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1. Introduction

Coherent phenomena in atoms and molecules have been investigated since the invention
of the laser in the early 1960’s [1]. Since then the laser has become an indispensable tool
in many fields of today’s physics, and opened the route towards many new research areas
such as laser spectroscopy and quantum optics. In the spectral range of many atomic
transitions, diode lasers are especially convenient for applications in atomic spectroscopy,
which is why research in modern physics laboratories cannot be imagined without them.
Diode lasers are part of the electronic revolution that began in the last half of the twentieth
century and still continues today. Their high reliability, the small size and the low price are
the reason, why they marked a cornerstone in the development of modern communication
systems and even found their way into our everyday life.
The laser became a prerequisite to study the properties of matter and its interaction with
light. For a long time the resolution in optical spectroscopy was limited due to Doppler-
broadening, and the introduction of nonlinear laser spectroscopy allowed to perform pre-
cision spectroscopy with a highly increased resolution. Besides the investigation of the
atomic structure using high resolution spectroscopy, the laser also offers the possibility for
coherent excitation of atoms. This allows one to coherently couple different atomic states,
meaning that there is a definite phase relation between the atomic states induced by the
laser field. Whereas in incoherent spectroscopy one measures the total intensity, i.e., the
populations of the atomic states, coherent spectroscopy allows to measure the coherences
of the system.
In the continuously expanding field of nonlinear spectroscopy, three level systems and their
preparation in coherent superposition states attracted a lot of interest. Alzetta et. al. were
the first who observed a reduction of absorption as a “dark line” in the fluorescence spec-
trum of sodium atoms [2]. This effect is known as coherent population trapping, a “process
[which] remained a sort of amusing scientific curiosity for some time” [3]. Today this phe-
nomenon is well understood and forms the basis for many quantum interference effects
such as lasing without inversion [4]. Another one of these “strange” interactions of light
with matter is that of electromagnetically induced transparency (EIT). It was Steven Har-
ris in 1989 [4, 5] who laid the foundations of EIT, a phenomenon that causes an otherwise
opaque medium to be transparent to resonant light in the presence of a second additional
light field.
Experiments on coherent interaction of light with matter require the involved laser fields
to be coherently coupled. This implies that their phase and frequency difference has to
be stabilized to a high degree. The most versatile method for the preparation of coherent
light fields is that of optical phase locking. An optical phase locked loop stabilizes the
phase and frequency of a slave laser so that its phase follows that of a second master laser.
The pioneering work on optical phase locked loops has been done in the 1960’s [6], and
they have become a well established tool to obtain phase coherent lasers, not only for
the generation of coherently prepared media, but also for coherent optical communication
systems, precision spectroscopy and high accurate frequency stabilization of lasers.
A three level system as it is required for EIT can be realized by many alkali atoms which
provide a suitable energy level structure. Those systems form the basis for applications
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such as slow light [7, 8], the storage of light pulses [9], quantum memories [10] and quan-
tum repeater [11], which attracted a lot of interest in the last decade by many groups. An
essential requirement for many of these applications is the cooling and trapping of cold
atoms in order to minimize decoherences in the atomic system. A novel method is to trap
atoms close to the surface of an optical nanofiber [12], which has firstly been implemented
in our group [13]. The evanescent field of an ultrathin optical nanofiber is used to trap
cesium atoms using a two-color dipole trap [14, 15]. This system is particular attractive
for nonlinear optics such as EIT due to its high optical density and its direct integration of
laser-cooled atomic ensembles within fiber networks. These outstanding properties make
this system perfectly suitable for the investigation of electromagnetically induced trans-
parency and related phenomena with fiber coupled atoms.

The focus of this work lies on the implementation of an optical phase locked loop specif-
ically designed for coherent spectroscopy on cesium atoms using two diode lasers. The
phase locked loop is characterized and analyzed in detail. Moreover, it is shown that it
significantly improves the properties of the EIT signal.

The first chapter gives an introduction to coherent optics using electromagnetically in-
duced transparency. The phenomenon of quantum interference is investigated and the
optical response of an ideal three level Λ-system is determined using the density matrix.
In the second chapter the general properties of diode lasers, their response to frequency
modulation and the frequency stabilization of diode lasers is described. The theory of op-
tical phase locked loops is explained in detail in chapter 3. At first the fundamental idea
of optical phase locking is investigated, and afterwards a general introduction to control
theory and to the characterization of phase noise is given in this chapter. The experimen-
tal realization of the optical phase locked loop is then explained in chapter 4, and the laser
system is characterized according to its relative phase stability. The last chapter shows
the applicability of the laser system for EIT experiments on cesium atoms, where first EIT
measurements on a vapor cell are performed.



