Experimental Search for Physics beyond the SM: Strong CP (non-)Violation, EDMs, Axions / hidden Photons, and other beyond the SM particles from the Sun.				
K. Zioutas	Lec	ture 1		
University of Patras / Greece				
	→ exercises?			
	→ Ongoing research	d.		
Spring Blockcourse 2011 Dresden				
8 th - 10 th March 2011				

PRODUCTS POR SCIENCE	es (of UCN			
Ultracold neutrons, that is, neutrons whose energy is so low that they can be contained for long periods of time in material and magnetic bottles					
$E_{\rm kin} (\sim 5 {\rm ms}^{-1}) = 100 {\rm neV} (10^{-7} {\rm eV})$ $\lambda_{\rm JCN} \sim 1000 {\rm \AA}$ $T_{\rm UON} \sim 2 {\rm mK}$	The measurement was made with ultracold neutrons (UCNs) stored in a trap (Fig. 1) permeated by uniform E and B fields. The neutron spin polarization precesses about the field direction at the Larmor frequency w				
UCN are totally reflected from suitable materials at <i>any</i> angle of incidence, hence storable !	where th	$h\nu = 2\mu_n B \pm 2$ e + (-) sign corresponds	2 <i>d_nE</i> , (1) to parallel (antiparallel)		
Long storage and observation times possible (up to several minutes)	fields. Thus, the experiment aimed to measure any shift in ν as an applied E field alternated between being parallel and then antiparallel to B .				
High precision measurements of the properties of the free neutr (lifetime electric diale moment gravitational law	on els	Gravity ∆E= <i>m_n g</i> ∆h	~ 10 ⁻⁷ eV / Meter		
P. 6ditraet 90. A	FR. Dresden, 11	Magnetic field $\Delta E = \mu_n B$ $\delta 12, Mol 2010$	~ 10 ⁻⁷ eV / Tesla		

Storage Ring EDM experiments

- High beam intensities (10¹⁰-10¹¹pps), with high polarization (>0.8), and low emmittance are currently available
- 2. Large electric fields are possible (10-20MV/m)
- 3. Spin coherence time ~10³s are possible
- High efficiency, large analyzing power (~0.5) polarimeters are available for the proton and deuteron at ~1 GeV/c momentum making possible the next sensitivity level

 $\vec{\omega}_a = 0$ $\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$

5. Direct access to charged particle EDMs

Yannis Semertzidis. BNL

 The "magic" momentum concept was first used in the last muon g-2 experiment at CERN and BNL.
 Yannis Sementzidis, BNL

Deuteron EDM sensitivity

$$d_{D} = (d_{n} + d_{p}) + d_{D}^{\pi NN}$$

$$d_{D}(\overline{\theta}) \approx -10^{-16}\overline{\theta} \text{ e} \cdot \text{cm}$$
i.e. @ 10⁻²⁹e cm:

$$\overline{\theta} \leq 10^{-13}$$
Varies Sementadis, BNL

 $eB(\tau=0.2 \text{ fm}) = 10^3 \sim 10^4 \text{ MeV}^2 \sim 10^{17} \text{ Gauss}$

