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1 Introduction

When Sir Isaac Newton examined total internal reflection in the 18th century, he discovered
that when bringing two dioptres next to each other without them being in contact, some
light that should be reflected would instead cross the small gap and be transmitted by
the second dioptre. Without the means to explain this phenomenon, he gave a purely
descriptive analysis [1]. A more quantitative approach was taken by Quincke in 1966 [2]
on whose observations a series of experimental and theoretical treatments were based [3, 4].

If a propagating light field is reflected at the boundary between two media, it does not
drop instantly to zero, but rather decays quasi-exponentially from the interface on a scale
of the field’s wavelength in the form of an evanescent field. This leads to a finite probability
to find the photon on the outside of the guiding medium. This quasi-exponential decay
has been experimentally validated, for example by using fibre tips [5].

The evanescent light field is able to couple to matter via the optical dipole force [6],
which can be repulsive or attractive, depending on the detuning of the light field with
respect to the working transition. This can be used, for example to build atomic mirrors
on planar surfaces [7]. In 1997 a gravito-optical surface trap (GOST) [8] that used the
evanescent field in combination with the field of gravity on a flat dielectric surface to trap
atoms next to the surface was realised. A further application for evanescent fields are
hollow atomic wave guides [9]. These use the repulsive potential of the evanescent field on
the inside of a tube to lead atoms along the axial direction of the guide.

The inverse case, where the light inside a waveguide causes an evanescent field on the
outside can be found in tapered optical fibres (TOF). Here, the light is guided inside the
fibre by total internal reflection and like in the case of Newton’s experiment, the light
projects over the guiding bulk of the fibre. If the fibre is fabricated with a diameter
that is similar to the guided light’s wavelength, it gives rise to a pronounced evanescent
field. In recent years various laboratories have developed the facilities to manufacture
these subwavelength diameter fibres [10, 11, 12, 13]. Tapered optical fibres offer a number
of interesting properties that make them attractive for scientists. They combine tight
transversal confinement and a pronounced evanescent field which enhances the coupling
between light and matter. This has led to a variety of experiments using such fibres: ”slow
light” experiments [14] or spectroscopical applications [15, 16]. Furthermore, the strong
radial confinement is maintained over the complete length of the fibre waist, which, in our
case, can be as long as 5 mm. This surpasses the Rayleigh length of a freely propagating
beam of a comparable diameter by several orders of magnitude. This led to the idea of
using the evanescent field around a TOF to trap cold atoms in the vicinity of the fibre,
which was first proposed by J.P. Dowling [17]. A more recent proposal by V.I. Balykin
suggests using the superposition of the repulsive and attractive potential of the evanes-
cent fields of a blue-detuned and red-detuned light field propagating in the same fibre to
create a potential well for atoms [18]. This proposal has just recently been experimentally
realised in our group [19].
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Chapter 1. Introduction

In this thesis a similar idea to the proposal [18] is explored. Instead of using the super-
position of two light fields travelling in the fundamental transversal mode, the interference
pattern of two transversal fibre modes of the same blue-detuned light field is used.

This thesis is structured as follows: Chapter 2 gives the theoretical background of light
propagation in fibres and discusses the properties of sub-wavelength optical fibres. An
analysis of the spatial fibre modes and their evanescent field is given. Chapter 3 de-
scribes the fibre based atom traps using the interference of more than one mode in a fibre.
Chapter 4 presents the experimental part of this work: A method to investigate the simul-
taneous propagation of a few modes in a subwavelength-diameter optical fibre is described
and the results are discussed. In order to non-destructively measure the evanescent field
arising around the waist of a tapered optical fibre, a near-field probing method using a
second tapered fibre as a probe has been developed and successfully implemented. Finally,
chapter 5 summarizes the results obtained and gives an outlook to what is possible with
the experimental setup and what questions are worth examining in the future.

Parts of this thesis have been published in the following journal article:

G. Sagué, A. Baade and A. Rauschenbeutel. Blue-detuned evanescent field surface traps
for neutral atoms based on mode interference in ultra thin optical fibres, New J. Phys. 10
113008, 2008.
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2 Propagation of light in optical fibres

Glass fibres have become a standard tool in telecommunication in the last decade, due
to their effectiveness in transmitting signals over large distances while at the same time
showing a larger resistance to environmental influences than the conventional copper cable.

A standard optical telecommunications fibre consists mainly of three parts, as is shown
in figure 2.1 : The silica core has a typical diameter of 8 − 10 µm, where the light is
guided. It is embedded in a much larger silica cladding, with a typical diameter of about
125 µm. The core is doped to increase its refractive index over that of the cladding, thus
enabling guiding of light in the core via total internal reflection [20]. The difference in
refractive indices between core and cladding is typically less than one percent, in which
case the fibre is said to be weakly guiding, as it only accepts light with a small angle of
incidence with respect to the fibre axis. To mechanically protect the fibre, the cladding is
surrounded by a layer of synthetic material, the buffer (often some sort of acrylate [21]),
which is about twice in diameter as the cladding.

In this section a short introduction to the propagation of light in such fibres and a
discussion of the arising modes will be given. The description will closely follow the
treatment given in [22, 23].

Buffer
250 µm

Cladding
125 µm

Core
10 µm

Figure 2.1: Schematic of a telecommunication step index fibre

2.1 Wave equations

The wave equation for light propagation in an isotropic charge free medium is given by [22]:

∇2 ~E − µε
∂2 ~E

∂t2
= −∇

(

1

ε
~E · ~∇ε

)

, (2.1)

where ~E is the electric field vector, µ is the magnetic permeability of the medium and ε
is the electric permittivity of the medium.
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Chapter 2. Propagation of light in optical fibres

Since the fibre is cylindrically symmetric, it is convenient to use the cylindrical coordi-
nate system. The electric and magnetic components of the light field will thus be denoted
Er, Eφ, Ez, Hr, Hφ and Hz, respectively.

Using Maxwell´s equations in cylindrical coordinates [22]

iωεEr = iβHφ + 1
r

∂
∂φHz

iωεEφ = −iβHr − ∂
∂rHz

iωεEz = −1
r

∂
∂φHr + 1

r
∂
∂r (rHφ)

(2.2)

−iωµHr = iβEφ + 1
r

∂
∂φEz

−iωµHφ = −iβEr − ∂
∂rEz

−iωµHz = −1
r

∂
∂φEr + 1

r
∂
∂r (rEφ),

(2.3)

one can express all remaining components in terms of Ez and Hz:

Er =
−iβ

ω2µε− β2
(
∂

∂r
Ez +

ωµ

β

∂

r∂φ
Hz)

Eφ =
−iβ

ω2µε− β2
(
∂

r∂φ
Ez −

ωµ

β

∂

∂r
Hz)

Hr =
−iβ

ω2µε− β2
(
∂

∂r
Hz −

ωε

β

∂

r∂φ
Ez)

Hφ =
−iβ

ω2µε− β2
(
∂

r∂φ
Hz −

ωε

β

∂

∂r
Ez).

(2.4)

The wave equation for the z-component is relatively simple. The field quantities vary as
Ej = Re[E0

j e
iωt] with j ∈ {r, φ, z} and the spatial variation of ε along the propagation axis

is small, so the right hand side of equation (2.1) can be neglected:

(∇2 + k2)

[

Ez

Hz

]

= 0, (2.5)

where k2 = ω2n2/c2 is the wave number and ∇2 is the Laplace operator in cylindrical
coordinates. The time evolution and axial dependence of the electric and magnetic field
can be written as

[

~E(~r, t)
~H(~r, t)

]

=

[

~E(r, φ)
~H(r, φ)

]

ei(ωt−βz), (2.6)

where β is the propagation constant which will play a central role in the description of
the light. Using equation (2.6) the wave equation takes the form

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+ (k2 − β2)

) [

Ez

Hz

]

= 0. (2.7)

With the ansatz
[

Ez

Hz

]

=

[

ψ1

ψ2

]

e±ilφ, l = 0, 1, 2, ... (2.8)

the wave equation then becomes the well known Bessel differential equation

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+ (k2 − β2 − l2

r2
)ψ = 0, (2.9)
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2.2. Propagation of light in a step-index circular waveguide

with ψ=ψ1, ψ2. The solutions to equation (2.9) are the Bessel functions of order l [24].
There are two sets of solutions, depending on whether k2 − β2 is positve or negative. For
k2 − β2 > 0 the general solution to equation (2.9) is given by

ψ(r) = c1Jl(hr) + c2Yl(hr), c1, c2 ∈ C, (2.10)

where Jl and Yl are the Bessel functions of first and second kind of order l and h2 =k2−β2

determining the argument of these functions. The second set of solutions to equation (2.9)
is given for k2 − β2 < 0 by

ψ(r) = c3Il(qr) + c4Kl(qr), c3, c4 ∈ C. (2.11)

Here Il and Kl are the modified Bessel functions of the first and second kind of order l [24]
and q2 = β2 − k2 determines their argument. The general form of the mentioned Bessel
functions are shown in figures 2.2 and 2.3, respectively. The Bessel functions Jl and Yl

are oscillatory functions with Yl showing a singularity for r→0. Il is a strictly increasing
function in r, whereas Kl is strictly decreasing in r.

0.0

0

1.5

1.0

0.5

-0.5

-1.0

-1.5
2 3 4 5

hr
1

J0(hr)

Y0(hr)

Figure 2.2: Plot of the Bessel func-
tions of first and second kind, J0 (blue
solid line) and Y0 (red dashed line)

0.0

0

1.00.5 1.5 2.0 2.5 3.0

2

3

4

qr

1

I0(qr)

K0(qr)

Figure 2.3: Plot of the modified Bessel
functions of first and second kind, I0
(blue solid line) and K0 (red dashed
line)

2.2 Propagation of light in a step-index circular waveguide

Now the effect of boundary conditions in the form of an optical waveguide on a propagating
light field is discussed. Consider a step-index circular waveguide with a core of refractive
index n1 and radius a and a cladding of refractive index n2 and radius b, as shown in
figure 2.4. For a large radius b, the field on the outer cladding surface is vanishing. This
condition is almost always fulfilled in any practical application.
In the core (r<a), the radial dependence of the field is given by equation (2.10). Since

the Bessel function Yl is singular at r = 0 (compare to figure 2.2), c2 = 0 and the field
distribution in the core is given by the Bessel function of first kind Jl(hr):

E±
z (~r, t) = AJl(hr)e

i(ωt±lφ−βz)

H±
z (~r, t) = BJl(hr)e

i(ωt±lφ−βz),
(2.12)
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Chapter 2. Propagation of light in optical fibres

r

a

b

n(r)

n1

n2

Figure 2.4: Schematic step-index fibre profile. Shown is the refractive index of the fibre
over radial distance from the fibre center.

where A and B are normalisation constants. The parameter h is defined as

h2 = n2
1k

2
0 − β2, (2.13)

with k0 = ω/c0 the propagation constant in free space, where c0 is the speed of light in
vacuum. In the cladding region (r > a) the radial dependence of the field is given by
equation (2.11). As the power density of a guided mode is restricted to the fibre, the field
has to drop off for r→∞. From the form of the modified Bessel functions (figure 2.3),
this requires c1 = 0 in equation (2.11) and the field in the cladding shows an evanescent
decay determined solely by Kl(qr):

E±
z (~r, t) = CKl(qr)e

i(ωt±lφ−βz)

H±
z (~r, t) = DKl(qr)e

i(ωt±lφ−βz),
(2.14)

where C and D are again normalisation constants and q is defined as:

q2 = β2 − n2
2k

2
0. (2.15)

From h2 > 0 and q2 > 0 follows n1k0 >β > n2k0. This is evident from the fact, that the
guided light is at least partially confined inside the core with refractive index n1, so the
propagation constant has to take values between n1k0 and n2k0. The “+” and “−” sign
in equations (2.12) and (2.14) represents two degenerate circularly polarised states. The
linear polarisation state for ~E and ~H can be created via superposition of the two states
with circular polarisation. One example for the z-component of the linear polarisation
state then reads:

Elin
z =

1√
2

(E+
z + E−

z )

H lin
z =

1√
2

(H+
z +H−

z )

(2.16)

All field components in the core and cladding regions can now be expressed, using equa-
tions (2.4), (2.12) and (2.14). The field components inside the core (r < a) are then given

6



2.2. Propagation of light in a step-index circular waveguide

by:

Er = − iβ
h2

(

AhJ ′

l (hr) +
iωµl

βr
BJl(hr)

)

ei(ωt+lφ−βz)

Eφ = − iβ
h2

(

il

r
AJl(hr) −

ωµ

β
BhJ ′

l (hr)

)

ei(ωt+lφ−βz)

Ez = AJl(hr)e
i(ωt+lφ−βz)

Hr = − iβ
h2

(

BhJ ′

l (hr) −
iωε1l

βr
AJl(hr)

)

ei(ωt+lφ−βz)

Hφ = − iβ
h2

(

il

r
BJl(hr) +

ωε1
β
AhJ ′

l (hr)

)

ei(ωt+lφ−βz)

Hz = BJl(hr)e
i(ωt+lφ−βz),

(2.17)

where J ′

l (hr) = dJl(hr)/d(hr) is the first derivative of the Bessel function Jl and ε1 =ε0n
2
1.

Analogously, the field components in the cladding (r>a) are:

Er =
iβ

q2

(

CqK ′

l(qr) +
iωµl

βr
DKl(qr)

)

ei(ωt+lφ−βz)

Eφ =
iβ

q2

(

il

r
CKl(qr) −

ωµ

β
DqK ′

l(qr)

)

ei(ωt+lφ−βz)

Ez = CKl(qr)e
i(ωt+lφ−βz)

Hr =
iβ

q2

(

DqK ′

l(qr) −
iωε2l

βr
CKl(qr)

)

ei(ωt+lφ−βz)

Hφ =
iβ

q2

(

il

r
DKl(qr) +

ωε2
β
CqK ′

l(qr)

)

ei(ωt+lφ−βz)

Hz = DKl(qr)e
i(ωt+lφ−βz),

(2.18)

where K ′

l(qr) = dKl(qr)/d(qr) is the first derivative of the Bessel function Kl and ε2 =
ε0n

2
2. To determine the propagation constant, the boundary conditions, that all field

components parallel to the core-cladding boundary, Eφ, Ez, Hφ and Hz must be continuous
at r = a [25], have to be taken into account. Equations (2.17) and (2.18) yield:

AJl(ha) − CKl(qa) = 0

A

(

il

h2a
Jl(ha)

)

+B

(

−ωµ
hβ

J ′

l (ha)

)

+ C

(

il

q2a
Kl(qa)

)

+D

(

−ωµ
qβ
K ′

l(qa)

)

= 0

BJl(ha) −DKl(qa) = 0

A

(

ωε1
hβ

J ′

l (ha)

)

+B

(

il

h2a
Jl(ha)

)

+ C

(

ωε2
qβ

K ′

l(qa)

)

+D

(

il

q2a
Kl(qa)

)

= 0.

(2.19)
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Chapter 2. Propagation of light in optical fibres

This system of equations can be solved for nontrivial values of A,B,C and D using the
coefficient matrix method [26]. The arising condition reads

(

J ′

l (ha)

haJl(ha)
+

K ′

l(qa)

qaKl(qa)

)(

n2
1J

′

l (ha)

haJl(ha)
+
n2

2K
′

l(qa)

qaKl(qa)

)

= l2

[

(

1

qa

)2

+

(

1

ha

)2
]2

(

β

k0

)2

.

(2.20)

Solving for β at a given l and ω, the normalisation constants that determine the strength
of the field components are obtained

C

A
=

Jl(ha)

Kl(qa)

B

A
=

iβl

ωµ

(

1

q2a2
+

1

h2a2

)(

J ′

l (ha)

haJl(ha)
+

K ′

l(qa)

aqKl(qa)

)−1

D

A
=

Jl(ha)

Kl(qa)

B

A
.

(2.21)

Equation (2.20) describes the propagation of light in a step index fibre. In the following,
it is shown, that this equation can be separated into two classes and how the propagation
constants β for these classes can be obtained.

2.3 Propagating modes

Equation (2.20) expresses the boundary conditions of the confinement created by the fibre,
that a light field has to meet in order to propagate. These light fields are called modes of
the fibre. This chapter examines the boundary conditions given by the fibre and describes
the determination of the arising modes and their propagation constants β from the results
of section 2.2.

