L1_MU10	A-E3	0.698	Runs enosen
EF_mu10_MG	E4-G1	3.024	runs E4-I2
EF_mu13_MG ^a	G2- I1	15.829	(160899 - 167844)
EF_mu13_MG_tight	1 - 2	15.572	$\mathcal{L}_{int} = 34.426 \mathrm{pb}^{-1}$

^aused in MC as well

Muon Candidate Cuts

reconstructed muon candidate cuts

- ▶ $p_{t,\mu} > 20 \,\mathrm{GeV}$
- $|\eta_{\mu}| < 2.5$
- $(\Sigma p_{t,Cone|\Delta R(\mu,track)<0.2})/p_{t,\mu} < .1$
- all simulated muons have been smeared to data-driven performance estimates

Muon Candidate Cuts

reconstructed muon candidate cuts

- ▶ $p_{t,\mu} > 20 \,\mathrm{GeV}$
- $|\eta_{\mu}| < 2.5$
- $(\Sigma p_{t,Cone|\Delta R(\mu,track)<0.2})/p_{t,\mu} < .1$
- all simulated muons have been smeared to data-driven performance estimates

muon pairs

- opposite charge required for both muon candidates
- $|m_{\mu,\mu} 91.2 \,\mathrm{GeV}| < 25 \,\mathrm{GeV}$
- select Z^0 with highest $\Sigma_i p_{t,\mu i}$

(For more Information see backup slide on Detailed Cut List.)

P. Steinbach (IKTP)

- algorithm: Anti-Kt with D = 0.4
- input: globally calibrated topo clusters (H1 style)
- rescaled to electro-magnetic energy scale

(For more Information see backup slide on SV0 rescaling.)

- algorithm: Anti-Kt with D = 0.4
- input: globally calibrated topo clusters (H1 style)
- rescaled to electro-magnetic energy scale
- ▶ $p_t > 25 \, \mathrm{GeV}$
- $|\eta| < 2.5$ (to allow b-tagging)
- pile-up suppression

(For more Information see backup slide on SV0 rescaling.)

P. Steinbach (IKTP)

 $\sigma(\mu\mu + b)/\sigma(\mu\mu + \text{jets})$

March 7th, 2011 16 / 27

- algorithm: Anti-Kt with D = 0.4
- input: globally calibrated topo clusters (H1 style)
- rescaled to electro-magnetic energy scale
- ▶ $p_t > 25 \, \mathrm{GeV}$
- $|\eta| < 2.5$ (to allow b-tagging)
- pile-up suppression
- jet quality criteria

(For more Information see backup slide on SV0 rescaling.)

P. Steinbach (IKTP)

 $\sigma(\mu\mu + b)/\sigma(\mu\mu + \text{jets})$

March 7th, 2011 16 / 27

- algorithm: Anti-Kt with D = 0.4
- input: globally calibrated topo clusters (H1 style)
- rescaled to electro-magnetic energy scale
- ▶ $p_t > 25 \, \mathrm{GeV}$
- $|\eta| < 2.5$ (to allow b-tagging)
- pile-up suppression
- jet quality criteria
- used TrackCounting2D tagger: $w_{TC2D} > 2.6 \ (\epsilon_b|_{t\bar{t}} = 0.45)$
- used SV0 tagger: $w_{SV0} > 5.72$ ($\epsilon_b|_{t\bar{t}} = 0.498$, MC-Data rescaling applied)

(For more Information see backup slide on SV0 rescaling.)

P. Steinbach (IKTP)

 $\sigma(\mu\mu + b)/\sigma(\mu\mu + \text{jets})$

Invariant Mass without b-tagging requirement

Results Invariant Mass

Invariant Mass requiring at least one b-tagged jet per event

Figure 7: Invariant Muon-Muon mass requiring at least 1 b-tagged jet by TrackCounting2D

Figure 8: Invariant Muon-Muon mass requiring at least 1 b-tagged jet by SV0 with MC-Data scaling applied.

total MC	(89.8 ± 9.5)	total MC	(92.9 ± 9.6)
total Data	(91.0 ± 9.5)	total Data	(78.0 ± 8.8)

P. Steinbach (IKTP)

 $\sigma(\mu\mu + b)/\sigma(\mu\mu + \text{jets})$

b-tagged Jet Multiplicity

Figure 9: number of TrackCounting2D b-tagged jets requiring a Z^0 candidate in the event

Figure 10: number of **SV0 b-tagged jets** requiring a Z^0 candidate in the event with MC-Data scaling applied.

