New Horizons in Particle Physics - From the Higgs boson to Dark Matter at the LHC -

- Introduction
 - Where do we stand today?
- The open questions
- What answers can we expect from the Large Hadron Collider (LHC) ?
- Dark Matter at the LHC ?

The Standard Model of Particle Physics

(i) Building blocks of matter: Quarks and Leptons

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

(ii) Forces / Interactions:

mediated via the exchange of field quanta / bosons

 $m_{\gamma} = 0, \qquad m_{g}$

$m_g = 0$	
-----------	--

mw	= 80.398	±	0.025	GeV / c ²
mz	= 91.1875	±	0.0021	GeV / c ²

(iii) Higgs sector

New (scalar) field is introduced; Needed to break (hide) the electroweak symmetry ⇒ Higgs particle

Theoretical arguments: $m_H < \sim 1000 \text{ GeV/c}^2$

Where do we stand today?

e⁺e⁻ colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider + HERA at DESY + many other experiments (fixed target.....) have explored the energy range up to ~100 GeV with incredible precision

- The Standard Model is consistent with all experimental data !
- No Physics Beyond the SM observed (except clear evidence for neutrino masses)
- No Higgs seen (yet)

 $\label{eq:mh} \begin{array}{l} \underline{\text{Direct searches}:} \ (95\% \ \text{CL limits}) \\ m_{\text{H}} > 114.4 \ \ \text{GeV/c^2} \\ m_{\text{H}} < 160 \ \ \text{GeV/c^2} \ \ \text{or} \ \ m_{\text{H}} > 170 \ \ \text{GeV/c^2} \end{array}$

Only unambiguous example of observed Higgs

(P. Higgs, Univ. Edinburgh)

Summer 2009

	Measurement	Fit	O ^{mess_} -O ^{fit} /σ ^{mess} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _Z [GeV]	2.4952 ± 0.0023	2.4959	
σ _{had} [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.742	
A ^{0,I}	0.01714 ± 0.00095	0.01645	
A _I (P ₁)	0.1465 ± 0.0032	0.1481	
Rb	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
sin ² θ ^{lept} (Q _{fb})	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.023	80.379	
Г _W [GeV]	2.098 ± 0.048	2.092	
m _t [GeV]	173.1 ± 1.3	173.2	•
August 2009			

Consistency with the Standard Model

Sensitivity to the Higgs boson and other new particles via quantum corrections:

The Open Questions

Key Questions of Particle Physics

1. Mass: What is the origin of mass?

- How is the electroweak symmetry broken ?
- Does the Higgs boson exist ?

2. Unification: What is the underlying fundamental theory ?

- Can the interactions be unified at larger energy?
- How can gravity be incorporated ?
- Is our world supersymmetric ?

-

3. Flavour: or the generation problem

- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

Answers to some of these questions are expected on the TeV energy scale

Problems at a larger scale

We are here

Surrounded by

- Mass (planets, stars,,hydrogen gas)
- Dark Matter
- Dark Energy

© Rocky Kolb

The role of the LHC

1. Explore the TeV mass scale

- What is the origin of the electroweak symmetry breaking ?
- The search for "low energy" supersymmetry
- Other scenarios beyond the Standard Model
 - Look for the "expected", but we need to be open for surprises

2. Precise tests of the Standard Model

- There is much sensitivity to Physics Beyond the Standard Model in the precision area

The Larg	e Hadron	Collider
		AIR-HIRVIDE /10
A PERSON		
11/1/1-2-1		
Beam energy	7, 5, 3.5 TeV	
Luminosity	10 ³³ - 10 ³⁴ cm ⁻² s ⁻¹	
\rightarrow	10 - 100 fb ⁻¹ / year	
Superconducting dipoles	1232, 15 m, 8.33T	became a reality in 2008
Stored energy	350 MJ/beam	after ~15 years of hard work

Proton proton collisions at the LHC

Proton – proton:

2835 x 2835 bunches Separation: 7.5 m (25 ns)

 10^{11} protons / bunch Crossing rate of p-bunches: 40 Mio. / s Luminosity: L = 10^{34} cm⁻² s⁻¹

~10⁹ pp collisions / s (superposition of 23 pp-interactions per bunch crossing: **pile-up**)

- ~1600 charges particles in the detector
- \Rightarrow high particle densities high requirements for the detectors