Equation (2.20) is quadratic in J ′

l (ha)/(haJl(ha)), so solving for this quantity gives two
classes of solutions:

J ′

l (ha)

haJl(ha)
= −

(

n2
1 + n2

2

2n2
1

)

K ′

l

qaKl

±

√

(

n2
1 − n2

2

2n2
1

)2 (

K ′

l

qaKl

)2

+
l2

n2
1

(

β

k0

)2 (

1

q2a2
+

1

h2a2

)2

,

(2.22)

where K ′

l = K ′

l(qa) and Kl = Kl(qa). Using the Bessel function relations

J ′

l (x) = −Jl+1(x) +
l

x
Jl(x)

J ′

l (x) = Jl−1(x) −
l

x
Jl(x),

(2.23)

equation (2.22) separates into two sets of solutions, which are conventionally named EH
modes [22]:

Jl+1(ha)

haJl(ha)
=
n2

1 + n2
2

2n2
1

K ′

l(qa)

qaKl(qa)
+

(

l

(ha)2
−R

)

(2.24)
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2.3. Propagating modes

and HE modes

Jl−1(ha)

haJl(ha)
= −

(

n2
1 + n2

2

2n2
1

)

K ′

l(qa)

qaKl(qa)
+

(

l

(ha)2
−R

)

, (2.25)

where

R =

√

(

n2
1 − n2

2

2n2
1

)2 (

K ′

l(qa)

qaKl(qa)

)2

+
l2

n2
1

(

β

k0

)2 (

1

q2a2
+

1

h2a2

)2

. (2.26)

The designation EH and HE indicates whether the z-component of the electric or the
magnetic field is larger. For the EH mode Ez contributes more to the mode than Hz.
For the HE mode the opposite holds true. Equations (2.24) and (2.25) are transcendental
functions in ha and can only be solved graphically by plotting each side as a function of
ha using

(qa)2 = a2(n2
1 − n2

2)k
2
0 − (ha)2, (2.27)

given by equations (2.15) and (2.13). The parameter V , defined as

V = k0a
√

n2
1 − n2

2 (2.28)

determines how many modes can propagate in a fibre as a function of fibre radius a and
the laser wavelength λ = 2π/k0.

For the case of l = 0 the characteristic equation for the EH modes, equation (2.24)
becomes

J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
, (2.29)

where the relation K ′
0 =−K1 has been used. Entering this result in equations (2.21) yields

A = C = 0. This means that the only non-vanishing field components in equations (2.17)
and (2.18) are Hr, Hz and Eφ. The modes are thus named transversal electric modes (TE).
For l=0 the characteristic equation for the HE modes (equation (2.25)) yields

J1(ha)

haJ0(ha)
= −n

2
2

n2
1

K1(qa)

qaK0(qa)
, (2.30)

with J−1(x)=−J1(x). According to equation (2.21) the components B and D vanish and
the only remaining field components are Er, Ez and Hφ. These modes are therefore called
transversal magnetic (TM) modes.

The graphical solutions of equations (2.29) and (2.30) are shown in figure 2.5. Here,
the right hand side of equations (2.29) and (2.30) is shown together with the left hand
side. Each intersection corresponds to a transversal fibre mode with a propagation constant
resulting from ha. The modes are labelled TM0m and TE0m, respectively, wherem denotes
the different solutions of the modes. Note that the right hand side has a singularity at
ha=V =k0a

√

n2
1 − n2

2 =7.8. For values of ha greater than V , no more intersections can be
found, therefore the number of modes that can propagate through the fibre is determined
by the V parameter. Using the replacement in equation (2.27), only the right hand sides
of the equations (2.29) and (2.30) depends on the V parameter. Thus, when increasing
the V parameter, the singularity is moved to the right. As a result, more intersections
between the curves occur, meaning that more modes can propagate in the fibre. As V ∝a,
the number of modes for a light field of a given wavelength λ can be chosen by selecting a

9



Chapter 2. Propagation of light in optical fibres

fibre of appropriate radius a. From the value of (ha)int, where both curves intersect, the
propagation constant β of the mode can be derived via

β =

√

n2
1k

2
0 −

(ha)int

a
, (2.31)

as follows from the definition of the parameter h. Single mode fibres operate in the regime,

0.0
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0.5

TE01

TE02
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-0.5
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1.0

0.5

TM01

TM02

Figure 2.5: Plot of the right hand side (red, dashed) and left hand side (blue, solid) of
equations (2.29)(left) and (2.30)(right) over the Bessel function argument ha. The dashed
grey line marks the parameter V =7.8. The intersections are the TE0m and TM0m modes,
respectively.

where the V parameter is so small, that only the fundamental HE11 mode propagates. The
single mode condition reads V <2.4. If V is increased, more modes can be guided in the
fibre, as is displayed in figure 2.6. In order to propagate through the fibre the normalised
propagation constant β/k0 must lie between the refractive indices of the cladding n2 and
the core n1.

HE11

TM01

TE01

HE21
HE12

HE31

EH11

β/k0

V = 2πa
λ

√

n2
1 − n2

2
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n2n2
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1
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2 3
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4
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5

Figure 2.6: Normalised propagation constant β/k0 over the V parameter for the first
seven modes in a fibre.
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2.4. Mode propagation in ultra thin optical fibres

Now the case of l = 1 is considered. The analogue treatment of equations (2.24) and
(2.25) as for l= 0 results in the graphs shown in figure 2.7. In this case all six possible
field components are non-vanishing. Hence these modes are neither transversal electric nor
transversal magnetic but hybrid EH and HE modes. They are labelled in the same way as
described earlier for the TM and TE modes as HElm and EHlm with l= 1, where again,
m denotes the different solutions of the modes. Note, that the mode HE11 has no cutoff
value regardless of which V parameter is chosen. It is therefore called the fundamental

mode.

0.0
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1.0

0.5

EH11

EH12
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HE11
HE12 HE13

Figure 2.7: Plot of the right hand side (red, dashed) and left hand side (blue, solid) of
equations (2.24)(left) and (2.25)(right) over the Bessel function argument ha.The dashed
grey line marks the parameter V =7.8. The intersections are the EH1m and HE1m modes,
respectively.

2.4 Mode propagation in ultra thin optical fibres

Now the propagation of modes in a fibre with a diameter smaller than the wavelength
of the guided light is presented. Such fibres can be fabricated by stretching standard
fibres until the core becomes too thin to guide the light and it is therefore guided in the
cladding. This transition takes place for a fibre diameter of less than 7 µm [27]. In such a
configuration the surrounding medium plays the role of the cladding in an untapered fibre,
creating a step-wise decrease of the refractive index at the boundary. As a consequence the
evanescent field now becomes accessible, because it projects over the limits of the fibre, as
is shown in figure 2.8. The equations derived in sections 2.2 and 2.3 remain valid, taking
into account the changed refractive indices.

Introducing more than one mode into the fibre leads to modal dispersion that is based
on the difference in the propagation constants of the travelling mode. This effect is usually
undesirable, for example for telecommunication purposes, as it broadens a communication
signal and thus lowers the information transfer efficiency. However, throughout this thesis,
the effect of mode interference in a fibre and the resulting evanescent field is examined,
so more modes than the fundamental mode must be considered. On the other hand, too
many propagating modes, and therefore too many propagation constants would complicate

11



Chapter 2. Propagation of light in optical fibres

fibre

evanescent field

Figure 2.8: Schematic of the fundamental HE11 mode in a subwavelength diameter fibre
and the quasi-exponentially decaying evanescent field.

matters theoretically and experimentally. The simplest case is, when exactly two modes
are guided by the fibre. Now consider figure 2.6 for a fixed wavelength λ: The higher
order modes TE01, TM01 and HE21 are introduced into the fibre almost at the same fibre
diameter, making it very difficult to separate them experimentally. Furthermore, the fibre
radius should be as small as possible to maximise the evanescent field. For these reasons,
only the fundamental mode HE11 and the three higher order modes TE01, TM01 and HE21

are considered. This section will examine the properties of these four modes.

2.4.1 The fundamental HE11 mode with quasi-linear polarisation

We will start our examination of the mode characteristics with the fundamental HE11

mode in a quasi-linear polarisation state [28]. The field components Elin
r and Elin

φ are

constructed in the same manner as Elin
z (equation (2.16))

Elin
r =

1√
2

(E+
r + E−

r )

Elin
φ =

1√
2

(

E+
φ + E−

φ

)

(2.32)

and transformed into carthesian coordinates

Elin
x = Elin

r cos(φ) − Elin
φ sin(φ)

Elin
y = Elin

r sin(φ) + Elin
φ cos(φ)

Elin
z = Elin

z

(2.33)

Henceforth, the superscript “lin” will be omitted. Using equation (2.33), the field equations
for the electric field in the quasi-linearly polarised HE11 for the propagation in the core

12



2.4. Mode propagation in ultra thin optical fibres

(r<a) are given by:

Ex(r, φ, z, t) = −iA11
β11

2h11
[(1 − s11)J0(h11r) cos(ϕ0)−

−(1 + s11)J2(h11r) cos(2φ− ϕ0)]e
i(ωt−β11z)

Ey(r, φ, z, t) = −iA11
β11

2h11
[(1 − s11)J0(h11r) sin(ϕ0)−

−(1 + s11)J2(h11r) sin(2φ− ϕ0)]e
i(ωt−β11z)

Ez(r, φ, z, t) = A11J1(h11r) cos(φ− ϕ0)e
i(ωt−β11z)

(2.34)

Analogously, the electric field components for the cladding (r>a) are

Ex(r, φ, z, t) = A11
β11

2q11

J1(h11a)
K1(q11a) [(1 − s11)K0(q11r) cos(ϕ0)+

+(1 + s11)K2(q11r) cos(2φ− ϕ0)]e
i(ωt−β11z)

Ey(r, φ, z, t) = A11
β11

2q11

J1(h11a)
K1(q11a) [(1 − s11)K0(q11r) sin(ϕ0)+

+(1 + s11)K2(q11r) sin(2φ− ϕ0)]e
i(ωt−β11z)

Ez(r, φ, z, t) = iA11
J1(h11a)
K1(q11a)K1(q11r) cos(φ− ϕ0)e

i(ωt−β11z),

(2.35)

where

s11 =
[ 1

(h11a)2
+

1

(q11a)2

][ J ′
1(h11a)

h11aJ1(h11a)
+

K ′
1(q11a)

q11aK1(q11a)

]−1
(2.36)

h11 =
√

k2
0n

2
1 − β2

11 (2.37)

q11 =
√

β2
11 − k2

0n
2
2. (2.38)

The angle ϕ0 gives the polarisation direction of the transverse electric field ~E⊥=(Ex, Ey),
with ϕ0 = 0 leading to a polarisation along the x-axis and ϕ0 = π/2 to a polarisation
along the y-axis. Note that the designation “quasi-linear” polarisation stems from the
fact that the z-component has a π/2 phase shift to the perpendicular components. This
results in elliptical polarisation, where Ez is not zero. Figure 2.9 shows the electric field
components ~E⊥ = (Ex, Ey) of the HE11 mode with x-polarisation (ϕ0 = 0) for t= 0 and
z=0. The polarisation direction is the same over the entire field.

The field intensity distribution of the HE11 mode can now be calculated using

I =
1

2
ε0c0| ~E|2, (2.39)

where ε0 is the electric permittivity for vacuum. The equation

| ~E|2 = |Ex|2 + |Ey|2 + |Ez|2 (2.40)

in combination with equations (2.34) and (2.35) yields for the electric field in the core
(r<a):

|E|2 = gin

(

J2
0 (hr) + uJ2

1 (hr) + fJ2
2 (hr)

+
[

uJ2
1 (hr) − fpJ0(hr)J2(hr)

]

cos(2(φ− ϕ0))
) (2.41)
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Figure 2.9: Field plot of the electric field component perpendicular to the fibre axis
~E⊥ = (Ex, Ey) for the HE11 mode at t = 0, z = 0 and for ϕ0 = 0 (see equations (2.34)

and (2.35)). The fibre is indicated by the grey circle. The following parameters have been
used: a=400 nm, n1 =1.452, n2 =1, and λ=850 nm.

and for the cladding (r> a):

|E|2 = gout

(

K2
0 (qr) + wK2

1 (qr) + fK2
2 (qr)

+
[

wK2
1 (qr) + fpK0(qr)K2(qr)

]

cos (2(φ− ϕ0))
)

,
(2.42)

where

u =
2h2

β(1 − s)2
, w =

2q2

β2(1 − s)2

f =
(1 + s)2

(1 − s)2
, fp =

2(1 + s)

(1 − s)

gin =
|A|2
2u

, gout =
|A|2J2

1 (ha)

2wK2
1 (qa)

.

(2.43)

The intensity distribution according to equation (2.39) on the inside and the outside of
a fibre for a linearly polarised HE11 mode with polarisation in x-direction (ϕ0 = 0) in a
vacuum-clad fibre is shown in figure 2.10. The electric field components at the border of
two media with different refractive indices are discontinuous when perpendicular to the
fibre surface and continuous when parallel to the fibre surface [29]. The density plot of the
intensity distribution, figure 2.11 displays the fundamental mode’s bell-shaped intensity
profile.

As can be seen in figure 2.9, the electric field for the linearly polarised HE11 is perpen-
dicular to the fibre surface for φ = 0 and φ = π and parallel for φ = π/2 and φ = 3π/2.
The corresponding intensity distributions are shown in figures 2.12 and 2.13 and display
the discontinuity of the intensity at the transition from the silica fibre with n1 =1.452 to
vacuum with n2 =1 in the first and the continuity in the latter case. The fibre surface is
indicated by the dashed grey line. The evanescent field decays quasi-exponentially with a
decay constant of Λ11 =1/q11 =164 nm for these parameters.
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Figure 2.10: Intensity distribution of
the HE11 mode inside (red) and outside
(green) of a 400 nm fibre and a wave-
length λ = 850 nm. The intensity shows
an azimuthal dependence.

Figure 2.11: Intensity distribution of
the HE11 mode. Bright spots indicate
regions of high intensity. The green cir-
cle indicates the fibre surface. The fibre
parameters are identical to figure 2.10.
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Figure 2.12: Radial intensity distri-
bution of the HE11 mode at φ = 0.
At the fibre-vacuum transition (dashed
grey line), the electric field is perpen-
dicular to the surface (compare to fig-
ure 2.9), so the intensity shows a dis-
continuity.
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Figure 2.13: Radial intensity distri-
bution of the HE11 mode at φ = π/2.
At the fibre-vacuum transition (dashed
grey line), the electric field is parallel to
the surface (compare to figure 2.9), so
the intensity is continuous.
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2.4.2 The HE21 mode with quasi-linear polarisation

The next hybrid mode propagating in the fibre is the HE21, whose properties will be
discussed in this section. Analogue to section 2.4.1 the field equations for the linearly
polarised HE21 mode can be obtained for propagation in the core (r<a) as [22]:

Ex(r, φ, z, t) = iA21
β21

2h21
[(1 − 2s21)J1(h21r) cos(φ+ 2ϕ0) −

−(1 + 2s21)J3(h21r) cos(3φ+ 2ϕ0)] exp[i(ωt− β21z)]

Ey(r, φ, z, t) = −iA21
β21

2h21
[(1 − 2s21)J1(h21r) sin(φ+ 2ϕ0) +

+(1 + 2s21)J3(h21r) sin(3φ+ 2ϕ0)] exp[i(ωt− β21z)]

Ez(r, φ, z, t) = −A21J2(h21r) cos(2(φ+ ϕ0)) exp[i(ωt− β21z)] (2.44)

and for propagation in the cladding (r>a):

Ex(r, φ, z, t) = −A21
β21

2q21

J2(h21a)
K2(q21a) [(1 − 2s21)K1(q21r) cos(φ+ 2ϕ0) +

+(1 + 2s21)K3(q21r) cos(3φ+ 2ϕ0)] exp[i(ωt− β21z)]

Ey(r, φ, z, t) = A21
β21

2q21

J2(h21a)
K2(q21a) [(1 − 2s21)K1(q21r) sin(φ+ 2ϕ0) −

−(1 + 2s21)K3(q21r) sin(3φ+ 2ϕ0)] exp[i(ωt− β21z)]

Ez(r, φ, z, t) = −iA21
J2(h21a)
K2(q21a)K2(q21r) cos(2(φ+ ϕ0)) exp[i(ωt− β21z)]

(2.45)

where,

s21 =
[ 1

(h21a)2
+

1

(q21a)2

][ J ′
2(h21a)

h21aJ2(h21a)
+

K ′
2(q21a)

q21aK2(q21a)

]−1
(2.46)

h21 =
√

k2
0n

2
1 − β2

21 (2.47)

q21 =
√

β2
21 − k2

0n
2
2 (2.48)

Again, ϕ0 gives the polarisation direction of the transverse electric field ~E⊥ = (Ex, Ey),
with ϕ0 = 0 and ϕ0 = π/4 resulting in two orthogonal polarisation states. The electric
field distribution for ~E⊥ = (Ex, Ey) of the linearly polarised HE21 mode with ϕ0 = 0 for
t=0 and z=0 is displayed in figure 2.14. Here, due to the local dependence of the field
vectors, there are four locations each for the field vectors perpendicular and parallel to
the surface. This defines the appearance of the intensity distribution of the field.

