Temperature-dependent thermal conductivity and diffusivity of Mg-doped insulating

ß-Ga₂O₃ single crystal along [100], [010] and [001]

M. Handwerg, R. Mitdank, Z. Galazka, and S. F. Fischer *Semicond. Sci. Technol.* **31**, 125006 (2016).

Short Abstract

The monoclinic crystal structure of β -Ga₂O₃ leads to significant anisotropy of the thermal properties. The 2ω -method is used here to measure the thermal diffusivity D in [010] and [001] direction and to determine the thermal conductivity values λ of the [100], [010] and [001] direction from the same insulating Mg-doped β -Ga₂O₃ single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of $D_{[010]}/D_{[001]} = \lambda_{[010]}/\lambda_{[001]} = 1.4 \pm 0.1$. The temperature-dependence is in accord with phonon-phonon-Umklapp scattering processes from 300 K down to 150 K.

Above. a) An arrangement of two line heater pairs on top of the Mg-doped β -Ga₂O₃-crystal. b) The anisotropic thermal conductivity measurement setup to measure the temperature ow between two metal lines (Au) through the β -Ga₂O₃-crystal with a thickness of t = 0:5 mm.