The ATLAS experiment

Diameter	25 m
Barrel toroid length	26 m
End-cap end-wall chamber span	46 m
Overall weight	7000 Tons

 Solenoidal magnetic field (2T) in the central region (momentum measurement)

High resolution silicon detectors:

- 6 Mio. channels (80 μm x 12 cm)
- 100 Mio. channels
 (50 μm x 400 μm)
 space resolution: ~ 15 μm
- Energy measurement down to 1° to the beam line
- Independent muon spectrometer (supercond. toroid system)

ATLAS Installation

October 2006

A historical moment: Closure of the LHC beam pipe ring on 16th June 2008 ATLAS was ready for data taking in August 2008

CMS Detector closed for 10th Sep. 2008

K. Jakobs

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

An excellent start: first beams – September 10, 2008

Trigger timing with beam splash events

Few days of beam halo and splash events helped enormously to adjust timing of different triggers

1 bunch crossing number = 25 ns

Development of resistive zone in dipole bus bar splice

Diagnose, repair, comeback.....

- A resistive zone developed in an electrical bus bar connection
- Electrical arc \rightarrow punctured the helium enclosure
- Helium release under high pressure
- Relief discs unable to maintain the pressure rise below 0.15 MPa
 - \rightarrow large pressure forces
- Lot of repair work ongoing since then (14 quadrupole and 39 dipole magnets replaced, electrical interconnections repaired, larger helium pressure release ports installed,.....)

• Startup plans (2009/10):

- Machine will restart in Nov. 2009
- First collisions at injection energy at 900 GeV
- Increase energy up to 3.5 TeV (\rightarrow 5 TeV)
- Collect data corresponding to ~200 pb⁻¹

ATLAS Commissioning

with cosmic rays....

ATLAS Commissioning (cont.)

- About 216 Mio. cosmic ray events recorded;
- Efficiencies and noise conditions of all sub-detectors are within specifications, and >99% of channels are working for most systems;
- Detectors have been aligned with high precision, better than expected for day one;
- Valuable experience gained on trigger and reconstruction algorithms....

Towards First

Physics Results

in 2009/2010

Cross-sections and Production Rates, the first 10 pb⁻¹

Events for 10 pb⁻¹, $\sqrt{s} = 14$ TeV

Inelastic pp	large
(minimum bias events)	(prescaled)
$W \rightarrow e \nu$	10 ⁵
$Z \rightarrow ee$	10 ⁴
tt \rightarrow evb qqb	10 ³
Higgs (130 GeV)	10
Gluinos (1 TeV)	1

<u>Physics with 10 – 100 pb⁻¹</u>:

- Establish Standard Model signals
- Use them for calibration (tag and probe methods,....)
- Tune Monte Carlos
- Basic SM cross section measurements
- Look for surprises (e.g. high mass di-lepton resonances,..., black holes)

W/Z and top signals

Even with early data (10-50 pb⁻¹) at $\sqrt{s} = 7$ TeV. high statistics of W / Z and top samples

 \Rightarrow Establish performance for leptons, jets, missing transverse energy,, b-tagging

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

 $Z \rightarrow ee$

K. Jakobs

The Search for

The first Higgs at ATLAS

The Higgs boson

Decays of the Higgs Boson

Decay characteristics are known, as soon as the mass is known:

$$\underbrace{H} \qquad \qquad W^+, \ \mathbf{Z}, \ \mathbf{t}, \ \mathbf{b}, \ \mathbf{c}, \tau^+, \dots, \mathbf{g}, \gamma$$
$$\underbrace{W^-, \ \mathbf{Z}, \ \mathbf{t}, \ \mathbf{b}, \ \mathbf{c}, \tau^-, \dots, \mathbf{g}, \gamma$$

Important decays at hadron colliders:

Final states with leptons or photons (via H \rightarrow WW, ZZ or H $\rightarrow \gamma\gamma$)

The dominant **bb decays** in the low mass region are very difficult to detect (due to the large background from jet production via QCD processes)

A simulated H \rightarrow ZZ \rightarrow ee $\mu\mu$ event

$\mathsf{H} \to \mathsf{ZZ}^{(*)} \to \mathsf{\ell}\mathsf{\ell}\mathsf{\ell}\mathsf{\ell}$