With the electric field components the intensity distribution for the linearly polarised
HE21 mode in a vacuum-clad fibre can be calculated. The result is shown for a polarisa-
tion parameter ϕ=0 in figure 2.15. As with the HE11 mode, one finds a strong azimuthal
dependence of the intensity due to the discontinuity of the electric field components per-
pendicular to the fibre surface (compare to equation 2.39). In contrast to the HE11 mode,
the HE21 mode has a donut-shaped intensity profile (see figure 2.16).

Figures 2.17 and 2.18 show the intensity profile for the HE21 mode, where the electric
field is parallel to the fibre surface (φ=π/4) or perpendicular (φ=0) respectively (compare
to figure 2.14). Note that in the first case the transition of the intensity is continuous at
r= a and discontinuous in the second. The fibre surface is indicated by the dashed grey
line. The evanescent field drops off with a decay constant of Λ21 =1/q21 =420 nm for these
parameters.
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Figure 2.14: Field plot of the electric field component perpendicular to the fibre axis
~E⊥ = (Ex, Ey) for the HE21 mode at t = 0, z = 0 and for ϕ0 = 0 (see equations (2.44)

and (2.45)). The fibre is indicated by the grey circle. The parameters are identical to
figure 2.9.
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Figure 2.15: Intensity distribution of
the HE21 mode inside (red) and out-
side (green) of a 400 nm fibre and a
wavelength λ = 850 nm. The intensity
shows an azimuthal dependence due to
the different behaviour of the electric
field components perpendicular and par-
allel to the fibre surface.

Figure 2.16: Intensity distribution of
the HE21 mode. The green circle indi-
cates the fibre surface. The fibre param-
eters are identical to figure 2.15.
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Figure 2.17: Radial intensity distri-
bution of the HE21 mode in the x-
direction. At the fibre-vacuum transi-
tion (dashed grey line), the electric field
is perpendicular to the surface (compare
to figure 2.14), so the intensity shows a
discontinuity.
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Figure 2.18: Radial intensity distribu-
tion of the HE21 mode in the y-direction.
At the fibre-vacuum transition (dashed
grey line), the electric field is parallel to
the surface (compare to figure 2.14), so
the intensity is continuous.

2.4.3 The TE01 mode

The first higher order mode that can propagate in a fibre after the fundamental HE11 is
the TE01. This section will discuss the properties of this mode. As discussed earlier, the
radial and axial components of the electric field vanish. The field equations for the TE01

mode are thus given by [22] for the core (r<a) as

Eφ(r, φ, z, t) = − iωµ
h01

B01J1(h01r) exp[i(ωt− β01z)] (2.49)

Ez(r, φ, z, t) = Er(r, φ, z, t) = 0

and for the cladding (r>a)

Eφ(r, φ, z, t) =
ωµ

q01

J0(h01a)

K0(q01a)
B01K1(q01r) exp[i(ωt− β01z)] (2.50)

Ez(r, φ, z, t) = Er(r, φ, z, t) = 0,

where

h01 =
√

k2
0n

2
1 − β2

01 (2.51)

q01 =
√

β2
01 − k2

0n
2
2. (2.52)

Figure 2.19 shows the electric field ~E = (Ex, Ey, 0) of the TE01 mode for t = 0 and
z=0. The directions of the field vectors depend on the azimuthal angle such that the field
vectors on the fibre surface are always parallel to the border. Since the radial and axial
components of the electric field of the TE01 mode vanish, the mode is linearly polarised.
The intensity distribution inside and outside the fibre for a TE01 mode in a vacuum-clad
fibre is shown in figure 2.20. The intensity forms a donut-shaped pattern, as can be seen
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Figure 2.19: Field plot of the electric field ~E for the TE01 mode at t=0 and z=0 (see
equations (2.49) and (2.50)). The fibre is indicated by the grey circle. The parameters
are identical to figure 2.9.

in figure 2.21. The field components of the TE01 mode are parallel to the fibre surface at
any position, therefore they are all continuous at the fibre-vacuum boundary, so there is no
azimuthal dependency of the intensity (compare to equation 2.39). Figure 2.22 shows the
intensity profile for the TE01 mode for any azimuthal angle φ. The evanescent field decays
quasi-exponentially with a decay constant of Λ01 =1/q01 =277 nm for these parameters.
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Figure 2.20: Intensity distribution of
the TE01 mode inside (red) and outside
(green) of a 400 nm fibre and a wave-
length λ=850 nm.

Figure 2.21: Intensity distribution of
the TE01 mode. The grreen circle indi-
cates the fibre surface. The fibre param-
eters are identical to figure 2.20.
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Figure 2.22: Radial intensity distribution of the TE01 mode. At the fibre-vacuum
transition (dashed grey line), the electric field is parallel to the surface (compare to
figure 2.19), so the intensity is continuous for all angles.

2.4.4 The TM01 mode

The discussion of the properties of the modes concludes with the orthogonal polarisation
state to the TE01 mode, the TM01 mode. Here, the radial component of the electric
field vanishes. The field equations for the TM01 mode are thus given by [22] for core
propagation (r<a)

Er(r, φ, z, t) =
iβ

hTM
ATMJ1(hTMr) exp[i(ωt− βTMz)] (2.53)

Eφ(r, φ, z, t) = 0

Ez(r, φ, z, t) = ATMJ0(hTMr) exp[i(ωt− βTMz)]

and for cladding propagation (r>a):

Er(r, φ, z, t) = − iβ

qTM

J0(hTMa)

K0(qTMa)
ATMK1(qTMr) exp[i(ωt− βTMz)] (2.54)

Eφ(r, φ, z, t) = 0

Ez(r, φ, z, t) =
J0(hTMa)

K0(qTMa)
ATMK0(qTMr) exp[i(ωt− βTMz)],

where

hTM =
√

k2
0n

2
1 − β2

TM (2.55)

qTM =
√

β2
TM − k2

0n
2
2. (2.56)

Figure 2.23 shows the electric field components ~E⊥ =(Ex, Ey) of the linearly polarised
TM01 mode for t = 0 and z = 0. As the TM01 is in the orthogonal polarisation state
to the TE01, all the field vectors point in radial direction, so at the surface all field
vectors are perpendicular to the border. Figure 2.24 shows the intensity distribution
for the TM01 mode inside (dark, red) and outside (bright, green) an ultra thin fibre
surrounded by vacuum. As in the HE11 mode, the intensity distribution exhibits a bell-
shaped distribution (see figure 2.25). Figure 2.26 shows the intensity profile for the TM01
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Figure 2.23: Field plot of the electric field component perpendicular to the fibre axis
~E⊥ = (Ex, Ey) for the TM01 mode at t=0 and z=0 (see equations (2.53) and (2.54)).

The fibre is indicated by the grey circle. The parameters are identical to figure 2.9.

mode. As with the TE01 mode, there is no azimuthal dependency of the field. As the
field is perpendicular to the vacuum-fibre border, the intensity is discontinuous at the
transition from fibre to vacuum for any azimuthal angle φ. The evanescent field decays
quasi-exponentially with a decay constant of ΛTM =1/qTM =352 nm for these parameters.
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Figure 2.24: Intensity distribution of
the TM01 mode inside (red) and outside
(green) of a 400 nm fibre and a wave-
length λ=850 nm.

Figure 2.25: Intensity distribution of
the TM01 mode. The green circle indi-
cates the fibre surface. The fibre param-
eters are identical to figure 2.24.
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Figure 2.26: Radial intensity distribution of the TM01 mode. At the fibre-vacuum
transition (dashed grey line), the electric field is perpendicular to the surface (compare
to figure 2.23), so the intensity shows a discontinuity for any angle.
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3 Mode Interference Traps

Ultra thin fibres and their evanescent fields discussed in chapter 2 have found various
applications in optics, for example for coupling light in and out of microresonators [30]
or for spectroscopy of atoms [31]. Furthermore, a trap for cold atoms using two laser
wavelengths propagating in an ultra thin fibre has been proposed [18] and has just recently
been experimentally realised in our research group [19].

The basic principle of this trap is to use the superposition of two light fields in an
ultra thin single-mode fibre, one blue-detuned and the other red-detuned with respect
to the excitation transition of the atoms used, in this case Caesium. When an atom
is placed in the evanescent light fields, it experiences the optical dipole force [32]. Red-
detuned light creates an attractive and blue-detuned light a repulsive potential. The decay
length of the fields outside the fibre is wavelength dependent, with the red-detuned field
(longer wavelength) decaying over a longer distance than the blue-detuned field (shorter
wavelength). The superposition of a long ranged attractive potential and a short ranged
repulsive potential can thus create a potential well, where laser cooled cesium atoms can
be trapped [18]. The two-colour trap with linearly polarised light confines the atoms in
azimutal and radial direction. To confine the atoms in three dimensions the evanescent
field distribution is modulated along the fibre by creating a standing wave pattern with
the red-detuned light field. Furthermore, the two-color trap traps the atoms in regions
with high red light intensity, which shifts the transition frequencies to those of the dressed

states [32] due to the AC stark shift. As a consequence, for example in a spectroscopy
experiment one would have to readjust the frequency of the probing light to match the
transition frequency. Another experimentally challenging issue of the two-colour trap is
the fact, that it is created by two large potentials, that partially compensate each other
to form a relatively small well. Therefore, the trap depth is very susceptible to even small
relative fluctuations in the power of one of the light fields: small relative fluctuations in
the field power result in a large absolute fluctuation of the trap depth.

In this chapter, a similar idea is presented, that is, to create a potential minimum in
the evanescent field of an ultra thin fibre, but with only a blue-detuned laser propagating
in two different transversal modes (see chapter 2). If two modes co-propagate in the fibre,
they form an interference pattern along the fibre because of their different propagation
constants. As the main atom photon interaction here is the optical dipole force, which
creates a repulsive potential for blue-detuned light, the atoms are confined in regions
of low light intensity, that is, locations where the interference is maximally destructive.
Furthermore, due to the different decay constants of the modes, one can displace the
potential minimum in radial direction from the fibre by choosing the appropriate intensity
distribution between the modes. Finally, by choosing the right polarisation direction, the
azimuthal position of the trapping minima can be chosen. As a result, an array of traps,
that confine the atoms in all three dimensions can be created.

The multimode trap circumvents the discussed drawbacks of the two-color trap. The
interference of two co-propagating modes offers three dimensional confinement due to their

23



Chapter 3. Mode Interference Traps

intensity and polarisation characteristics. Furthermore, as the atoms are caught in regions
with zero or low light intensity, the transition frequency of the atoms are not shifted. It
will also be shown that the multimode trap is robust against typical power fluctuations
that occur in experimental setups.

This chapter will give three possible trap configurations which arise from the follow-
ing combinations of the first four modes in the fibre: HE11+TE01, HE11+HE21 and
HE21+TE01. Also, a short analysis of why the TM01 cannot be used to create a good
trap will be presented.

3.1 The optical potential

The discussion is started with a treatment of the optical potential experienced by an
atom in the evanescent field around an TOF. There are two main contributions, that
are considered here: The optical dipole force on the one hand, which creates either an
attractive or repulsive potential, depending on the detuning of the guided light and the
van der Waals surface potential on the other hand, that attracts atoms to the fibre surface.

First, the contribution of the optical dipole force to the potential is examined. For an
atom in the ground state in an off-resonance field the optical potential is given by [25]:

Uopt = −1

4
α|E|2, (3.1)

Where α= α(ω) is the real part of the atomic polarisability at the optical frequency ω.
Consider a multilevel atom with a number j of dipole transitions from the ground state
to the excited states. Here, α(ω) is given by

α(ω) = 2πε0c
3
∑

j

2J ′ + 1

2J + 1

(ω2
j − ω2)Γj/ω

2
j

(ω2
j − ω2)2 + Γ2

j (ω
3/ω2

j )
2
, (3.2)

where ωj is the angular frequency of the transition j from the energy state Eg to state Ej ,
ωj = (Ej − Eg)/~, ω is the angular frequency of the light field and J and J ′ denotes the
total electronic angular momentum of the transition. Γj is the decay rate of transition j.
The values for this transitions can be found in [33].

Equations (3.1) and (3.2) correspond to a semiclassical interpretation of the atom-field-
interaction [25]. In a quantum-mechanical interpretation, the dipole force arises from the
position dependent shifts of the energy levels of the atoms in the presence of an external
field. Consider a two-level atom with ground state |g〉 and excited state |e〉 and an optical
transition frequency ωa in field free space, as displayed in figure 3.1. In the presence of
a light field, the energy levels are shifted due to the AC Stark effect. In the case of a far
detuned light field, the lower level is shifted by [34]:

U1 =
Ω2

4∆
(3.3)

and the upper level is shifted by:

U2 = −Ω2

4∆
, (3.4)

where ∆ = ω − ωa is the detuning of the field frequency ω from the atomic transition
frequency ωa. Ω is the Rabi frequency Ω = d|E|/2~, with d being the projected dipole
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3.1. The optical potential

moment onto the axis of the field |E|. The process is shown in figure 3.1. For red detuned
light (∆< 0), the ground state |g〉 is lowered and the excited state |e〉 is raised in energy.
This causes atoms in the ground state to move towards regions of higher intensity (b).
This can be used for example in optical tweezers [35].

In the case of a blue detuned field (∆ > 0), the ground state is raised and the excited
state is lowered in energy, so ground state atoms will be repelled by the light field (c).
This has found applications, for example in atomic mirrors [7].

|e〉

|g〉

(a) (b) (c)

~ωa

U1

U2

x

E

Figure 3.1: Schematic of the AC-Stark-Shift in a two-level system with ground state |g〉
and excited state |e〉. In the absence of a light field (a) the atomic transition frequency
is ~ωa. In the presence of a red-detuned light field (b), the atomic ground state |g〉 is
lowered in energy by U1 and the excited state |e〉 increases in energy by U2, proportional
to the intensity of the light field. Darker regions indicate locations of higher intensity.
For a blue-detuned light field (c), the ground state |g〉 increases in energy, whereas the
excited state |e〉 is lowered.

When the atoms are placed at the vicinity of a dielectric , the van der Waals potential
also has to be taken into account. This is given by [36] as

VvdW(r) =
~

2π3ε0

∞
∑

l=−∞

∫

∞

0

(

k2K ′2
l (kr) + (k2 + l2/r2)K2

l (kr)
)

×

×
(

∫

∞

0
α(iξ)Gl(iξ)dξ

)

dk,

(3.5)

where

Gl(ω) =
(ε(ω) − ε0)Il(ka)I

′

l(ka)

ε0Il(ka)K
′

l(ka) − ε(ω)I ′l(ka)Kl(ka)
. (3.6)

Here, ε0 is the dielectric constant in vacuum, k the wave number in vacuum, Il(x) is the
modified Bessel function of first kind of order l and Kl(x) is the modified Bessel function
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Chapter 3. Mode Interference Traps

of second kind of order l, with I ′l(x) and K ′

l(x) denoting their derivatives with respect to x.
Instead of calculating the potential of a cylindrical surface, the fibre can be approximated
as an infinite planar surface for very small distances. It can be shown that for an atom-
fibre distance of fewer than 100 nm, the difference in the van der Waals potential of a silica
fibre Vfibre and a infinite planar surface approximation Vplanar is less than 10% [37]. This
accuracy is sufficient for the configurations considered here, as the evanescent field induced
dipole force is the stronger effect at larger distances and the van der Waals potential only
becomes dominant at very short distances from the fibre. In this approximation the van
der Waals potential is given by

VvdW = −C3

r3
, (3.7)

where r is the distance between the atom and the surface and

C3 =
~

16π2ε0

∫

∞

0
α(iξ)

ε(iξ) − ε0
ε0 + ε(iξ)

dξ, (3.8)

given by [18]. For a caesium atom in the ground state C3 is found to be C3 = 5.6×
10−49 J m3 [37].
The total potential is thus given by equations (3.1) and (3.7) as:

Utot = Uopt + VvdW. (3.9)

Equation (3.9) has been used for the calculation of the multimode traps presented in the
following sections.

3.2 HE11+TE01 trap

This section introduces the different multimode traps, that can be created by two co-
propagating modes in an ultra thin fibre. The general process of trap creation is discussed
for the example of the trap of the quasi-linearly polarised fundamental mode HE11 and
the TE01 mode. Then the features of this trap are investigated. Two other traps, formed
by the HE11+TE01 and the TE01+HE21 modes are then analysed and finally a short
comparison of the results will be given.

This section gives the basic creation process for the HE11+TE01 trap for caesium atoms
with a kinetic energy corresponding to 100 µK, that can be analogously applied to the
other multimode traps and introduces the leading arising quantities.