Yannis Semertzidis, BNL

LETTERS TO	THE EDITOR 899	
Walter and Bernatt secondard and Identified the observation	and a is a dimensionlast mentant datameters by the dama	
spectra of Lis, Nas, Ka Rhs, Cas, LiK, LiRb, LiCa, NaK, NaRb,	mechanism."	
NaCa KRb RbCa and KCa	One can obtain a immediately (by a first-order perturbation	
The identification of a NaLi molecule is complicated by the	calculation) in terms of the mean life, r, of a neutral r-meson at	
existence of Na2 and Li2 hand systems in the regions of the visible,	rest, mir.14	
near infrared and ultraviolet. Since the probability of molecular	$r^{-i} = r^{4} q^{2} \mu c^{2}/2\hbar.$ (2)	
formation is a function of the product of the concentration of	The effective interaction of Eq. (1) can now be used for a	
the atoms involved, it seemed possible that one component of a	calculation of the probability of the inverse process : ** production	
and the other at a high manor measure to increase the probability	in photon-photon collisions, or, for the calculation of the proba-	
of observing the NaLi malerule.	bility of the more interesting process : ** production in the collision	
In our experiment the lithium metal was placed in an absorption	the Coulomb field of a (checks manified) markets. The total	
cell constructed of nickel and having water-cooled quartz windows.	cross section a for this last renews is from a first-order perturba-	
A nickel aide tube was connected to the absorption cell to contain	tion treatment of Eq. (1), proportional to x*; i.e., to r-1; one	
the softum. Heating units were arranged around the absorption	obtains*	
Ethion metals inferendently	$k/ac (d^3/h)^2 4(h)^2$	
The Ethium metal was maintained at 850°C. A series of absorp-	$\sigma \approx 32 \sigma^2 \frac{1}{\sigma^2} 2 \left(\frac{1}{2\sigma} \left(\frac{1}{\sigma} \right) \frac{1}{3} \left(\frac{1}{\sigma^2} \right), \text{ for } he \ll h k \approx \mu k$ (3)	
tion spectrograms was then taken with the sodium at tempera-	k/m (4)(A)1 (07)	
tures of 435, 460, 485, and 510°C, respectively. A similar procedure	$s \approx 32\pi \frac{e^{\kappa_1} \mu m}{2} Z^{0} \left[\frac{\kappa_1}{12} \right] \left(\frac{m}{2} \right)^{-1}$, for $R(k-s) \approx \frac{(ab_1)^{-1} \mu m}{2} \ll 1.$ (4)	
was used for maintaining constant high sodium with increasing	er vær yer 2 de	
The results of this experiment confirm the meetings work of	In Eqs. (3) and (4), hk, hc=Ak[1-(µc/hk) ⁿ] ⁿ are, respectively,	
Walter and Barratt. No hands attributable to a NaLi redecide	the momenta of the incident photon and produced neutral	
were observed in the region 3000 to 8000A. No explanation is	collimated about the direction of the incident photon if ANN-re-	
available, particularly as it is the only member not observed of	In deducing Eq. (3) it has been surmound that the nuclear protons	
the complete set of binary molecular systems obtainable with the	remain approximately at rest during time intervals of the order	
alkali metala.	of several periods of the incident electromagnetic wave [since	
* Contribution No. 10, Department of Physics, Kansas State College,	*perion = je and (ck) = = A/µc ²], and that the probability of finding	
1 Now at Aleport Station, Weather Bargan, Memohin, Tepressee.	any pair of protons a distance r spart is proportional to $exp[-r/R]$, where $P = M(TT)/(r)$ is the number radius. It is seen from For	
Now at South Dakota State College, Brookauga, South Dakota, I. M. Walter and S. Barratt, Proc. Roy. Soc. (London) A119, 257 (1928).	(3) and (4) that the electric fields of the Z reations contribute	
	"coherently" to the ** production, once the photon energy	
	exceeds $\frac{1}{2}(2Z)^{\frac{1}{2}}\omega^{\frac{1}{2}}$.	
	Thus, if τ is less than, say, 10^{-11} sec, Eq. (4) indicates that a Z^1	
Photo-Production of Neutral Mesons in Nuclear	term should be observable in the total cross section for production	
Electric Fields and the Mean Life of	of neutral r-mesons in photon-nucleus collisions. Since no such	
the Neutral Meron*	rough lower limit on at a 55 10" are. An approximate storer	
W Transmit	limit of 5×10 ⁻¹⁸ sec seems to be indicated by cosmic-ray data. ⁴	
Laboratory for Nuclear Science and Engineering, Massichusetin	* Assisted by the joint program of the ONR and AEC.	
Institute of Technology, Cambridge, Massischuseits	1 On leave from Washington University, St. Louis, Missouri,	
janadiy 2, 1951	Aamoda, Hadley, and Philips, Phys. Rev. 80, 64 (1950).	
T has now been well established experimentally that neutral	Acta 23, 845 (1956); we exclude the possibility of the st spin being >1.	
 r-mesons (r) decay into two photons.¹ Theoretically, this 	§ J. Steinberger, Phys. Rev. 76, 1180 (1949), and other references quoted there.	
decay has been intermeted as torceeding through the mechanism	 Marshak, Taraos, and Wightman, Phys. Rev. 80, 765, 566 (1958); K. Broschuer, Phys. Rev. 79, 641, 187 (1950). 	
of the creation and subsequent radiative recombination of a	* The mechanism of s* decay via interaction with virtual proton anti-	
virtual proton anti-proton pair.4 Whatever the actual mechanism	and mathem wave fields, $r_{c}^{-1} = (\mu^{2}/16\pi^{2})(\mu^{2}/MR)^{2}(\mu^{2}/R_{c})$ (reference 3).	
of the (two-photon) decay, its mere existence implies an effective	so that in this case, $\eta = (\mu/W + M)(\mu/M/M/M)$. Another manifold measures conditiond from Eq. (1) involves the one.	
interaction between the v ^a wave field, o, and the electromagnetic	photon decay of a w ⁴ in an external (molear) electric field. If w in the mean He of this decay, one obtains (with M as the number of model our soft	
wave need, E, B, representative in the form :	volume, and using Eq. (4))	
Interaction Energy Density = $\eta(k/\mu c)(kc)^{-1}e^{i\mathbf{k}\cdot\mathbf{H}}$. (1)	$r/r^{2} = reN_{2}2M(r^{2} + (\mu c_{2}/10))^{-\frac{1}{2}} \approx 64\pi^{2}2(G^{2}/h_{1})(0/\mu c/2N^{-2})^{-1}$	
Here φ has been assumed pseudoscalar, the factors $k/\mu c$ and	¹ Observations of Steinberger, Panolsky, and Steller quoted by R. F. Monker, Phys. Rev. 60 483 (1950).	
(bc) ^{+b} are introduced for dimensional reasons (µ=rest mass of * ⁰).	*Carlson, Hooper, and King, Phil. Mag. 41, 701 (1950). http://prola.a	aps.org/pdf/PR/v81/i5/p899_1

With axion:

- New elementary particle
- Solves the strong CP problem
- New solar physics
 - \rightarrow solar mysteries
 - → how to detect the axion?

Signal readout and larger crystal

aBragg

- Scintillation / Ionization readout

 scintillation readout using standard photon sensors
 ionization readout by drifting electrons (grid mash method)
 use phase-I safety chamber (new quartz vessels, new flange)
 xenon purification systems (O₂ / H₂O ...)
- 2. Demonstrate large solid xenon crystal growth (~10 kg) - make a full prescription for growing large solid xenon - crystal orientation measurement
- 3. Design 10 kg phase prototype experiment

Note: aBragg scattering $\rightarrow E_{\gamma,a} > 1-2 \text{ keV}$

 $E_{V,a}$ <1-2 keV ?? \rightarrow solar analog spectra increase with decreasing E

→ Refractive Grating Spectrometer from X-ray astronomy?

→ $a \leftrightarrow \gamma$ interference?

>> under investigation with others.

→ exercise!?

