
Structural and electrical properties of a new ([SnSe]_{1.16})_m(NbSe₂)₁ polytype

M. B. Alemayehu, M. Falmbigl, C. Grosse, K. Ta, S. F. Fischer, and D. C. Johnson J. Alloys Compd. **619**, 861-868 (2015).

Short Abstract

A new polytype of the misfit layer compound ($[SnSe]_{1.16}$)₁($NbSe_2$)₁ with extensive rotational disorder was prepared from designed modulated elemental reactants. This polytype, previously referred to as a ferecrystal, formed over a range of compositions and precursor thicknesses. The *a*- and *b*-axis inplane lattice parameters of both the SnSe and $NbSe_2$ constituents were unequal. The ferecrystalline compound is 1.6 times more conductive than the misfit layer compound. Hall effect measurements indicate that the ferecrystal is a *p*-type metal and that the higher conductivity is due to the higher mobility of carriers in the ferecrystalline compound.

Above. A schematic representation of the structure of the ([SnSe]_{1.16})₁(NbSe₂)₁ misfit layer compound (a) and two grains of the ([SnSe]_{1.16})₁(NbSe₂)₁ ferecrystal compound (b) illustrating the extensive rotational disorder between the constituent layers.