Creation of the trap

In this section the basic trap formation process for multimode traps is discussed for the
example of the HE11+TE01 trap. However, it can be transferred analogously to any of
the multimode traps discussed in this chapter. For the formation of the trap a tapered
optical fibre with a radius of 400 nm and a propagating light field with a wavelength
of about 850 nm is considered. This wavelength is blue-detuned with respect to the D2

transition line in caesium from the 62P3/2 to the 62S1/2 state with a transition wavelength
of 852.113 nm, which has been used as a model system (see appendix A.1). According to
equation (2.28), this configuration results in a V parameter of V = 3.11. This parameter
was chosen, so that only the four lowest order modes can propagate in the fibre as can
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Figure 3.2: Normalised propagation constant β/k0 over the V parameter for the first
seven modes in a fibre. The dashed vertical line is located at V =3.11 which corresponds
to the three trapping configurations around a pure silica fibre with radius a = 400 nm
and a laser wavelength of 850 nm considered in this chapter.

be seen in figure 3.2. At this V parameter the HE11 and TE01 differ significantly in
their propagation constant. Since the electric fields of the modes vary with ~E ∝ eωt−βz

(compare to equation (2.6)), a difference in the propagation constant β thus causes a shift
of the relative phase between the modes. This creates an interference pattern along the
fibre axis, as shown in figure 3.3.

(1)

(2)

β1

β2

Figure 3.3: Intensity distribution of two co-propagating modes along the fibre axis. Due
to the different propagation constants β1 and β2 an interference pattern occurs. Dark
blue regions indicate regions of high blue-detuned intensity, light regions show regions of
destructive interference and therefore low intensity. The grey spheres display atoms. In
the high intensity region (1) they move towards regions of lower intensity due to the optical
dipole force and settle in the minimum that is created along the radial direction (2).
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Chapter 3. Mode Interference Traps

Due to the repulsive optical dipole potential (compare to section 3.1), atoms in the
evanescent field are confined axially in regions of low blue detuned light intensity. Az-
imuthal confinement is achieved by the different electric field distribution of the modes.
The fields can only cancel where the field vectors point to opposite directions. For the
superposition of the HE11 (figure 2.9) and the TE01 (figure 2.19) the location where both
fields cancel is at φ=π/2 (compare to figures 2.9 and 2.19). For the fields to completely
cancel, the direction of the field vectors has to be opposed, but the absolute value has
to be the same. Along the radial direction the evanescent fields of the different modes
decay differently. This is depicted in figure 3.4 for the superposition of the HE11 and the
TE01, with 72% of the field’s power in the HE11 mode and 28% in the TE01 mode. The
parameter τ is defined as the fraction of total laser power P travelling in the HE11 mode,
so here τ = 0.72. As the HE11 mode carries more intensity but decays quicker than the
TE01 mode (Λ11 = 1/q11 = 164 nm, Λ01 = 1/q01 = 277 nm), about 200 nm from the fibre
surface, the intensity curves intersect. Here, the fields can optimally cancel, if the field
vectors point into opposite directions.
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Figure 3.4: Two co-propagating modes in the fibre. The grey lines indicate the fibre
surface. Note, that due to the different decay lengths of the modes, there is one location,
where the intensities of both modes are equal. This is where the fields can optimally
cancel.

In summary: Potential minima arise where the electric field components cancel each
other due to the difference in the polarisation, propagation constant and decay length of
the two modes. The periodicity of the interference pattern created by two modes with the
propagation constants β1 and β2 is determined by the beat length between the modes

z0 =
2π

β1 − β2
. (3.10)

That way an array of microtraps is created along the fibre waist with a trapping site
distance of z0. For the HE11 and the TE01 in this configuration the beat length is found
to be z0 =4.61 µm, leading to an array of about 1000 potential trapping sites per side for
a typical waist length for the tapered fibre of about 5 mm.
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3.2. HE11+TE01 trap

Trapping lifetime

One of the defining attributes of any atom trap is the trapping lifetime, that is, how long
trapped atoms will remain inside the trap. Atoms leave the trap due to background colli-
sions with the surrounding gas atoms, photon scattering and tunneling. As will be shown,
the trap parameters are chosen such that atom loss due to tunneling can be neglected.
The trapping lifetime is therefore restricted by the gas pressure of the experimental setup
and the average light intensity the atoms experience. It has been shown by [38], that for
a vacuum of 2×10−10 Torr, the lifetime due to background scattering is about 100 s.

The HE11+TE01 trap traps atoms in regions with low intensity. As will be shown, the
field at the trapping minimum is zero. However, laser cooled atoms have a typical kinetic
energy corresponding to several ten µK. Thus they will still move in the trap. This oscil-
lation is depicted schematically in figure 3.5. Using a harmonic potential approximation,

dr

dz

p
ot

en
ti

al

Figure 3.5: Harmonic approximation of the trap potential, here in the r-z-plane. The
atom oscillates in the trap with amplitudes dr and dz. At the center of the trap the
intensity is minimal, indicated by the white background. However, when the atom is
displaced from the centre, it is affected by the field (darker blue region). The confinement
in φ-direction is not depicted.

the atom oscillates in each direction with an amplitude di (i∈{r, φ, z}) of the trap exten-
sion in the respective direction. The corresponding frequency is ωi =

√

ki/matom with ki

the spring constant for the respective direction and matom the mass of the atoms to be
trapped. The trap minimum is located at minimal intensity. As soon as the atom leaves
the centre of the trap, it experiences a non-zero field intensity. Here, heating by photon
scattering occurs and causes the atoms to leave the trap. In order to calculate the trapping
time, the rate of atom-photon scattering in the region of oscillation is calculated by fitting
the minimum of the potential with a parabola. By determining the mean intensity the
atom experiences by oscillating in the trap Emean, one finds the scattering rate Rs per
trap depth U by integrating over all oscillation modes [18]:

Rs

U
=
κE2

mean

4~U
, (3.11)

where κ is the imaginary part of the atomic polarisability and ~ is Planck’s constant. With
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Chapter 3. Mode Interference Traps

every photon absorbed the atom gains energy in the form of recoil energy Erec

Erec =
(~k0)

2

2matom
. (3.12)

The trapping lifetime tt due to recoil heating is therefore given by

tt =
U

2ErecRs
. (3.13)

The parameters for the multimode traps are chosen to result in a trapping lifetime of
tt≈100 s and a trap depth of U≈1 mK.

Properties of the HE11+TE01 trap

The formulas derived in the previous sections are now applied to the HE11+TE01 config-
uration. The used laser power is 50 mW at a wavelength of 850.5 nm in a fibre of pure
silica (n1 =1.452) with a waist radius of 400 nm surrounded by vacuum (n2 =1). This is
well below the damage threshold for such a fibre: It has been experimentally shown that
appropriately produced fibres with an even smaller radius of 250 nm can carry more than
300 mW of power even in vacuum without fusing [31]. With 72% of the power propagating
in the HE11 mode and 28% in the TE01 mode, a trap for cold caesium atoms with a trap-
ping minimum at 134 nm from the fibre surface is created. The parameters are chosen, so
that the depth of the trap is about 1 mK and the trapping lifetime resulting from heating
due to spontaneous scattering of photons exceeds 100 seconds for caesium atoms with an
initial kinetic energy corresponding to 100 µK.

Figure 3.6 shows a contour plot of the trapping potential including the van der Waals sur-
face potential [39] in the plane of the potential minimum at the axial position z=4.61 µm,
where z = 0 denotes the beginning of the fibre waist. For the calculations, the van der
Waals potential of an infinite planar silica surface is used [18]. The trapping minimum
in azimuthal direction is located at φ = π/2, r = 534 nm and z = 4.61 µm (compare to
figures 2.9 and 2.19). Here, the polarisation of the two modes matches and the interfer-
ence is maximally destructive. Note that while destructive interference takes place at an
azimuthal angle φ=π/2, there is constructive interference at φ=3π/2. When varying the
polarisation angle (parameter ϕ0 in equations (2.34) and (2.35)), the azimuthal position
of the trap can be varied because the potential has a cos2(φ − ϕ0) dependence. Using
a harmonic potential approximation, the azimuthal oscillation frequency is calculated to
be ωφ/2π ≈ 1.07 MHz. The extension of the trap volume in the azimuthal direction for
caesium atoms with a kinetic energy corresponding to 100 µK is dφ =34 nm.

A contour plot of the trapping potential in the plane x = 0 is shown in figure 3.7.
The interference between the modes creates an array of traps in the axial direction with
a periodicity given by the beat length of the two co-propagating modes, z0 = 4.61 µm.
In addition, there is a second array of traps on the opposite side of the fibre with same
periodicity which is shifted by z0/2, that is created when the linearly oscillating electric
field components cancel each other, with one of the fields phase-shifted by φ = π with
respect to the superposition at z=0. The potential has a sin2((β11 − β01)z) dependence
in the axial direction. The axial trapping frequency is calculated to be ωz/2π ≈ 528 kHz.
The extension of the trap volume in this direction for caesium atoms with a kinetic energy
corresponding to 100 µK is dz =68 nm.
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Figure 3.6: Contour plot of the
HE11+TE01 trap in the plane z = 4.61 µm
for the following parameters: P = 50 mW,
τ = 0.72, λ = 850.5 nm, a = 400 nm,
n1 = 1.452, and n2 = 1. The fibre surface
is indicated by the grey circle and the
equipotential lines are labelled in mK.
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Figure 3.7: Contour plot of the
HE11+TE01 trap in the plane x = 0 for
the same parameters as in figure 3.6. The
fibre surface is indicated by the two vertical
grey lines and the equipotential lines are
labelled in mK.
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Figure 3.8: Plot of the trapping potential versus the position along the y axis for
P11 = τ0P (solid line), P11 = (τ0 + σ)P (dotted line) and P11 = (τ0 − σ)P (dashed line).
The parameters are the same as in figure 3.6. The fibre surface is indicated by the vertical
grey line.
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The trapping potential along the y-axis is depicted in figure 3.8. The solid black line
corresponds to the sum of the light-induced potential and the van der Waals potential when
72% of the power propagates in the HE11 mode. The dashed and dotted lines correspond to
the same potential assuming slightly different power distributions between the modes: The
fraction of the total laser power P that is transmitted through the fibre by the HE11 mode is
described by the parameter τ , such that P11 =τP and P01 =(1−τ)P , where P11 denotes the
power propagating in the HE11 mode, and P01 the power propagating in the TE01 mode.
Let us now assume, that the power distribution between the modes has experimental
uncertainties. For this purpose, the standard deviation σ of a binomial distribution is
used. Assuming τ=τ0 ± σ can be controlled with a precision of σ=0.05

√

τ0(1 − τ0), that
is, σ=0.025 for τ0 =0.5. For the case of τ0 =0.72, the power distribution between the modes
τ would then be controlled within ±0.022. This value is considered to be a conservative
assumption for the precision of the power distribution between the two modes. For the
case of P11 = (τ0 + σ)P the trap is 27% shallower compared to the trap for P11 = τ0P ,
whereas for the case of P11 =(τ0 − σ)P the trap is 30% deeper. However, while the trap
depth increases when decreasing τ , the trapping minimum is also shifted towards the fibre.
When the trapping minimum is shifted too close towards the fibre surface, the van der
Waals potential, that is negligible further out is the dominant effect and the potential
barrier in the direction towards the fibre decreases rapidly. Furthermore, the potential
barrier also becomes narrower which would eventually lead to tunnelling of the atoms out
of the trap. The parameters presented here have been chosen in such a way that even with
realistic experimental uncertainties the trap remains sufficiently deep and the tunnelling
is negligible compared to the trapping lifetime. Note that the total potential is negative at
its minimum due to the influence of the van der Waals potential. Since the z-component
of the electric field in the HE11 mode vanishes at φ = π/2, the polarisation in the two
modes perfectly matches at the intensity minimum and the van der Waals potential at
this position is the only influence on the atoms. The radial trapping frequency is calculated
to be ωr/2π ≈ 770 kHz and the extension of the trapping volume in the radial direction
for caesium atoms with a kinetic energy corresponding to a temperature of 100 µK is
dr =47 nm.

The calculations of the lifetime have been performed assuming caesium atoms with an
initial kinetic energy equivalent to 100 µK. Since the trap is not perfectly symmetric along
the y-axis (see figure 3.8), one has to account for this by biasing the oscillation amplitude
in this direction. Using this method, the scattering rate is found to be 39 photons/second
and the trapping lifetime is 108 seconds (see equations (3.11) to (3.13)).

3.3 HE11+HE21 trap

This section introduces the trap arising from HE11 and the HE21 mode. It is created
using P = 25 mW of light at a wavelength of λ = 849.0 nm and a pure silica fibre of
400 nm radius. The polarisation orientation of the modes has been chosen such that the
trap forms at φ= 0. This corresponds to ϕ0 = φ0 = 0 in equations (2.34), (2.35), (2.44)
and (2.45), respectively. With 84% of the power propagating in the HE11 mode, that is,
τ = 0.84, a trap at 152 nm from the fibre surface is formed. The depth of the trap is
U = 1.2 mK and the trapping lifetime resulting from spontaneous scattering of photons
exceeds tt =100 seconds for caesium atoms with a kinetic energy corresponding to 100 µK.
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A contour plot of the trapping potential in the x-y-plane at the axial position of the
potential minimum, z=3.45 µm is shown in figure 3.9. As the direction towards minimal
barrier is not in r-direction, the two dashed lines with their origin at the center of the
trap indicate the two directions with minimal potential barrier which, by consequence,
determine the depth of the trap (see figure 3.12). The trapping minimum is at φ = 0,
r = 552 nm and z = 3.45 µm. It lies on the x-axis because here the polarisation of the
two modes matches and the interference is maximally destructive (compare figures 2.9
and 2.14). However, unlike the HE11+TE01 trap considered in section 3.2, the polarisation
matching between the two modes is not perfect. This is due to the fact that the ratio
Ez/| ~E⊥| at the trapping minimum is different for the two modes and, therefore, the electric
fields never cancel completely. This stems from the orientation of ~E⊥ at the position of
the trap: When the transverse electric field is perpendicular to the fibre surface, a non-
vanishing z-component of the electric field arises [40]. This polarisation configuration
results in a more intense evanescent field allowing the creation of a trap comparable to the
one presented in section 3.2 with only 50% of the power. As a drawback, the intensity at
the trapping minimum is not zero. When varying the polarisation angles (parameters ϕ0

and φ0 in equations. (2.34), (2.35), (2.44) and (2.45)), the azimuthal position of the trap
can be varied. The azimuthal oscillation frequency is ωφ/2π ≈ 330 kHz. The extension of
the trapping volume in the azimuthal direction for caesium atoms with a kinetic energy
corresponding to 100 µK is dφ =104 nm.

Figure 3.10 shows the contour plot of the trapping potential in the plane y=0. Like in
the HE11+TE01 trap, the interference between the modes creates an axial array of traps
with a periodicity given by the beat length of the two co-propagating modes, z0 =3.45 µm.
Again, there is a second array of traps at the opposite side of the fibre with the same
periodicity and shifted by z0/2. The potential has a sin2((β11 − β21)z) dependency in the
axial direction plus the offset due to the unbalanced z-components of the electric fields of
the two modes. The axial trapping frequency is calculated to be ωz/2π ≈ 610 kHz. The
extension of the trapping volume in the axial direction for caesium atoms with a kinetic
energy corresponding to 100 µK is dz =58 nm.

The trapping potential versus the position along the x-axis is shown in figure 3.11 for
P11 = τ0P , P11 =(τ0 − σ)P , and P11 =(τ0 + σ)P , with τ0 =0.84 and σ=0.018. P denotes
the total power propagating through the fibre and P11 the power propagating in the HE11

mode. Again, τ is assumed to be controlled with a precision of σ = 0.05
√

τ0(1 − τ0). The
light-induced potential does not vanish at the minimum due to the mismatch in the polari-
sation between the two modes. This leads to a higher scattering rate of 57 photons/second
compared to the HE11+TE01 trap. The radial trapping frequency is ωr/2π ≈ 970 kHz.
The extension of the trapping volume in the radial direction for caesium atoms with a
kinetic energy corresponding to 100 µK is dr = 37 nm. Note, that the depth of the po-
tential shown in figure 3.11 does not correspond to the depth of the trap because, as
mentioned above, the direction with minimal potential barrier for the atoms is not radial.
Figure 3.12 therefore shows the trapping potential against the position along the direction
with minimal potential barrier. The solid, dashed and dotted lines have been calculated
for the same values of τ as in figure 3.11. The direction with minimal potential barrier l
is indicated as the straight line that connects the potential minimum in the trap with the
lowest local potential maximum. Since l depends on τ and has, per definition, its origin
at the trapping minimum, the three minima of the potential profiles shown in figure 3.12
are located at l = 0. The trap depth is then found to be U = 1.2 mK. For the case of
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Figure 3.9: Contour plot of the
HE11+HE21 trap in the plane z = 3.45 µm
for the following parameters: P = 25 mW,
τ = 0.84, λ = 849.0 nm, a = 400 nm,
n1 = 1.452, and n2 = 1. The fibre surface
is indicated by the grey circle and the
equipotential lines are labelled in mK.
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Figure 3.10: Contour plot of the
HE11+HE21 trap in the plane y = 0 for
the same parameters as in figure 3.9. The
fibre surface is indicated by the two vertical
grey lines and the equipotential lines are
labelled in mK.
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Figure 3.11: Plot of the trapping poten-
tial versus the position along the x axis for
P11 =τ0P (solid line), P11 =(τ0+σ)P (dotted
line) and P11 =(τ0 − σ)P (dashed line). The
parameters are the same as in figure 3.9. The
fibre surface is indicated by the vertical grey
line.
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Figure 3.12: Plot of the trapping poten-
tial versus the position along the direction of
minimal potential barrier l(τ) for P11 = τ0P
(solid line), P11 =(τ0 +σ)P (dotted line) and
P11 = (τ0 − σ)P (dashed line). The parame-
ters are the same as in figure 3.9.
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3.4. HE21+TE01 trap

P11 =(τ0 +σ)P (dotted line) the trap is 33% shallower compared to the trap for P11 =τ0P
(solid line), whereas for the case of P11 =(τ0 − σ)P (dashed line) the trap is 17% deeper.
Finally, a trapping lifetime of 106 seconds is calculated for caesium atoms with an initial
kinetic energy corresponding to 100 µK. Again, the tunnelling through the potential bar-
rier in the radial direction towards the fibre (see figure 3.11) is negligible compared to the
lifetime of the atoms in the trap.