Signal: Decay via two Z bosons into four leptons

<u>Background:</u> Top production: $tt \rightarrow Wb Wb \rightarrow lv clv lv clv$

Associated Zbb production: Z bb $\rightarrow \ell \ell c \ell v c \ell v$

- Background rejection: Leptons from b-quark decays
 - \rightarrow non isolated
 - \rightarrow do not originate from primary vertex (B-meson lifetime: ~ 1.5 ps)

Dominant background after isolation cuts: ZZ continuum

 $P_{T}(1,2) > 20 \text{ GeV}$ $P_{T}(3,4) > 7 \text{ GeV}$ $|\eta| < 2.5$ **Isolated** leptons

 $M(\ell \ell) \sim M_7$ $M(\ell'\ell') \sim \langle M_{\tau} \rangle$

Discovery potential in mass range from ~130 to ~600 GeV/ c^2

The Search for the Higgs Boson at the LHC

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

$H \rightarrow \tau \tau$ exploiting the vector boson fusion

Experimental challenge:

- Identification of hadronic taus
- good E_T^{miss} resolution
 - ($\tau\tau$ mass reconstruction in collinear approximation)
- control of the $Z \to \tau \tau$ background shape in the high mass region

LHC Higgs boson discovery potential

- Full mass range (up to ~ 1TeV) can be covered after a few years at low luminosity
- Several channels available over a large mass range [at high mass: more channels (in WW and ZZ decay modes) available than shown here]
- Comparable performance in the two experiments

<u>Important changes w.r.t. previous studies</u>: **ttH** \rightarrow **tt bb** disappeared in both ATLAS and CMS studies from the discovery plot; however, new sensitivity for bb-decay mode might be present in the associated WH $\rightarrow \ell v$ bb production, with highly boosted Higgs bosons

Luminosity required to exclude a Higgs boson with a mass m_H

Entire mass range, $m_H > 115 \text{ GeV/c}^2$, can be covered (95% CL) by one experiment with data corresponding to an integrated luminosity of ~ 2 fb⁻¹

The Search for

Supersymmetry

Supersymmetry

Extends the Standard Model by predicting a new symmetry Spin $\frac{1}{2}$ matter particles (fermions) \Leftrightarrow Spin 1 force carriers (bosons)

Ve Vu Vt e u t Quarks Leptons Force particles

Standard Model particles

New quantum number: R-parity: $R_p = (-1)^{B+L+2s}$

+1 SM particles-1 SUSY particles

<u>R-parity conservation:</u>

- SUSY particles are produced in pairs
- The lightest SUSY particle (LSP) is stable

Why do we like SUSY so much?

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & & \\ &$$

→ m_{susy} ~ 1 TeV

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

Link to the Dark Matter in the Universe?

Parameters of the SUSY model \Rightarrow predictions for the relic density of dark matter

Interpretation in a simplified model

cMSSM (constrained Minimal Supersymmetric **Standard Model**)

Five parameters:

m ₀ , m _{1/2}	particle masses at the GUT scale
•	

common coupling term A_0

- ratio of vacuum expectation value of $\tan \beta$ the two Higgs doublets
- μ (sign μ) Higgs mass term

$$\rho_{\chi} \sim m_{\chi} n_{\chi}, \quad n_{\chi} \sim \frac{1}{\sigma_{ann}(\chi \chi \to \ldots)}$$

regions of parameter space which are consistent with the measured relic density of dark matter (WMAP,....)

Search for Supersymmetry at the LHC

⇒ combination of jets, leptons, missing transverse energy (E_T^{miss})

1. Step: search for deviations from the Standard Model

Relatively easy: squarks and gluinos in TeV mass range are copiously produced (QCD production)

2. Step: can the parameter of the model be determined ? More difficult !

Squarks and Gluinos

(

- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$, $E_T^{miss} > 100 \text{ GeV}$
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

 $\begin{array}{ll} \mbox{example:} & m \mbox{SUGRA, point SU3} \\ m_0 &= 100 \mbox{ GeV}, & m_{1/2} &= 300 \mbox{ GeV} \\ \mbox{tan } \beta &= 6, & A_0 &= -300, & \mu > 0 \end{array}$

LHC reach for Squark- and Gluino masses: $(\sqrt{s} = 14 \text{ TeV})$

).1 fb ⁻¹	\Rightarrow	M ~	750 GeV
1 fb ⁻¹	\Rightarrow	M ~	1350 GeV
10 fb ⁻¹	\Rightarrow	M ~	1800 GeV

Deviations from the Standard Model due to SUSY at the TeV scale can be detected fast !

