

parasity be explained as a consequence of energy deposited in the Natifi deposite by Confine ray muons penetrating the detector. Delayed pulses in the approximate energy range of interest have been observed as a sequel to energy deposited by UV irradiation. The same behavior may be reasonably expected to occur for energy deposited by any source of ionization or excitation. D-L can test this hypothesis by searching for time correlations between muon events and pulses in modulation energy range in current data, and by renewed operation of the array at a sufficiently low temperature that would freeze out the phenomenon. D. Nygren, astro-ph/1102.0815 <u>http://xxx.lanl.gov/abs/1102.0815</u>

+ S. Gninenko, private communication.

PRL 94, 121301 (2005) PHYSICAL REVIEW LETTERS week ending 1 APRIL 2005 First Results from the CERN Axion Solar Telescope K. Zioutas,⁸ S. Andrianonje,⁷ V. Arou,^{13,4} S. Aune,² D. Autiern,¹⁴ F. T. Avignone,² K. Barth,¹ A. Belov,¹¹ B. Belträn,⁶ H. Brunninger,⁷ J. M. Carmon,⁸ S. Cebrian,⁸ E. Chesi, J. J. Collar, ⁷ R. Cresvick,² T. Datia,⁴ M. Davenport,¹ L. D. Lella,^{16,1} C. Enterbrank, J. L. Englauser, ²⁶ C. Fonorakis,⁴ H. Franch,¹ D. Franz,¹⁰ P. Friedrich,² T. Genila,⁹ I. Giomatrix,² S. Gainenko,¹¹ N. Gloubev,¹¹ M. D. Hainoff,¹² F.H. Heinsin,¹⁰ D. H. H. Hoffman,⁴ C. Lasseut,⁴ A. Lindos,⁸ A. Ljubbiki,⁵ G. Luzt,⁴ G. Luzrón,⁶ D. W. Miller,⁷ A. Morales,⁶⁴ J. Morales,⁶ M. Mutterer,⁴ A. Nikolaidis,⁸ A. Orite,⁴ T. Pipejac,¹⁰ G. Luzt,⁴¹ G. Laron,⁶ D. W. Miller,⁷ A. Morales,⁶⁴ J. Morales,⁶ M. Mutterer,⁴ A. Nikolaidis,⁸ A. Orite,⁴ T. Pipejac,¹⁰ G. Luzt,⁴¹ G. Laron,⁶ D. W. Miller,⁷ A. Morales,⁶⁴ J. Morales,⁶ M. Mutterer,⁴ A. Nikolaidis,⁸ A. Orite,⁴⁷ T. Pipejac,¹⁰ G. Luzt,⁴⁴ G. Laron,⁶ D. W. Miller,⁷ J. Morales,⁶⁴ J. Morales,⁶⁴ M. Mutterer,⁴ D. Stevent,¹⁴ S. Event,¹⁴ J. L. Vistra,⁴ J. L. Wakkers,⁴ and K. Zachariadou⁶ L. Wakkers,⁴ and K. Zachariadou⁷ The CAST Collaboration ¹Durpha. Centre of Embets Nucleirating Science, CERN, Grav. Formar ²Durpha. Centre of Embets Nucleirating Science, Switzerland ²DurPha. Centre of Embets Nucleirating Science, Switzerland ²Durpha. Centre of Embets Anchrosophilic Science, Switzerland ²Durpha. Centre of Embets Anchrosophilic Science, Switzerland ²Durpha. Centre of Embets and Anneoneone, University of South Canadia, Colonbia, South Canadia, USA

Incerval Collaboration
Incerval
Incerval Collaboration
Incerval Collaboration
Incerval Coll

Cold thin Windows

- Observation: "Dark spots" on the windows
- Condensation of water from residual vacuum (outgasing) of the "warm" side
 - Vacuum better controlled (pumped)
 - Periodic bake out of windows