3.4 HE21+TE01 trap

Finally, the trap arising from the interference between the TE01 and the HE21 mode is
introduced. It can be created using 30 mW of light at a wavelength of 851.0 nm and
the same fibre parameters as in the above sections. The polarisation orientation of the
modes has been chosen such that the trap forms at φ = 3π/4 and at φ = −π/4. This
trapping configuration has two trapping minima in the same z-plane, whereas in the
traps discussed before there is only one trapping minimum per z-plane. The polarisation
orientation corresponds to φ0 =0 in equations (2.44) and (2.45) for the HE21 mode. With
68% of the power propagating in the TE01 mode, that is, τ=0.68, a trap for cold caesium
atoms with its trapping minimum at 184 nm from the fibre surface is formed. The depth
of the trap is U=1.4 mK and, like in the above cases, the trapping lifetime resulting from
spontaneous scattering of photons exceeds 100 seconds for caesium atoms with an initial
kinetic energy corresponding to 100 µK.

The trap in the x-y-plane at the position of minimal potential z=13.67 µm is depicted
in figure 3.13. Here, the trapping minima are shown to be at φ = 3π/4, r = 584 nm
and at φ=−π/4, r=584 nm, because the polarisation in the two modes matches at these
positions (compare to figures 2.14 and 2.19). Like for the HE11+TE01 case, the polarisation
matching between the two modes is perfect because the z-component of the electric field in
the HE21 mode vanishes at the position of the trap. The azimuthal oscillation frequency
is calculated to be ωφ/2π ≈ 2.60 MHz. The extension of the trapping volume in the
azimuthal direction for caesium atoms with a kinetic energy corresponding to 100 µK is
dφ =14 nm. This strong confinement in the azimuthal direction stems from the behaviour
of the polarisation of the electric field in the two modes at the position of the trap. When
increasing φ, the polarisation of the HE21 mode rotates clockwise, whereas the polarisation
of the TE01 mode rotates counterclockwise. This produces a fast polarisation mismatch
between the two fields when displacing the position along the azimuthal direction and
thereby a steep increase of the potential.

A contour plot of the trap in the z-d-plane, where d=(y− x)/
√

2 is the radial direction
from the fibre that passes through the trapping minima is shown in figure 3.14. The
interference between the modes creates four axial arrays of traps with a periodicity of
z0 =13.67 µm. The two trapping minima shown in figure 3.13 show the azimuthal positions
of one pair of arrays. The second pair is shifted with respect to the first one by φ=π/2
and z = z0/2. We calculate the axial trapping frequency to be ωz/2π ≈ 204 kHz. The
extension of the trapping volume in the axial direction for caesium atoms with a kinetic
energy corresponding to 100 µK is dz =174 nm. This elongation of the trap compared to
the traps presented in sections 3.2 and 3.3 stems from the large beat length between the
TE01 and the HE21 mode.

Figure 3.15 depicts the radial trapping potential in the above defined z-d-plane for
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Figure 3.13: Contour plot of the
TE01+HE21 trap in the plane z = 13.67 µm
for the following parameters: P = 30 mW,
τ = 0.68, λ = 851.0 nm, a = 400 nm,
n1 = 1.452, and n2 = 1. The fibre surface
is indicated by the grey circle and the
equipotential lines are labelled in mK. The
dashed line gives the direction of minimal
potential barrier.
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Figure 3.14: Contour plot of the
TE01+HE21 trap in the z-d−plane, where
d = (y − x)/

√
2 for the same parameters as

in figure 3.13. The fibre surface is indicated
by the two vertical grey lines and the
equipotential lines are labelled in mK.
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Figure 3.15: Plot of the trapping potential versus the position along the d=(y−x)/
√

2
axis for P11 =τ0P (solid line), P11 =(τ0 + σ)P (dotted line) and P11 = (τ0 − σ)P (dashed
line). The parameters are the same as in figure 3.13. The fibre surface is indicated by
the vertical grey line.
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3.5. Traps using the TM01 mode

P01 = τ0P , P01 = (τ0 − σ)P , and P01 = (τ0 + σ)P , with τ0 = 0.68 and σ = 0.023. Again,
τ is assumed to be controlled with a precision of σ = 0.05

√

τ0(1 − τ0). For the case of
P11 =(τ0 + σ)P the trap is 25% shallower compared to the trap for P11 =τ0P , whereas for
the case of P11 = (τ0 − σ)P the trap is 36% deeper. Despite the vanishing light-induced
potential at the trapping minimum, the total potential does not become significantly
negative because the influence of the van der Waals potential at this distance from the fibre
surface is negligible. The radial trapping frequency is calculated to be ωr/2π ≈ 770 kHz.
The extension of the trapping volume in the radial direction for caesium atoms with a
kinetic energy corresponding to 100 µK is dr =47 nm. Since the beat length between the
TE01 and the HE21 mode is large compared to the beat length in the other two traps, one
would expect the radial size of the trap to be large as well. However, the difference in the
decay lengths Λ21 −Λ01 is not the only factor that influences the radial profile of the trap.
It is also determined by the exact functional dependence of the evanescent field for the
different modes which results in a similar radial confinement compared to the HE11+TE01

and HE11+HE21 configurations. Finally, the scattering rate and the trapping lifetime for
caesium atoms with an initial kinetic energy corresponding to 100 µK is calculated to be
62 photons/second and 114 seconds, respectively.

3.5 Traps using the TM01 mode

The TM01 mode cannot be used to create an effective blue-detuned interference trap in
combination with the other considered modes, because of its large z-component of the
electric field. Hence the electric field cancellation that depends on the polarisation match-
ing between the co-propagating modes is only partial and the trap created is inefficient.
Figure 3.16 exemplary shows the TE01 + TM01 trap, using 20 mW of total laser power at
a wavelength of 849.5 nm. The τ -parameter gives the fraction of laser power in the TE01

mode. The features of the the TM01 trap will not be examined further here.
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Figure 3.16: Plot of the trapping potential for the TM01+TE01 trap along the y-axis
for the following parameters: P = 20 mW, τ=0.57, λ=849.5 nm, a=400 nm, n1 =1.452,
and n2 =1. The fibre surface is indicated by the vertical grey line.
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Chapter 3. Mode Interference Traps

3.6 Loading the traps

This section will give an experimental scheme to load cold caesium atoms into the traps.
As can be seen in figures 3.8, 3.12 and 3.15, the atoms cannot enter the traps due to
the repulsive barrier on both sides of the trap. One possibility is therefore to create the
traps abruptly, when the atoms are cooled next to the fibre. The cooling could be done
with a magneto-optical trap (MOT) [41] at the fibre waist. Atoms cooled this way have
a typical kinetic energy corresponding to a temperature of about 100 mK when creating
the trap. The trap volume for the HE11+TE01 trap for this energy can be determined by
assuming an ellipsoid with equatorial radii dr, dφ and dz, as they have been determined in
sections 3.2 to 3.4. This would yield a trap volume of Vtrap =4/3πdrdφdz =1.1×10−16 cm3.
So with a typical MOT density of ρ= 1010 atoms/cm3 [42] one would expect an average
of 2.2 × 10−6 trapped atoms per trapping site or a total of 2.2 × 10−3 for 1000 trapping
sites. This is an inefficient scheme.

A different possibility is has been examined by [43]. Here it is shown that for a small
trap size and high loading rates (that is, number of atoms per second entering the dipole
trap) there exists a so-called collisional blockade regime. If the loading rate R is large
enough, every trap site would be occupied by an atom. When another atom enters the
trap, the atoms collide due to the small trapping volume. One atom emits a photon and
is subsequently lost. The other atom absorbs the emitted photon. This would cause both
atoms to leave the trap [43], resulting in an average trap occupation of 0.5 atoms per
trap site. To continuously load the traps, the potential barrier has to be lowered to zero,
so the atoms can be cooled into the trap. As has been experimentally shown, a MOT
can be operated normally in the vicinity of an ultra thin fibre [31]. To continuously load
the trap, the potential barrier is lowered by using a red-detuned laser during the loading
process, as is shown in figure 3.17(a). Here a wavelength of λ= 970 nm with a power of
P = 9.2 mW is used at a starting τ parameter of 0.89. Starting from the loading rate of
100 s−1 assumed in [43] and taking into account our smaller trap size and the smaller angle
under which the atoms are allowed into the trap, an estimated loading rate of R=0.3 s−1

is achieved. This loading rate exceeds the loss rate of 0.1 s−1 due to background gas
collisions at a pressure of 10−9 Torr [32]. According to [43] the trap would then operate
in the collisional blockage regime, resulting in a trap occupancy of 0.5 atoms per site or
a total of 200-300 trapped atoms along a 5 mm waist for a MOT with a 1/

√
e-radius of

0.6 mm. The original configuration can be restored in two steps: First, the τ parameter
is returned to its original value as is shown in figure 3.17(b) and then the red-detuned
laser is turned off (figure 3.17(c)).This way it is possible to trap 200-300 atoms in the then
purely blue-detuned trap.

3.7 Summary

The traps discussed in this chapter have different features that distinguishes one from
the other. Their characterising quantities are arranged in table 3.1. The values for the
detuning of the wavelength and the distribution of laser power is chosen such that the
trap depth and trapping lifetime is comparable. Note, that while the HE11+TE01 trap
is created with more laser power than the other traps, the minimum of the trap is at
zero light intensity, like in the case of the HE21+TE01 trap, whereas in the HE11+HE21
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Figure 3.17: Scheme for loading the HE11+TE01 trap. In (a) a plot of the trapping
potential for the HE11+TE01 trap along the y-axis is shown for a τ parameter of 0.89.
In the presence of a red-detuned light field of P = 9.2 mW laser power at a wavelength
of λ=970 nm, the potential barrier is lowered, so the atoms can be cooled into the trap
from the far side of the fibre. Step two of the trap loading scheme is shown in (b). The τ
parameter is restored to 0.72, no more loading takes place. In (c), the red-detuned light
has been turned off and the trap has returned to the final state as in figure 3.8. The fibre
surface is indicated by the vertical grey line. The grey dotted line represents the energy
of the atoms.
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Chapter 3. Mode Interference Traps

trap, there is a finite intensity at the potential minimum. However, the HE11+TE01 traps
has its minimum close to the fibre surface, making it interesting for the examination of
atom-surface interactions.

HE11+TE01 HE11+HE21 HE21+TE01

used power P in mW 50 25 30

light wavelength λ in nm 850.5 849.0 851.0

trap volume V in 10−16 cm3 1.1 9.3 4.8

trapping time tt in s 108 106 114

τ parameter 0.72 0.84 0.68

trap depth U in mK 0.92 1.20 1.40

beat length z0 in µm 4.61 3,45 13.67

Table 3.1: Comparison of the trapping parameters for the multimode traps.

Note, that there is also a striking difference in the beat length of the multimode traps.
This is based on the fact, that the higher order modes HE21 and TE01 have a similar
propagation constant at the given parameters, whereas the difference in the propaga-
tion constants with the higher order modes to the fundamental mode HE11 is larger (see
figure 3.2). The beat length is inversely proportional to the difference in propagation con-
stants (equation 3.10), resulting in a larger beat length. Therefore, this particular trap
creates an array with less trapping sites along the fibre waist compared to the HE11+TE01

trap and the HE11 and HE21 trap.
As a final remark, one would expect the experimental realization of a trap involving

the fundamental mode to be advantageous, as the HE11 mode is theoretically and experi-
mentally well studied, whereas the creation and control of higher order modes is relatively
unexplored.
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4 Investigation of modes in ultra thin
optical fibres

In order to experimentally examine the theoretical predictions of chapter 3, a setup to
study the behaviour of the modes during the tapering process has been developed. Using
a CCD camera, the interference of several co-propagating modes in the same fibre during
the fibre tapering process is investigated.

In addition, a second setup to examine the evanescent field arising around an ultra thin
fibre has been designed and realised. It features two subwavelength diameter fibres, whose
relative angle can be chosen and whose relative distance can be controlled with an accuracy
of a few tens of nanometres. One fibre carries a light field and thus possesses an evanescent
field. Instead of using a scanning near field optical microscope (SNOM), as has been done
for example in [44], the field is probed by bringing a second TOF near the waist of the field
fibre. Depending on the relative angle between the fibres and polarisation of the field, light
is coupled into the probe fibre and can be detected using a photodiode detection setup.
The setup is used to examine the azimuthal dependence of the fundamental HE11 mode’s
evanescent field, to determine its radial decay length and to measure the longitudinal
modulation of a standing wave pattern. The fibres used are standard commercial optical
fibres, that are heated and tapered to the desired waist diameter with the fibre tapering
machine situated in our laboratory [27].

This Chapter briefly introduces the basic steps of the fibre tapering process and specifies
the fibre taper profile used throughout the experiments. Then, the experimental setups
are introduced and the measured results are given and analysed.

4.1 Fibre tapering

In this section the fibre tapering process will be described. For a more detailed treatment,
see [27].

The tapering setup is shown in figure 4.1. To pull a fibre to a given waist diameter the
acrylate jacket has to be removed first. The fibre is fixed on the translation stages with
holding magnets. The uncoated part of the fibre is then heated with an hydrogen-oxygen
flame. The heated part of the fibre melts and is subsequently stretched to the desired waist
radius: The translator stage moves the fibre relative to the flame to increase the effective
width of the flame along the fibre. This allows better control over the taper profile than
in the case of a static flame. The stretcher stage is mounted on the translation stage and
stretches the fibre. Since the fibre melts, when heated by the burner, it is elongated by the
stretching, leading to a reduction of the fibre radius. The “pulling” of the fibre with the
positioning stages is computer controlled, this way the desired fibre radii can be reached
with an a priori precision of about ±5% [27].

The profile of the tapered fibre is crucial for its transmission properties. Consider the
fundamental mode that is guided in the core of the untapered part of the fibre. In the

41



Chapter 4. Investigation of modes in ultra thin optical fibres

holding magnets

hydrogen-oxygen flame

fibre

burner

stretcher stage

translator stage

diode laser
fibre coupler

fibre coupler

photo diode

translator

stretcher

movement

movement

Figure 4.1: Schematic of the fibre tapering setup. The fibre is heated by a stationary
hydrogen-oxygen flame. The translator stage moves the fibre relative to the flame while
the stretcher stage moves to elongate the fibre, as indicated by the arrows. During the
tapering process, the transmission of the fibre can be monitored.

taper, this mode is constantly transformed due to the fibre radius alteration. If the change
in radius is significant only over a distance of several wavelengths, the mode changes
adiabatically, that is, there is no coupling to higher modes, that exist in the tapered
region of the fibre. To allow for an adiabatic transition, the taper of the fibre is divided in
three sections as shown in figure 4.2. According to [45], the optimal taper profile for low
transmission losses is a rotated “s-shape”. This profile is approximated by the three linear
sections. For each section a slope angle and a final diameter is specified, so the parameters

r0 r1 r2
a

Θ0
Θ1

Θ2

untapered
fibre

taper fibre waist

Figure 4.2: Schematic of the diameter profile for an ultra thin fibre consisting of the
untapered fibre ends, the taper and the waist. The taper profile is determined by the
starting, intermediate and end radii r0, r1, r2, a as well as the slope angles Θ0, Θ1 and
Θ2.

of the tapering process are the starting radius r0, the intermediate radii r1,r2 and the final
waist radius a, as well as the according angles Θ0, Θ1 and Θ2. The most crucial angle
is the intermediate angle Θ1. Most light is lost by the coupling of the fundamental HE11

mode to the HE21 mode [27] at the transition from core to cladding. This effect is strongest
in the region of a fibre radius of about 20 µm, therefore the angle here should be chosen
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4.2. Examination of the modes during the fibre pulling process

small enough to minimize the mode coupling. It is possible to monitor the transmission
of the fibre during the tapering process. To this end, laser light is coupled into the fibre
and the power of the transmitted light is measured by the photodiode located at the fibre
output (see figure 4.1).