LHC reach in the m₀ - m_{1/2} mSUGRA plane:

Multijet + E_T^{miss} signature

Expect multiple signatures for TeV-scale SUSY

How can the underlying theoretical model be identified ?

- Not easy !!
- Other possible scenarios for Physics Beyond the Standard Model could lead to similar final state signatures
 e.g. search for direct graviton production in extra dimension models

How can the underlying theoretical model be identified ?

Measurement of the SUSY spectrum \rightarrow Parameter of the theory

LHC Strategy: End point spectra of cascade decays

$$: \quad \widetilde{\mathsf{q}} \to \mathsf{q} \widetilde{\chi}_2^0 \to \mathsf{q} \widetilde{\ell}^\pm \ell^\mp \to \mathsf{q} \ell^\pm \ell^\mp \widetilde{\chi}_1^0$$

$$\mathsf{M}_{\ell_1 q}^{\text{max}} = \frac{\sqrt{(\mathsf{m}_{\chi_2^0}^2 - \mathsf{m}_{\tilde{\ell}}^2)(\mathsf{m}_{\tilde{q}}^2 - \mathsf{m}_{\chi_2^0}^2)}}{\mathsf{m}_{\chi_2^0}}$$

ATLAS: expected	precision	for point 01	$(L = 1 \text{ fb}^{-1})$):
-----------------	-----------	--------------	---------------------------	----

	Measured [GeV/c ²]	Monte Carlo [GeV/c ²]
$m_{\tilde{\chi}_1^0}$	$88 \pm 60 \mp 2$	118
$m_{\tilde{Z}_{2}^{0}}$	$189\pm60\mp2$	219
$m_{\tilde{q}}$	$614\pm91\pm11$	634
$m_{\tilde{\ell}}$	$122\pm 61\mp 2$	155
Observable	$[\text{GeV}/c^2]$	[GeV/c ²]
$m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$	$100.6 \pm 1.9 \mp 0.0$	100.7
$m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$	$526\pm34\pm13$	516.0
$m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}$	$34.2 \pm 3.8 \mp 0.1$	37.6

LHC precision on SUSY model parameters:

mSUG	RA bulk	region		1 fb ⁻¹
Parameter	SU3 value	fitted value	exp. unc.	theo. + exp.
		$sign(\mu) = +$	1	
$\tan\beta$	6	7.4	4.6	-
M_0	100 GeV	98.5 GeV	±9.3 GeV	$\pm 9.5 \text{ GeV}$
$M_{1/2}$	300 GeV	317.7 GeV	±6.9 GeV	$\pm 7.8 \text{ GeV}$
A_0	-300 GeV	445 GeV	$\pm 408 \text{ GeV}$	-
		$sign(\mu) = -$	1	
$\tan\beta$		13.9	± 2.8	
M_0		104 GeV	$\pm 18 \text{ GeV}$	-
$M_{1/2}$		309.6 GeV	$\pm 5.9 \text{ GeV}$	-
A_0		489 GeV	$\pm 189 \text{ GeV}$	20

mSUGRA bulk region (SPS1a model) 300 fb⁻¹

Parameter	Expected % precision
mo	± 2%
m _{1/2}	± 0.6%
tan(β)	± 9%
A	± 16%

Complementarity of LHC and ILC in SUSY studies:

LHC: strongly interacting squarks and gluinos

ILC : precise investigation of electroweak SUSY partners

Importance for the interplay between direct and indirect Dark Matter searches

- Following a discovery of New Physics at the LHC (deviation from the Standard Model) the LHC will aim to test the Dark Matter hypothesis
- Estimation of relic density in a simple model-dependent scenario will be the first goal
- Less model-dependent scenarios will follow, detailed studies probably require the ILC
- Conclusive result is only possible in conjunction with astroparticle physics experiments
- Ultimate goal: observation of LSP at the LHC, confirmed by a signal in a direct dark matter experiment with predicted mass and cross-section

Summary / Conclusions

- The Large Hadron Collider is the largest and most ambitious project realized in particle physics so far (technology, complexity, resources, collaboration,)
- With its startup in 2009, Particle Physics is about to enter a new era
- Questions of
 - Existence of Higgs particles,
 - Low energy supersymmetry or

- many other phenomena beyond the Standard Model at the TeV scale can be answered.