Current Status

Physical Background (not shown today)

- migrating to new data taking software release
- studies on QCD background contributions ongoing
- studies on $t\bar{t}$ background contributions ongoing

Non-Physical Background

- evaluate methods to correct for b-tagging inefficiencies
- choose an advanced tagger

Summary

- ► A measurement of *Z* + *b* is worthwhile to cross-check SM predictions as well as enable Higgs discoveries
- the measurement depends crucially on b-tagging
- ► Z + b final states have been reconstructed in $\mu\mu$ channel with 2 competing simple taggers in 2010 ATLAS data
- ▶ the event yields promise a competing analysis with publications by CDF and D0

BACKUP

Backup

Detailed Muon Cuts

- MuID algorithm used for reasons of robustness from rel15 to rel16
- ▶ $p_{t,\mu} > 20 \, \mathrm{GeV}$
- |ηµ| < 2.5</p>
- author = 12|13 (for staco: author = 6|5)
- IsCombined¹
- Combined+MuGirl (to resolve inefficiencies)
- $N_{PIX} > 0 \cap N_{SCT} > 6 \cap f_{TRT}^{outliers} < 0.9$
- ▶ $|z_0(trk, PV)| < 10 \,\mathrm{mm} \cap |d_0(trk, PV)| < 0.1 \,\mathrm{mm}$
- $(\Sigma p_{t,Cone|\Delta R(\mu,track)<0.2})/p_{t,\mu} < 0.1$
- ▶ for staco: $\chi^2 < 150$, $\frac{p_{MS} p_{ID}}{p_{ID}} > -0.4$
- all MC muons have been rescaled according to MCP recommendations

 $^1 \text{contradicting cut to author} = 12|13$ (was part of skimming) – will be dropped

Scaling MC to Data

method used in $t\overline{t}$ observation

ATL-COM-PHYS-2010-331

for selected and tagged jets

$$w = \mathsf{ScaleFactor}_{\mathit{flavour}}^{\mathit{MC-Data}}(p_t,\eta)$$

for selected and un-tagged jets

$$W = \frac{1 - \mathsf{ScaleFactor}_{\mathit{flavour}}^{\mathit{MC-Data}}(p_t, \eta) \cdot \epsilon_{\mathit{flavour}}(p_t, \eta)}{1 - \epsilon_{\mathit{flavour}}(p_t, \eta)}$$

event weight

a product of jet weights
$$W = \prod_{\text{all iets}} w_i$$

SV0 Performance from Dijet data

Figure 11: scale factors for MC-Data reweighting from Dijet Data.

Figure 12: Bottom flavor tagging efficiency from Dijet Data.

Figure 13: Light flavor (mis-)tagging efficiency from Dijet Data.

P. Steinbach (IKTP)

 $\sigma(\mu\mu + b)/\sigma(\mu\mu + \text{jets})$

Alpgen $Z^0 + jets$ final states

Alpgen MC datasets

- Alpgen samples 10766[0-5] have only $Z^0 + N[g, u, d, s, c]$ jets final states
- ▶ the only source of b quarks is the parton shower (Fig. 14,15)
- ▶ there are Alpgen samples with filtered $Z^0 + g$ final states (Fig. 16), but they are difficult to merge with standard ones mentioned above

Figure 15: Alpgen ZmumuNpX final state $b\bar{b}$ generation

Figure 16: Alpgen Zmumubb samples

Data Samples

background

- 10769[0-5].AlpgenJimmyWmunu
- 105200.T1_McAtNlo_Jimmy
- 10710[0-3].AlpgenJimmyWWInuInuNp[0-3]
- 1071[08-11].AlpgenJimmyZZincllNp[0-3]
- 10710[4-7].AlpgenJimmyWZincllNp[0-3]
- 109276.J0_pythia_jetjet_1muon
- 109277.J1_pythia_jetjet_1muon
- 109278.J2_pythia_jetjet_1muon
- 109279.J3_pythia_jetjet_1muon
- 109280.J4_pythia_jetjet_1muon
- 109281.J5_pythia_jetjet_1muon
- 108405.PythiaB_bbmu15X
- 106059.PythiaB_ccmu15X
- 108341.st_tchan_munu_McAtNlo_Jimmy.merge
- 108344.st_schan_munu_McAtNlo_Jimmy.merge
- 108346.st_Wt_McAtNlo_Jimmy

signal

- mc09*Alpgen*Z* samples not feasible (see backup slide)

mc09_7TeV.109526.SherpaZ3jetstomumu

- Calibrating the b-tag and mistag efficiencies of the sv0 b-tagging algorithm in 3 pb⁻¹ of data with the atlas detector. Technical Report ATLAS-CONF-2010-099, CERN, Geneva, Dec 2010.
- [2] Performance of impact parameter-based b-tagging algorithms with the atlas detector using proton-proton collisions at $\sqrt{s} = 7$ tev.

Technical Report ATLAS-CONF-2010-091, CERN, Geneva, Oct 2010.

[3] V.M. Abazov et al.

A Measurement of the ratio of inclusive cross sections sigma (p anti-p -i Z + b-jet) / sigma (p anti-p -i Z + jet) at $s^{**}(1/2) = 1.96$ -TeV. *Phys.Rev.Lett.*, 94:161801, 2005.

[4] A. Abulencia et al.

Measurement of the b jet cross-section in events with a Z boson in p anti-p collisions at $s^{**}(1/2) = 1.96$ -TeV. *Phys.Rev.*, D74:032008, 2006.

[5] John M. Campbell.

Overview of the theory of W/Z + jets and heavy flavor. 2008.

[6] Markus Warsinsky, M Kobel, M Schumacher, and F Krauss.

Studies of b-associated production and muonic decays of neutral Higgs bosons at the ATLAS experiment within the Minimal Supersymmetric Standard Model. oai:cds.cern.ch:1312682. PhD thesis, Dresden, TU Dresden, Dresden, 2008. Presented on 15 Sep 2008.