The parameters used in the experiment are r0 = 62.5 µm (radius of the cladding),
r1 = 45 µm, r2 = 10 µm, a= 0.2 µm as well as Θ0 = Θ1 = Θ2 = 2 mrad unless mentioned
otherwise. Although there is no difference in the slope angles, the transmission of the
created fibres was satisfactory for our purposes.

4.2 Examination of the modes during the fibre pulling process

In order to observe the modification of the modes during the tapering process an experi-
mental setup has been realised. It enables us to excite different modes in a fibre and to
observe them during the pulling process. Since the fibre radius is altered, the propagation
constants of the modes change. This is examined by observing the interference pattern of
the modes during the tapering process.

Figure 4.3 shows a schematic of the setup used for the investigation of the modes during
the pulling process. A linearly polarised diode laser at a wavelength of 852 nm is coupled
into the fibre with a fibre coupler (ThorLabs MAX303). The fibre is placed onto the
tapering stages (compare with figure 4.1) and the light at the fibre output is collimated
via a fibre collimator (Schäfter-Kirchhoff 60FC-4-M12-10). The modes are then observed
with a CCD camera (PixeLink PL-B741) which is linked to a computer.

diode laser

mirror

mirror

fibre coupler

fibre

fibre

burner translator stage

stretcher stage
&

fibre collimator

CCD camera

PC

Figure 4.3: Schematic of the experimental setup for the examination of the fibre modes
during the pulling process.
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Chapter 4. Investigation of modes in ultra thin optical fibres

4.2.1 Intensity distribution between the different modes

In order to examine the mode propagation during the tapering process, a fibre that is
multimode for the used wavelength is necessary. In the experiments a single mode fibre
for light of a wavelength of 1300 nm (J-Fiber S1260607FA) was used. The fibre has a V
parameter of V =2.33 for λ=1300 nm in the untapered part, so only the fundamental HE11

can propagate for this wavelength. However, as V is dependent on the wavelength (see
equation 2.28), this results is a V parameter of 3.57 for a wavelength of 852 nm. Therefore,
the HE11, TE01, TM01 and HE21 can propagate in the fibre (see figure 3.2). The relative
intensity of the modes can be controlled to some extend by tilting the incident beam, when
coupling light into the fibre. This stems from the fact, that optical fibres can guide light
which is coupled within a range of incidence angles ±γ/2, given by the numerical aperture
NA of the fibre

NA = sin
(γ

2

)

, (4.1)

where γ is the divergence angle of the mode of highest order that can propagate through
the fibre. This is depicted in figure 4.4. Modes of higher order have a larger divergence
(γ2) than modes of lower order (γ1).

γ1

2

γ2

2

core

cladding

Figure 4.4: Divergence of two different modes at the fibre output. Shown is the core
and the cladding of the fibre as well as the exit angles of two modes. Higher order modes
have larger exit angles (red dashed line with exit angle γ2) in comparison to those of a
lower order (black solid line with exit angle γ1).

If one slightly tilts the incident beam when coupling into the fibre so that the overlap
with the lower order modes gets smaller, the overlap with the higher order modes increases.
This results in an increased probability of exciting the higher order modes. If the polar-
isation directions between the incident and guided modes match, one can excite different
modes almost independently. This is shown schematically in figure 4.5 for the case of the
fundamental HE11 mode and the TE01 mode. Consider situation (a): The incident light
beam is focussed at the centre of the core, with the optical axis as its symmetry axis, so
primarily the fundamental HE11 mode with the respective polarisation direction will be
excited (b), since the overlap of the beam with the coupling angle of the HE11 is maximal.
In situation (c) the incident beam is coupled into the fibre under an angle. This reduces the
overlap with the coupling angle for the fundamental mode which is subsequently excited
less. As a result, most intensity will be guided by the higher order modes or a combination
of them (d). It is important to note that this is not an exclusive process. In situation
(a) the higher order modes can also be created, but with less intensity. Accordingly, in
situation (b) also the HE11 can be created, but with significantly less intensity.
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4.2. Examination of the modes during the fibre pulling process

(a) (b)

(c) (d)

Θ1

Θ2 cladding

cladding

core

core

Figure 4.5: Excitation of higher order modes by tilting the laser beam coupled into
the fibre. Depending on the polarisation direction (black arrows in (b) and (d), different
modes will be excited by focussing the light beam (grey area in (a) and (c)) under different
angles.

4.2.2 Mode interference during the tapering process

Under certain circumstances, a so-called ”butterfly mode” can be excited in the fibre.
This butterfly mode is created, when several modes are superimposed in the fibre in such
a way, that the fields cancel each other at a certain axis. For example, the linearly polarised
HE21 mode and the TE01 mode (as shown in figures 2.14 and 2.19) cancel each other at
the axis, that is rotated by π/4 from the vertical axis, as the field vectors point in different
directions, thus creating a butterfly mode. A measurement of such an intensity pattern
is displayed in figure 4.6. The presence of a butterfly mode thus proves that at least two

Figure 4.6: The superposition of higher order modes in a fibre creates a butterfly-shaped
mode.

modes are propagating. Note, that the HE11 cannot form a butterfly mode with only one
more mode propagating, as it does not have vanishing intensity at the centre. During the
tapering process, when the core becomes too small to guide the light and the modes leave
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Chapter 4. Investigation of modes in ultra thin optical fibres

the core and are guided by the cladding. Now, the radius of the cladding defines the V
parameter (equation (2.28)) and therefore the propagation constants of the modes. When
the modes are guided in the cladding, the cladding radius is still large, so the V parameter
is also large. Considering figure 4.7, this means, that the propagation constants of the
modes are similar and do not vary much with decreasing V parameter in region (a).
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Figure 4.7: Propagation constants of the HE11, TE01, TM01 and HE21 modes. The re-
gions (a), (b) and (c) are regions of almost no, small and large variation in the propagation
constants.

During the tapering process, the V parameter decreases and the propagation constants
of the modes change (regions (b) and (c) in figure 4.7). This changes their relative phase
and thus the interference pattern. This is displayed for three configurations in figure 4.8.
Here, the interference of the higher order modes HE21, TE01 and TM01 is shown. Since the

(a)

(b)

(c)

Figure 4.8: Superposition of modes. The arrows indicate the polarisation direction of
the individual modes, bright regions indicate regions of higher intensity. The “-” signs
mark a phase shift by π. The relative phase shifts causes a rotation of the resulting
butterfly mode.

HE21 mode has two orthogonal polarisation states, both are considered. When the fibre
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4.2. Examination of the modes during the fibre pulling process

is tapered to radii smaller than a≈1.3 µm, the propagation constants of the modes for a
light field of wavelength λ=852 nm differ significantly (see region (b) in figure 4.7) leading
to a relative phase shift of the modes. This results in a modification of the interference
pattern while stretching the fibre. The butterfly mode rotates with time.

Figure 4.9 shows the modes during the tapering process of a fibre (J-Fiber S1260607FA)
down to a waist radius of 700 nm with corresponding angles α0 = 2 mrad, α1 = 1 mrad
and α2 =1 mrad. Note that this is a smooth tapering that should allow to adiabatically
transfer the fundamental mode into the waist [27].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Pictures taken during the fibre tapering process. Note how the butterfly
mode created in (a) rotates in (b) and (c) and (e)-(g). In (d), the modes interfere to
form a donut-shaped mode. After completing the tapering process, only the bell-shaped
fundamental mode remains (h).

The starting point is the butterfly mode in an untapered fibre (a). Picture (b) is taken
after the modes have left the core and propagate in the cladding at the waist. The cladding
radius is still very large, so the propagation constants of the higher order modes are thus
almost constant. When the fibre radius reaches a value, where the propagation constants
start to change, the butterfly mode begins to rotate (c). In (d), a donut-shaped mode is
visible. The rotation is repeated (for example in (e)-(g)). The rotation is relatively slow
at the beginning, but gets faster over time. This is because the smaller the fibre radius,
the larger the difference between the propagation constants. Finally, the butterfly mode
vanishes and only the fundamental bell-shaped mode HE11 is guided by the fibre waist (h).
After the pulling process, when altering the polarisation of the light field, the appearance
of the bell shaped mode remains unchanged, indicating that the fibre now only guides a
single mode.
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4.2.3 Fibre diameter examination

The results obtained from the previous section indicate, that the higher order modes are
expelled from the fibre, because the V parameter becomes so small, that the fibre cannot
guide them any more. However, this should happen at V ≈ 2.4 (compare to figure 4.7),
which corresponds to a fibre radius of about 300 nm for λ= 852 nm. This is the lowest
fibre radius that is theoretically able to guide the light in higher modes, so reasonable
propagation of the higher modes can be expected for a fibre radius of about 400 nm, that
is V = 3.1. However, when tapering the fibre to a radius of 400 nm, the higher order
modes are not guided any more. By varying the slope angles, intermediate and end radii,
the modes were found to leave the fibre, when the radius was smaller than 800 nm. The
variation of the slope angles does seem to have a minor affect on the modes leaving the
fibre. To find the cause for this unexpected behaviour, the fibre waist radii were examined
to ensure, that the fibres were tapered to the specified waist radius. This was done with
a transmission electron microscope (TEM) [46] at the “Institut für Physikalische Chemie”
at the University of Mainz and a scanning electron microscope (SEM) [47] at the “Center
of Advanced European Studies And Research” (caesar), Bonn. In both cases fibres that
were tapered to a waist radius a of 800 nm were examined. The results are shown in
figure 4.10. The diameter of the fibre in figure 4.10(a) is determined to be (1655±10) nm
or a radius of (827.5±5) nm. The error stems from the fact, that the image of the edge of
the fibre is not sharp, so there is some inaccuracy in determining the diameter from the
pictures.

The examination of the fibre at the caesar yields similar results. Here the fibre diameter
is found to be (1579±20) nm from figure 4.10(b), that is, a radius of (789.5±5) nm. The
larger error results again from the diffuse image of the edges of the fibre. However, the
magnification is less than in figure 4.10(a), thus, the error is larger. Both results are in
good agreement with the accuracy of ±5% of the waist radius in the fibre tapering process,
mentioned in section 4.1.

In conclusion, the fibre radius seems not to be responsible for the expulsion of the modes.
As a variety of fibres were used (J-Fiber S1260607FA, SL270982DA and UL270872KA as
well as ThorLabs 1550BHP), all yielding the same result, a manufacture error of the fibre,
resulting, for example, in an altered refractive index can thus also be ruled out.

4.2.4 Minimum fibre radius for light propagation

Another approach to understand why the modes leave the fibre at such a radius is to
examine the surface intensity of the TE01 mode with varying radius. This was already
done for the fundamental HE11 mode [37]. It has been shown that, while the HE11 mode
has no cutoff radius, the intensity will drop significantly when the fibre radius falls below
a certain value. This is shown in figure 4.11 (a) for a light field with a wavelength of
λ = 852 nm. For a large radius, the surface intensity is very low, as almost all of the
intensity is guided inside the fibre, there is only a small evanescent field. When the fibre
radius is comparable to the wavelength of the light, an increasing amount of power is
guided in the evanescent field. However, when the fibre radius becomes too small, the
mode diameter increases rapidly, so the same power is spread over a larger area. This
reduces the intensity at the fibre surface. The mode is now weakly guided by the fibre as
only a small fraction of the intensity is guided inside the fibre. Note the drastic decrease
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1655 nm

600 nm

(a)

(b)

1 µm

1579 nm

Figure 4.10: Electron microscope pictures of two fibre waists, that were both specified
to be 1600 nm in diameter. Picture (a) was taken at the ”Institut für Physikalische
Chemie”, Johannes Gutenberg-Universität, Mainz. Picture (b) was taken at caesar in
Bonn.
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in the surface intensity for a< 250 nm. To examine if this weak guiding of modes could
be responsible for the loss of the higher order modes, the same calculation was carried out
for the TE01 mode at the same wavelength. The results for this simulation are shown in
figure 4.11 (b). Although the drop in surface intensity occurs at a= 360 nm, where the
cutoff radius for the TE01 mode is at about a=300 nm, this does not explain the observed
loss of modes.
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Figure 4.11: Normalised surface intensity over radius for the HE11 mode (a) and TE01

mode (b)

A possible explanation for the experimentally observed loss of the higher order modes
was recently developed by [48]. It was shown using the theory of nonadiabatic transi-
tion [49], that for a TOF there exists a lower limit for the fibre waist diameter, which
allows the fundamental mode to be adiabatically transferred from the untapered fibre into
the waist. These losses are due to the presence of a nonuniformity in the fibre and the
critical radius is almost independent of the length of the taper, that is, the smoothness of
the transition. For a wavelength of 850 nm and a taper length L= 10 mm, the minimal
diameter is found to be 300 nm for the fundamental mode. Experimental results obtained
by [27, 50] support the theoretical predictions. However, the application of this approach
to the higher order modes is not trivial and further theoretical investigation is necessary
to find the cause for the loss of modes at such a fibre radius. Hence, at the present state
of my research, the traps discussed in chapter 3 cannot be realised as described: A fibre
with a radius of 800 nm carries a very small evanescent field, so the traps discussed in
chapter 3 cannot be created with a reasonable laser power.

4.3 Investigation of the evanescent field of the HE11 mode

Parallel to the examination of the modes during the pulling process, an experimental
setup to measure the radial, longitudinal and azimuthal variations of an evanescent field
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distribution has been developed. As a first step towards examining the multimode traps
discussed in chapter 3 the evanescent field of a quasi-linearly polarised HE11 mode in a
fibre has been examined. Instead of using a scanning near-field microscope (SNOM) [44],
a setup that allows to place two fibres at a fixed relative position to each other with a
precision of a few of ten nanometres has been realised. This allows to learn about the
coupling mechanisms between two fibres. One fibre is used to guide the light and thus
to create the evanescent field, the other fibre is used as a probe. When placed inside
the evanescent field of the field fibre, some light is transferred into the probe fibre and
subsequently detected at the fibre output. This section presents the experimental setup
used for the evanescent coupling between two fibres and the experimental results are
discussed.

4.3.1 Evanescent coupling between two fibres

In this section the process for the coupling of two fibres is briefly described. Yet the case
of fibres at an angle that couple via their evanescent fields has not yet been theoretically
studied. Hence, the basic process of two parallel fibres is given and the case of two fibres
under an angle is qualitatively described. The power transfer between two TOFs is the
result of optical tunneling of photons from one fibre to another. Consider the case of two
identical fibres. The two fundamental solutions of the composite waveguide Ψ+ and Ψ− of
the scalar wave equation are then given by the superposition of the fundamental solutions
of each fibre in isolation, Ψ1 and Ψ2 [40]:

Ψ+ = Ψ1 + Ψ2; Ψ− = Ψ1 − Ψ2 (4.2)

with the corresponding propagation constants β+ and β−. In the case of unit power in
fibre 1 and zero power in fibre 2 at z=0, the power flow in each fibre along the propagation
direction P1(z) and P2(z) is given by:

P1(z) = cos2
(

2πz

zb

)

; P2(z) = sin2

(

2πz

zb

)

, (4.3)

where the beat length zb, that is, the distance in z-direction, where the power oscillates
from fibre 1 to fibre 2 and back is given by:

zb =
4π

β+ − β−
. (4.4)

For identical fibres and increasing distance, the propagation constants of the composite
waveguide tend to the propagation constant of the individual fibres, β+, β−→β, and thus
the beat length increases. In the case of nonidentical fibres, the power flow along the
propagation direction becomes:

P1(z) = 1 − F 2 sin2

(

2π

zbF
z

)

; P2(z) = F 2 sin2

(

2π

zbF
z

)

, (4.5)

where F =1 for identical fibres and F→0 for significantly differing fibres. So for noniden-
tical fibres, only the fraction F 2 of power is transferred, whereas for identical fibres the
full power oscillates between the two fibres.
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When tilting the fibres, the distance over which the fibres can couple is reduced. If
the length of interaction is smaller than half of the beat length, then only a fraction of
the power can be transferred from one fibre to the other. Additionally, the difference of
the wave vectors in the fibres further decreases the coupling efficiency. Since the coupling
efficiency depends strongly on the distance of the fibres, the main contribution to the
coupling comes from the location where both fibres are closest. When two ideal fibres
are in contact under an angle, they only touch at one point. Due to deviations from
the perfectly cylindrical form and coupling contributions from adjacent fibre locations the
coupling occurs over a small region. This can be regarded a sub-lambda source for the
light coupled into the second fibre. Diffraction leads to a large divergence of the coupled
beam and while most of the diffraction is in forward direction, some wave vectors match
the wave vectors in the fibre, so some light is guided in the second fibre. The light that
is coupled into the second fibre with a non-matching wave vector is scattered out of the
fibre.