The answers will most likely modify our understanding of Nature

and give guidance to theory and future experiments

37 Countries 169 Institutions 2500 Scientific Authors (1800 with a PhD)

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Ritsumeikan, UFRJ Rio de Janeiro, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victoria, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale,

<u>10 vs 14 TeV ?</u>

K. Jakobs

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

LHC data handling, GRID computing

e-Science

Balloon (30 Km)

CD stack with 1 year LHC data!

(~ 20 Km)

Mt. Blanc

(4.8 Km)

Trigger system selects ~200 "collisions" per sec.

LHC data volume per year: 10-15 Petabytes = $10-15 \cdot 10^{15}$ Byte

Early Surprises ??

 as already mentioned, the experiments must be open for surprises / unknowns / unexpected discoveries

- requires unbiased measurements of

- inclusive lepton spectra
- dilepton spectra.....
- Missing E_T spectrum.....

-

One example of many....

$Z' \rightarrow e^+e^-$ with SM-like couplings (Z_{SSM})

Mass (TeV)	Events / fb ⁻¹ (after cuts)	Luminosity needed for a 5σ discovery + (10 obs. events)
1 1.5	~160 ~30	~70 pb ⁻¹ ~300 pb ⁻¹
2	~7	~1.5 fb ⁻¹

Discovery window above Tevatron limits m ~ 1 TeV, perhaps even in 2009... (?)

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

W/Z and top signals

Even with early data (10-50 pb^{-1}), high statistics of W / Z and top samples

⇒ Establish performance for leptons, jets, missing transverse energy,

Symposium, Graduiertenkolleg, Berlin, Sep. 2009

K. Jakobs

 $Z \rightarrow ee$

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

• Complex final states: $H \rightarrow bb, t \rightarrow bjj, t \rightarrow b\ell v$

 $t \rightarrow b\ell v, t \rightarrow b\ell v$ $t \rightarrow bjj, t \rightarrow bjj$

- Main backgrounds:
 - combinatorial background from signal (4b in final state)
 - ttjj, ttbb, ttZ,...
 - Wjjjjjjj, WWbbjj, etc. (excellent b-tag performance required)

 Updated ATLAS and CMS studies: matrix element calculations for backgrounds → larger backgrounds (ttjj and ttbb)

estimated uncertainty on the background: $\pm 25\%$ (theory, $+ \exp(b-tagging)$) \Rightarrow Normalization from data needed to reduce this (non trivial,...)

<u>New hope for H \rightarrow bb decays at the LHC: W/Z H, H \rightarrow bb NEW!</u>

The most important channels at the **TEVATRON** at low mass!

But: signal to background ratio less favourable at the LHC

Follow idea of J. Butterworth, et al. [PRL 100 (2008) 242001]

Select events (\approx 5% of cross section), in which H und W bosons have large transverse momenta: $p_{\tau} > 200 \text{ GeV}$

(Pileup not yet included)

(e.g. $S/\sqrt{B} = 3.0$ for 15% uncertainty on all backgrounds)

Dark Matter at Accelerators ?

Parameter of the SUSY-Model \Rightarrow Predictions for the relic density of **Dark Matter**

$$\rho_{\chi} \sim m_{\chi} n_{\chi}, \quad n_{\chi} \sim \frac{1}{\sigma_{ann}(\chi\chi \rightarrow \ldots)}$$

<u>The LHC and the ILC (International Linear Collider,</u> in study/planning phase) are complementary in SUSY searches

 $- x^{o,\pm}$ gluino 📥 squarks 📥 sleptons 🗖 Η Number of observable SUSY particles: 40 HC 30 20 10 0 ΙΜΕΗΑΓΚΟ С J G 40 40 √s=5TeV $C + \sqrt{s} = 1 \text{TeV}$ 30 30 20 20 10 10 0 0 IMEHAFKD С G J GBLCJIMEHAFKD

)* Study by J. Ellis et al., hep-ph/0202110

Symposium, Graduiertenkolleg, Berlin, Sep. 2009