Also, the polarisation of the modes affect the coupling efficiency. In figure 4.12 the
coupling of the fundamental HE11 mode from one fibre to another depending on the angle
under which they are brought next to each other is depicted. In case (a), the polarisation
direction of the HE11 mode is parallel to the surface at the side, where both fibres face
each other. In case (b), the polarisation in the field fibre is perpendicular to the fibre
surface at this side. Recall from chapter 2, that perpendicular field components show a
discontinuity, increasing the evanescent field for the corresponding angle.

(a)

(b)

(c)

(d)

(e)

(f)

~β2
~β1

~E2
~E1

Figure 4.12: Coupling of the HE11 mode with propagation constants β1 and β2 and
polarisation indicated by the field vectors ~E1 and ~E2 from fibre 1 to fibre 2. The coupling
is dependent on the angle between the fibres.

Consider situations (a) and (b). The fibres are parallel to each other, so in both cases,
the polarisation and the propagation constants can be perfectly matched and the coupling
efficiency is maximal for both polarisation directions. However, F 6=1, as both fibres have
different diameters, so only a part of the total power is transferred.
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In situations (c) and (d), the probe fibre is tilted by an angle of 45◦. Now, the prop-
agation directions do not match, resulting in a reduced coupling efficiency from fibre 1
to fibre 2. Only the light that is diffracted into the propagation direction is guided by
the second fibre. This reduces the coupling between the two fibres with increasing angle.
However, the polarisation direction of the field remains unchanged. In (c), the polarisation
direction of the HE11 in the field fibre does not match the polarisation direction of the
HE11 in the probe fibre. As the HE11 has almost no component in its electric field along
the propagation axis, the component of the polarisation of the field fibre pointing in this
direction cannot cross over to the probe fibre. This further reduces the coupling efficiency
for this particular polarisation direction. In (d), the polarisation direction of the mode in
the probe fibre is matched with the polarisation direction in the field fibre, so no further
reduction of the coupling efficiency takes place.

Increasing the coupling angle further decreases the coupling efficiency due to the de-
creased fraction of diffracted light along the propagation direction of the field in fibre 2.
In the extreme case of a tilting angle of 90◦, the propagation directions in both fibres are
perpendicular. This is shown in situations (e) and (f). As a result of diffraction, light
may still couple from the field fibre to the probe fibre. However, this is much more likely
in (f), as again, the polarisation directions in both fibres coincide. In (e), the polarisation
direction is in propagation direction of the probe fibre, so the light transition from one
fibre to the other is suppressed.

4.3.2 Experimental setup

The examination of the evanescent field components of the fundamental HE11 mode has
been carried out using the experimental setup shown in figure 4.13. A grating-stabilised
diode laser (external cavity diode laser (ECDL)) provides a laser beam at a wavelength
of 851 nm with a power of up to 30 mW, that can be controlled by regulating the laser
current. External feedback is avoided by using a Faraday isolator with an isolation of
more than 60 dB (Linos DLI-1).

About 4% of the laser power is then diverted into the Fabry-Pérot arm (highlighted
region (a) in figure 4.13) by a glass plate. A lens with a focal length of 100 mm improves
the injection into the Fabry-Pérot cavity. The cavity transmission signal is measured by
a photo diode (PD1) and displayed on an oscilloscope. The Fabry-Pérot cavity length is
scanned with a piezo driven by a waveform generator at a frequency of 40 Hz. The Fabry-
Pérot arm monitors if the laser diode emits at a single longitudinal laser mode. When
the laser diode temperature drifts or the laser current is varied, the output may consist of
more than one longitudinal mode, thus destroying the beam’s coherence.

The main beam is then split up at another glass plate and about 4% of its power is guided
into the Michelson-Morley interferometer [20] (highlighted region (b) in figure 4.13). The
interferometer monitors the displacement of the positioning stages by superimposing the
beam that gets reflected from the back of the stage with a stationary beam and detecting
the modulation of the interference pattern. This is done to measure the total distance
covered by the translation stage and to monitor a potential drift in the piezo.

The main beam is then coupled into the field fibre by a nanopositioning stage (Thorlabs
MAX303). The polarisation direction of the beam can be altered via a zero order half
wave plate (Lens Optics W2Z15-852).

The fibre couple setup (highlighted region (c) in figure 4.13) is depicted in more detail
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Figure 4.13: Schematic of the experimental setup for the examination of the azimuthal
and radial component of the evanescent field of the linearly polarised HE11 mode.
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Figure 4.14: Fibre coupling setup. Field fibre (1) and couple fibre (2) are held by a
post (3) and a specifically designed tilting holder (4) that rests on a three-dimensional
translation stage. The translation in z-direction is controlled by a stepper motor (5), in
y-direction via a micrometre screw (6) and in x-direction alternatively by a piezo drive
for fine adjustment (7). The fibres can be monitored via a microscope setup (8). The
mirror (9) is mounted on the translation stage and is part of the Michelson-Morley setup.

in figure 4.14. Field fibre (1) (Newport F-SF) and couple fibre (2) (Newport F-SF) are
held by a holding post (3) and a specifically designed tiltable holder (4). The field fibre,
indicated by the blue line, is tapered to a diameter of 400 nm. The fibre waist (highlighted
red) is located at the center of the fibre holder. Note, that this fibre is single mode for
the wavelength used here in the untapered part and the waist, hence the light in the fibre
propagates in the HE11 mode. The probe fibre is tapered to a diameter of 300 nm and
mounted on a fibre holder that can be tilted to any desired angle. The fibre holder is fixed
on a positioning stage setup consisting of three translation stages (PI M-105), that allows
the three-dimensional displacement of the fibre. For the measurements, the fibre waists
have to be at a submicrometre distance. The translation in z-direction is controlled by a
stepper motor (5) (PI M-232), in y-direction via a micrometre screw (6) (PI M-655.00).
Both directions do not require very much accuracy, as the fibre waist is 3 mm in length, so
the accuracy reached by the micrometre screw (0.1 µm) and the stepper motor (minimal
step size: 0.05 µm) are sufficient. The movement in x-direction is more critical, as the
evanescent field decays quasi-exponentially within a few hundred nanometres. Thus a
piezo driven positioning stage (PI P-854.00) (the piezo is highlighted in 4.14 (7)) is used
to approach the field fibre with the probe fibre. The piezo stage is connected to a piezo
controller (PI E-503 piezo amplifier) and has a total travel range of 25 µm at a resolution
in the subnanometre regime. The fibres can be monitored with a microscope setup (8),
consisting of an infinity-corrected microscope objective (Edmund Optics M PLAN APO

100× ULWD) that images the fibres via a tube (Infinity Photo-Optical Infinitube Standard)
on a monochrome CCD camera (PixeLink PL-B741). The mirror (9) is mounted on the
translation stages (PI M-105) and is part of the Michelson-Morley setup. When the probe
fibre is placed inside the evanescent field of the field fibre, the light can be transferred from
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the field fibre to the probe fibre and is guided to a detection setup. The detection setup
here consists of a polarising beam splitter cube and two photo diodes (PD3 and PD4),
so the polarisation of the light coupled into the probe fibre can be analysed. However,
this particular feature has not been used throughout the experiments, only the sum of
the two signals is used. To improve the signal, the beam is sent through a chopper and
the oscilloscope that displays the diode signals is operated in AC mode. This creates a
rectangular voltage output, with the amplitude of the signal corresponding to the probed
intensity.

4.3.3 Azimuthal investigation of an evanescent light field

First, the azimuthal component of the evanescent field of the linearly polarised HE11 is
examined. As previously discussed (compare figure 2.10), the intensity distribution of the
quasi-linearly polarised HE11 mode depends on the azimuthal angle. In order to examine
this dependence, the two fibres are brought into contact. This offers two advantages:
Firstly, the distance remains constant during the measurement. The fibres oscillate due
to air movement or sounds and hence change their relative distance. When brought into
contact, the fibres stay together due to the van der Waals force and thus the fluctuation
in the coupling is minimal. Secondly, the evanescent field is strongest on the surface of the
fibre, so by bringing the fibres in contact, the output signal of the probe fibre is maximised.

The azimuthal dependence of the field can be examined by rotating the polarisation
direction of the guided mode. This is achieved by rotating the half-wave plate in front of
the fibre couple stage (compare with figure 4.13). A rotation of the wave plate by π/4
results in a rotation of the polarisation by π/2. The measurement has been performed for
two different coupling angles α1 and α2, that is, two different tilt angles of the probe fibre
with respect to the field fibre. The angles can be determined from figure 4.15.

α1

α2

Figure 4.15: Angle between the field fibre (vertical) and the probe fibre. The angles
are determined to α1 =43◦ ± 1◦ and α2 =90◦ ± 1◦.

Here, the fibres are visible by light scattering at impurities (for example dust particles)
on the fibre surface along the fibre waist. In figure 4.15 the bright spot, where the fibres
cross is caused by coupled light. If the light tunneling from the field into the probe fibre
has no matching propagation constant for the probe fibre, it is scattered out of the fibre.
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That this is indeed an evanescent effect and not caused by the disturbance at the surface
of the field fibre is evident from the fact, that the bright region appears, before the fibres
touch. There is no bright spot in the figure with a coupling angle of 90◦, as the fibres are
separated by several hundred nanometres. The probe fibre is visible, because light from a
laser pointer is propagating in the waist and scattered at the impurities.

The solid lines highlight the fibre axes and are used for determining the coupling angle,
which are measured to be α1 =43◦ ± 1◦ and α2 =90◦ ± 1◦.

The results of the polarisation dependent coupling measurements are shown in fig-
ure 4.16. The indicated errors result from reading the display of the oscilloscope and is
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Figure 4.16: Measured signal by the photodiode at the fibre output versus the polari-
sation angle for a coupling angle of α1 =43◦ (a) and α2 =90◦ (b). The solid lines are fits
with a sinusoidal function.

estimated to be ±3 mV. However, this assumption overestimates the error, as almost all
of the data points are on the fit curve. The expected sinusoidal modulation is verified by
fitting a sine function of the form

f(x) = A sin

(

π(φ− φc)

ω

)

+B, (4.6)

where A constitutes the amplitude of the modulation, φc is a phase, ω describes the
modulation and B denotes the voltage offset. The fit parameters in the case α1 =43◦ are
found to be A=(86.41±1.87) V, φc=2.13±0.53, w=44.93±0.23 and B=(329.01±1.29) V.
The fit parameters for the second case α2 = 90◦ are A=(17.16±0.18) , φc=51.25±0.17,
w=45.18±0.12 and B=(20.00±0.13) . The signal in the perpendicular case α2 = 90◦ is
much weaker than in the case of α1 =43◦, as the wave vector of the field in the field fibre is
almost perpendicular to that in the probe fibre, which supports the previously discussed
considerations. The minimal voltage is almost zero, as in this case, the polarisation of
the light field does not match the polarisation of the guided modes in the probe fibre.
The values for the nonperpendicular case were taken by using a 30% transmission filter to
avoid saturation effects of the photodiodes PD3 and PD4. Therefore the voltage values
in figure 4.16 have been multiplied by 10/3. The shift of the maxima and minima is not
an effect of the different coupling angle, but is based on the fact that the data was taken
several weeks apart. During this time, the setup was modified and the fibre was replaced,
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so the polarisation direction of the beam changed. In the case of a coupling angle of
α1 = 43◦, the maximum signal is found for a polarisation angle of 50◦ and the minimum
at 140◦ accordingly. Analogously the maximal and minimal signal for the perpendicular
coupling angle α2 is obtained for a polarisation angle of 150◦ and 60◦, respectively. Note,
that these polarisation angles are not absolute values, but are given with respect to the
scale on the half-wave-plate that is used to rotate the polarisation.

4.3.4 Radial investigation of the evanescent light field

The examination of the field in azimuthal direction can be utilised to examine the radial
decay of the evanescent field. By selecting the polarisation direction of maximal couple
output, the photodiode signal can be optimised. In this subsection, the measurement of
the evanescent field and the experimental determination of the decay length of a linearly
polarised HE11 mode is presented. Two approaches have been used, the advantages and
disadvantages of which are discussed.

The first possibility is to reduce the distance between the probe fibre and the field fibre
by manually varying the piezo voltage while running the oscilloscope in AC mode. The
chopper is used during the execution of this scheme. The voltage that corresponds to the
coupling is taken manually by using the oscilloscope cursors.

The second approach uses the oscilloscope in DC mode without the chopper. Now, the
position of the probe fibre is varied using a triangular voltage signal created by a function
generator that drives the piezo. This constantly increases and decreases the distance
between the fibres and thus the acquired photodiode signal decays proportionally to the
quasi-exponential decay of the evanescent field. The measured data is then saved using a
digital storage oscilloscope and evaluated with a computer.

The manual method has the disadvantage that it takes longer than the triangular voltage
method. As the piezo is subject to drifts, the distance of the fibres change during mea-
surement. On the other hand, the total scanned distance and in particular the location of
fibre contact can be determined with good accuracy.

The triangular voltage method swaps the advantages and disadvantages. As the move-
ment of the fibre is much quicker than the piezo drift, the change in the relative distance
between the fibres during one measurement is negligible. On the other hand, the probe
fibre cannot be placed too close to the field fibre, since the fibres must not touch during
the measurement, otherwise the van der Waals forces between the fibres cause them to
stick together until separated manually. This larger distance between the fibres reduces
the coupling efficiency. This is especially problematic since in this scheme the region of
highest intensity is the spot, where the piezo changes its direction of movement. This
leads to the largest signal being the least reliable.

The manual method has been used to determine the propagation constant in the case of
the coupling angle α1 =43◦, while both approaches were tested for the measurement with
α2 = 90◦. The coupling efficiency in the latter case seems to be too low for the manual
method, that is, the piezo drifts too quickly, as the fibres touch almost instantaneously
when receiving a signal, so the acquisition of data was difficult: The manual approach
requires a longer measurement time, which is difficult to realize due to the piezo drift.
Moreover, the 90◦ configuration requires that the fibres are very close to each other to
have a good signal. This increases the probability that the fibres stick together. Such a
configuration would thus require a higher magnification of the photodetector signal.
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First, the determination of the decay length via the manual method for a coupling
angle of α1 = 43◦ is presented. The piezo voltage is converted into translation by using
the calibration of the piezo movement (see appendix B). The measurement was done for
the polarisation direction that results in maximal and minimal coupling, φ1 = 50◦ and
φ2 =140◦, respectively (compare to figure 4.16). The evanescent decay for φ1 is shown in
figure 4.17. The errors are estimated from the fluctuations of the signal on the oscilloscope.
The data is fitted with a curve of the form

ffit = goutK
2
0 (qr), (4.7)

where gout corresponds to the coupling strength of the fibres, r is the distance of the probe
fibre’s surface to the centre axis of the field fibre, K0 is the modified Bessel function of
second kind of order zero and 1/q is the decay constant of the evanescent field. Equa-
tion (4.7) corresponds to the intensity of the LP01 mode, which is an approximation to
the HE11 mode [18].
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Figure 4.17: Evanescent coupling of two fibres with the manual method at the polar-
isation angle φ1 = 50◦ and a coupling angle of α1 = 43◦. The dots are the experimental
data, the dashed line is the fitting curve. The fitting parameters are calculated to be
1/q=224 nm and gout=0.34 V.

The decay constant is found to be 1/q=224 ± 25 nm. The error is estimated by visual
judgement, when varying the parameter q. Note, that the photodiode voltage has been
multiplied with 10/3 to compensate for the attenuator plate in the setup. When comparing
the voltage at the fibre surface in figure 4.17 to that in figure 4.16 (a) at the polarisation
angle φ1 =50◦, it decreased by almost a factor of two. This is due to the contamination of
the fibre waist with dust. At these locations light is scattered out of the fibre, decreasing
the transmission of the fibre.

Figure 4.18 shows the decay of the evanescent field for a polarisation angle φ2 = 140◦

that results in minimal coupled intensity between the couple and the probe fibre. After
applying a fit of the form equation 4.7, the decay length is found to be 1/q=383± 25 nm,
and again, the photodiode voltage has been multiplied with 10/3 to compensate for the
attenuator plate. Again, the field strength is decreased in comparison to 4.16 (a), due to
dust particles on the fibre. A comparison of the results is given after the discussion of the
triangular voltage method.
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Figure 4.18: Decay of the evanescent field of a linearly polarised HE11 mode with the
manual method at the polarisation angle of minimal coupling φ2 = 140◦ at a coupling
angle of α1 = 43◦. The data is fitted with the dashed line. The fitting parameters are
calculated to be 1/q=383 nm and gout=0.15 V.

Now, the results for the triangular voltage method for a coupling angle of α2 =90◦ are
presented. The time dependence of the photo diode signal has to be converted into a de-
pendence of the radial distance between the two fibres. The total distance covered by the
piezo movement can be calculated by taking the amplitude of the frequency generator out-
put voltage and convert it into displacement by using the piezo calibration (equation B.2).
The relative position between the two fibres is determined by bringing both fibres in con-
tact by manually regulating the piezo voltage and then convert this voltage into distance.
Let the amplitude of the piezo voltage be A, the static piezo voltage without running
the frequency generator Ustat, the piezo voltage at fibre contact Ucont and the conversion
coefficient k. Thus the point of smallest distance between the fibres d (that is, the turning
point of the piezo) is determined by

d = (Ustat −A− Ucont) k (4.8)

Experimentally, the fibres are farthest apart at the maximal piezo voltage. When the volt-
age is decreased, the probe fibre is brought nearer to the field fibre. Thus the amplitude A
has to be subtracted from the static voltage Ustat to get the voltage when the fibres are
closest. Note also that Ucont is the biggest source for errors in equation (4.8). As the piezo
is subject to drifts over the course of the whole measurement the error for this quantity
has to be chosen large enough. The measurement has been executed for the polarisation
direction of largest and smallest evanescent field, using the polarisation angles φ3 =150◦

and φ4 =60◦, respectively (compare with figure 4.16).
The measurement for φ3 = 150◦ is presented in figure 4.19. Here, the detected signal

at the fibre output is plotted versus the radial distance from the fibre centre. The solid
line shows the experimental data, the dashed line depicts the fitted function given by
equation (4.7). With Ustat = 49.82 V, A = 2.2 V and Ucont = 47 V, d is computed to be
156 ± 30 nm. The decay length is then found to be 1/q = 258 ± 6 nm. The error for
the distance of the fibres ∆d takes into account the piezo drift, which is the largest error
source for the experiment. The error for 1/q is obtained by calculating the values for the
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maximal and minimal distance d+∆d and d−∆d.
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Figure 4.19: Evanescent coupling of two fibres with the triangular voltage method at
φ3 = 150◦ and a coupling angle of α2 = 90◦. The solid line is the measured data, the
dashed line is the fitting curve. The grey line indicates the fibre surface. The decay length
is calculated to be 1/q=258 ± 6 nm.

The measurement for φ4 =60◦ is presented in figure 4.20. Again, the coupling voltage
is plotted versus the radial distance from the fibre core. With Ustat =48.68 V, A=2.2 V
and Ucont = 45.8 V, d is calculated to be 221 ± 40 nm. The decay length is found to be
1/q=292 ± 7 nm. The error is obtained as before.
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Figure 4.20: Evanescent coupling of two fibres with the triangular voltage method at
a polarisation angle φ4 = 60◦ and a coupling angle of α2 = 90◦. The jagged line is the
measured data, the dashed line is the fitting curve. The fitting parameters are calculated
to be 1/q=292 ± 7 nm and gout =0.035 ± 0.015 V.

During the measurement, the detected signal is not constant, but fluctuates in irregular
intervals. This can be attributed to the piezo drift and movement of the field fibre waist
caused by air motion. To make the two discussed measurement comparable, the photo-
diode signal was monitored over a longer period of time. The data shown in figures 4.19
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and 4.20 was taken when the signal returned to the initial value that was obtained when
regulating the piezo voltage. Here, it is assumed, that the piezo drift is then negligible.
Since the value was estimated by visual judgement, this is another error source.

The absolute value of the quantity gout is not relevant for our purposes, as it is dependent
on the coupling between the fibres, which is not theoretically known. Also, the laser was
not temperature stabilised, so between measurements, the laser current had to be adjusted
to ensure that the laser was running at a single longitudinal mode. Changing the laser
current affects the laser intensity and thus gout. Therefore the fitting values are not given.

The decay constant 1/q is independent of the laser intensity and of the coupling effi-
ciency. The determined decay constants of the evanescent field of the HE11 using the two
methods are given in table 4.1. The comparison between the theoretical and experimental
values of the decay length 1/q of a quasi-linear HE11 mode in a fibre of 200 nm radius
(1/q = 355 ± 40 nm) shows, that the values have a maximal deviation of 40% from the
theoretical value. The error for the theoretical value is estimated by calculating the decay
length for fibre radii with a 5% deviation from 200 nm. The magnitude of the error can be
attributed to the fact, that the radius of the fibre is in a regime, where a small variation
results in a steep increase or decrease in the diameter of the HE11 mode (compare to
figure 4.11(a)). The manual method works best for large output signals, but is tedious for
small signals. Here, the triangular voltage method is the better option.

α1 =43◦ α2 =90◦

manual method triangular voltage method theoretical
φ1 =50◦ φ1 =140◦ φ3 =150◦ φ4 =60◦ value

1/q in nm 224 383 258 ± 6 292 ± 7 355 ± 40

Table 4.1: Comparison of the decay constant of the evanescent field of a HE11 mode for
different measurement methods at different contact angles α and different polarisation
angles φ.

4.3.5 Longitudinal investigation of the evanescent light field

The traps discussed in chapter 3 offer confinement in azimuthal, radial and axial direction.
While sections 4.3.3 and 4.3.4 deal with the investigation of the azimuthal and radial
component of the evanescent field, this section will examine the modulations of the field
in axial direction.

For this purpose the setup shown in figure 4.13 is modified to accommodate a standing
wave in the fibre. When two beams of the same frequency and the same amplitude
counter-propagate in the fibre, they form a standing wave pattern. For a one-dimensional
propagation along the z-axis the electric field E(z, t) resulting from the superposition of
two fields with amplitude E0, propagation constant β and frequency ω is given by

E(z, t) = 2E0 sin(βz) cos(ωt). (4.9)

Hence, the intensity distribution along the z-axis is modulated as

I ∝ E2 ∝ E2
0 sin2(βz). (4.10)
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Note that this only strictly holds, when the z-component of the electric field is negligible.
This is the assumption used in the following. The light fields form a standing wave pattern
in the field fibre. When the probe fibre is brought next to the field fibre, the coupling
between the two fibres depends on the probe fibre position along the field fibres waist. This
is shown in figure 4.21. When the probe fibre is located at the position of an antinode in
the coupling fibre (figure 4.21 (a)), the intensity has a finite value and some light will be
coupled into the probe fibre. In case figure 4.21 (b), the probe fibre is placed on a node
in the field fibre. In these locations, the intensity is zero, so no light is coupled into the
probe fibre.

(a) (b)

Figure 4.21: Coupling of light from the standing wave pattern in the field fibre. In
situation (a), the probe fibre is located at an anti-node of the fibre, thus the outcoupled
intensity is at a maximum. In situation (b), the probe fibre is placed on a node, so no
light is coupled into the probe fibre.

The modification of the setup can be seen in figure 4.22. The dark highlighted area is
the standing wave setup. The incident beam is split and the both beams are brought into
the same field fibre by two fibre couple stages (Thorlabs MAX303). The rest of the setup
remains unchanged as shown in figure 4.13.

As both arms of the standing wave pattern are not actively phase stabilised, the standing
wave pattern moves along the fibre waist, due to phase shifts resulting from vibrations
or drifts of the optical setup. However, this drift happens on the scale of a few seconds,
so the standing wave pattern can be analysed, as long as the signal is acquired on a
shorter time scale than the drift. In this setup the fibre is squeezed by a razor blade that
is mounted on a moving membrane that is driven up and down by a triangular voltage
signal of frequency f = 5 Hz. The squeezing of the fibre modifies the refractive index
in this part of the fibre thereby changing the optical path length of the light coming in
from this side. This causes a phase shift between the two counter-propagating beams that
displaces the standing wave. To observe the effect of the squeezing, the probe fibre is
brought into contact with the field fibre. This is again to maximise the coupling efficiency
and has the additional advantage, that both fibres stay at a fixed distance and have a
fixed relative position. The result is shown in figure 4.23. In (a), both beams are coupled
into the fibre and create the standing wave pattern. The alteration of the signal stems
from the compression and release of the fibre. When the optical path length is varied,
one would expect a sinusoidal modulation of the signal, however, the modulation caused
by squeezing the fibre is highly non-linear leading to a non-sinusoidal pattern. In (b) the
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Figure 4.22: Schematic of the experimental setup for the longitudinal examination of
an evanescent field. The darker highlighted region shows the setup’s modification in
comparison to figure 4.13 to create a standing wave.
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same signal is depicted, but this time with either one of the arms blocked from entering
the field fibre. The signal is constant, confirming, that the modulation of the signal is
indeed caused by the interference of two counter-propagating beams.
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Figure 4.23: Collected data from the standing wave setup in AC mode. In (a), both
arms are coupled into the fibre. In (b) one beam is blocked from the fibre. The coupling
angle between the fibres is 43◦.

This measurement offers a qualitative proof, that the setup is able to observe modula-
tions of the field along the axial direction. Preparations for a more precise characterisation
of the field in axial direction have been made and are discussed in chapter 5.
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5 Summary and Outlook

Throughout the course of this thesis it has been theoretically shown that an array of micro-
traps for cold neutral atoms outside of the waist of an ultra thin fibre can be created by the
interference of the evanescent fields of the pairwise co-propagating transverse fibre modes
HE11, TE01 and HE21. The three possible trap configurations offer confinement along the
axial direction due to the difference in the propagation constants, radial confinement due
to different decay constants and azimuthal confinement due to the different polarisations
of the modes. The trapping sites offer a trap depth of 1 mK at about 150 nm from the
fibre surface. For the example of caesium atoms with a kinetic energy corresponding to
100 µK the trapping lifetime exceeds 100 s for any of the discussed traps.

To verify the theoretical predictions concerning the mode interference, a setup to ex-
amine the evanescent field around an ultra thin fibre has been developed and realised. It
was shown that the azimuthal, radial and axial dependencies of the evanescent field can
be resolved. A quantitative measurement of the axial dependence of the evanescent field
could be done by moving a standing wave pattern via a frequency offset in the counter-
propagating beams and to evaluate the signal with a two phase lock-in amplifier. Most
critical during the measurement is controlling the radial distance of the two fibers, that
move due to air motion and drifts. The oscillations due to acoustic noise could be mini-
mized by providing the fibre holders with piezo elements, that tighten the fibre and thus
tune the resonance frequencies away from the ambient noise sources. Additionally, the
piezo drift could be minimised by a closed loop scheme, that controls the piezo voltage to
compensate the piezo motion.

To examine the behaviour of higher order modes in a fibre, an experimental setup for
monitoring the modes during the tapering process has been developed. It was found that
the higher order modes could not be efficiently transmitted through tapered fibres with a
waist radius exceeding the theoretical cutoff radius by a factor of two. This behaviour has
to be investigated more. One possible theoretical approach might be the extension of the
nonadiabatic transition model discussed in [48] for higher order modes. Experimentally,
further variation of the fibre profile could improve the transmission of higher order modes.

An additional challenge in the process of creating the multimode traps is the excitation of
the higher order modes. In this thesis it has been demonstrated that by tilting the incident
beam with respect to the fibre axis, the intensity distribution between the modes can be
influenced. However, with this scheme the relative intensity between the modes inside the
fibre cannot be controlled accurately. A more promising alternative is to create the modes
outside of the fibre with a given intensity. For this purpose, the Gauss-Laguerre modes,
that correspond to the desired fibre modes would have to be created and then coupled into
the fibre. The controlled creation of arbitrary Gauss-Laguerre modes was demonstrated
in [51]. Another method of mode generation was recently discovered in our group. Fibre-
based microresonators can be tuned to transmit only the desired mode. These modes
could then be coupled into the tapered fibre with a controlled intensity distribution.

Controlling single atoms is a key interest in many fields, for example quantum infor-
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mation processing. The realisation of the multimode trap could provide a tool to trap
single atoms very close to the fibre surface in low or zero intensity regions. This might
allow to overcome an important experimental drawback traps using red detuned light,
that is, the light shift of the energy levels, that has to be considered in red detuned
dipole traps [19, 52]. This would also open the route towards studying the atom-surface
interaction, as for example the van der Waals interaction in a controlled environment.
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A Energy level diagram for Caesium
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Figure A.1: Energy level scheme for 133Cs
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B Piezo calibration

The fine adjustment of the fibre´s distance is controlled by a piezo translation stage. In
order to determine the travel distance as a function of the piezo voltage, the Michelson-
Morley interferometer setup is used (highlighted region (b) in figure 4.13). The piezo
stage is driven by a function generator, lengthening and shortening the corresponding
interferometer arm. The condition for constructive interference of both arms is that the
optical path difference has to be an integer multiple of the used wavelength. As the beam
is reflected onto itself, the distance that is covered between two occurring maxima is half
the wavelength. This yields for the output intensity I at the location of interference:

I ∝ cos2
(

4π∆d

λ

)

, (B.1)

where 2∆d is the optical path difference between the two beams and λ is the wavelength
of the light.

For the calibration, the piezo is driven by a triangular voltage of known amplitude ∆V
from a frequency generator with a given frequency f . From equation (B.1) follows, that
the periodicity of the output signal is λ/2, so by counting the number of intensity maxima
N that occur during the time period T = 1/f the distance that is covered is s=Nλ/2.
The result is shown in figure B.1. The translation as a function os applied voltage is
found by fitting a line to the linear part of the curve. The errors result from the fact,
that the voltage signal does not start and end with a maximum, so there is an error in
the number of intensity maxima of ∆N =1. The voltage data is evaluated electronically,
so the errors in voltage and frequency are limited by the accuracy of the oscilloscope and
the frequency generator (δV = 0.1 V, ∆f = 1 Hz). The error in wavelength is estimated
to be ∆λ = ±0.1 nm). This yields a conversion coefficient of k = 270 ± 4 nm/V. This
is in good agreement with the manufacturers specifications for the total travel range of
the translation axis of 25 µm/100 V. The remaining difference can be attributed to the
non-linear translation regime of the piezo.

As long as one operates in the linear regime from figure B.1, the distance ∆s covered
by the piezo is thus given by

∆s = k∆V. (B.2)
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Figure B.1: Piezo calibration curve. Shown is the piezo translation per applied voltage.
The solid line is a fit to the linear part with a slope of k=(270±4) nm/V. The error bars
are concealed by the data points.
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[37] Sagué G, Dissertation, (Friedrich-Wilhems-Universität Bonn), 2008.

[38] Bjorkholm J E, Collision-limited lifetimes of atom traps, Physical Review A 38 3,
1988.

[39] Chevrollier M, Bloch D, Rahmat G, and Ducloy M, Van der Waals-induced spectral

distortions in selective-reflection spectroscopy of Cs vapor: the strong atom-surface

interaction regime, Opt. Lett. 16 1879, 1991.

[40] Snyder A W and Love J D, Optical Waveguide Theory, (Boston: Kluwer Academic
Publishers) 2000 .

[41] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A, Three-dimensional viscous

confinement and cooling of atoms by resonance radiation pressure, Physical Review
Letters 55 48, 1985.

[42] Townsend C G, Edwards N H, Cooper C J, Zetie K P, and Foot C J, Steane A M,
Szriftgiser P, Perrin H, and Dalibard J, Phase-space density in the magneto-optical

trap, Physical Review A 52 1423, 1995.

[43] Schlosser N, Reymond G and Grangier P, Collisional Blockade in Microscopic Optical

Dipole Traps, Physical Review Letters 89 023005, 2002.

[44] Moar P N, Huntington S T, Katsifolis J, Cahill L W, Roberts A and Nugent K A,
Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber

sensors, Journal of applied Physics 85 3395, 1999.

[45] Love J D and Henry W M, Quantifying loss minimisation in singlemode fibre tapers,
Electron. Lett. 22 912, 1986.

[46] Knoll M and Ruska E, Das Elektronenmikroskop, Z. Physik 78 318, 1932.

[47] von Ardenne M, Das Elektronen-Rastermikroskop, Z. Physik A Hadrons and Nuclei,
109 553, 1938.

[48] Sumetsky M, How thin can a fibre be and still guide light?, Optics Letters 21 870,
2006.

[49] Landau L D and Lifshitz E M, Quantum Mechanics, (Pergamon), 1965.

[50] Sumetsky M, Dulashko Y, Domachuk P and Eggleton B J, Thinnest optical waveguide:

experimental test, Optics Letters 32 754, 2007.

[51] Maurer C, Jesacher A, Fürhaupter S, Bernet S and Ritsch-Marte M, Tayloring of

arbitrary optical vector beams, New Journal of Physics 9 78, 2007.



[52] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V,
Lukin M D, Efficient all-optical switching using slow light within a hollow fiber,
arXiv:0901.0336v1 [quant-ph].



Danksagungen/Acknowledgements

Das vergangene Jahr war eines der interessantesten, intensivsten und lehrreichsten meines
Lebens. Das lag allem voran an der Entscheidung, meine Diplomarbeit in der Gruppe von
Arno Rauschenbeutel durchzuführen. Nach der Vorstellung des Themengebietes seiner
Gruppe empfahl er mir, bei der Entscheidung auf meinen Bauch zu hören. Das habe ich
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für die Möglichkeit danken, in diesem hochspannenden Teilgebiet der Physik tätig zu sein.
Ich danke ihm für die nach außen getragene Begeisterung für seine Arbeit und für den
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