2. Coherent optics with electromagnetically
induced transparency

The interaction of an atom with an incident light field is a function of the wavelength of
the light. In general, the optical response of a medium gets highly enhanced if the fre-
quency of the photons matches an atomic transition frequency, leading to high absorption
at the resonance frequency accompanied by strong dispersion. However, a coherent super-
position of the atomic states formed by an additional light field can cause transparency
of an atom to an incident light field even in the vicinity of a resonant transition. This
effect of eliminating the absorption of an otherwise opaque medium to resonant light is
called electromagnetically induced transparency (EIT). The term EIT was first introduced
by Harris and coworkers in 1990, where they performed the first measurement of EIT in
strontium vapor [16].
The phenomenon of EIT is based on light-induced atomic coherence which leads to de-
structive quantum interference between the involved excitation pathways. The result is
a modified optical response, which shows highly suppressed absorption in a very narrow
spectral range together with a dramatic modification of the refractive properties. The
typical behavior of high absorption with a high change in refractive index is no longer seen
and the transmitted light experiences a steep dispersion within a transparent window.
This can, e.g., allow one to slow down light pulses [7, 8] and even store light in atomic
ensembles [9].

2.1. The physical understanding of EIT

EIT is an effect of quantum interference based on the light-induced coupling of atomic
states. In order to understand the physics of EIT, it is necessary to initially understand
the phenomenon of quantum interference and coherence in atomic systems. The concept
of EIT is investigated by introducing the dressed state picture of the atom-light interaction
based on the related phenomenon of coherent population trapping (CPT).

2.1.1. Quantum interference and coherence in atomic systems

Quantum interference describes the interference of probability amplitudes which represent
different alternative pathways, e.g. of a single photon in an interferometer. In the case of
coherent preparation of atomic ensembles, the interference of different transition pathways
is referred to as quantum interference. Two energy states of an atom can be coupled via
different transition processes, which are all described by a quantum mechanical probability
amplitude. As these amplitudes are summed and can be positive or negative in sign, they
can interfere either constructively or destructively leading to enhancement or cancellation
of the total transition amplitude.
The interference of different excitation pathways can be demonstrated by Fano interference,
which was the first quantum interference introduced by Fano in 1961 [17]. It can be
observed for multi-electron atoms with an autoionizing state |2〉; see figure 2.1 (a). This



4 2. Coherent optics with electromagnetically induced transparency

Figure 2.1.: Examples of quantum interference: Fano interference (a) and level structure for lasing without
inversion (b). In (a), the two excitation pathways to the continuum state |Ec, k〉 of an atom with
an autoionizing resonance can interfere: the ground state |1〉 is coupled to the continuum either
by direct photoionization or via excitation to a bound state |2〉 and subsequent spontaneous
decay to the continuum via interelectronic Coulomb interaction. In (b) the interference is
caused by the close spacing of the resonances |2〉 and |3〉, which both decay to the same
continuum |Ec, k〉 if they are excited by a light field ωL.

is a neutral, doubly excited state which decays naturally to some ionized continuum of
states |Ec, k〉 due to the interaction of the excited electrons. An atom prepared in |1〉 can
get excited to the continuum via two possible pathways: either by direct photoionization
|1〉 → |Ec, k〉 or indirectly by exciting the atom to the bound state |2〉, which subsequently
decays to the continuum. These two pathways can interfere constructively or destructively
depending on the energy of the exciting photon1. This leads to frequency dependent
enhancement and reduction of absorption in the vicinity of the autoionizing resonance. As
a consequence, one observes characteristically asymmetric line shapes in the absorption
profiles of these autoionizing states [18].
This type of quantum interference can also be observed in the case of two discrete lifetime-
broadened energy levels as depicted in figure 2.1 (b). Consider two closely spaced2 upper
states |2〉 and |3〉 which both spontaneously decay to the continuum |Ec, k〉. If an atom
initially in state |1〉 gets excited by a laser field with frequency ωL which is scanned
across |2〉 and |3〉, the absorption profile will exhibit a Fano-like interference. This arises
due to quantum interference between the two possible pathways of the atom to get to the
continuum, either via state |2〉 or state |3〉. This leads to an effect known as lasing without
inversion (LWI) which closely related to EIT [4].
Quantum interference can also be induced intentionally by applying a laser field to an
atomic medium with well separated energy states [19]; see figure 2.2. If a strong resonant

1In multi-electron systems different electronic configurations are mixed due to the so called “configuration
interaction”. Thus, the state |Ec, k〉 is actually an admixture of |2〉 and all possible continuum states
and likewise |2〉 gets modified by the continuum states. The probability for excitation to |Ec, k〉 is then
given by the transition matrix dipole element 〈Ec, k|Hint|1〉 which contains the terms 〈2∗|Hint|1〉, due
to excitation to the modified state |2∗〉, and 〈Ec, k|Hint|1〉, where Hint is the transition operator. The
coefficients of these terms vary sharply as the energy traverses the resonance of |Ec, k〉 and interfere
with opposite phase on both sides of the resonance, see [17].

2The frequency difference of the energy states is comparable to or less than their linewidths.
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Figure 2.2.: Autler-Townes-Doublet in the absorption profile of an atom: (a) The states |2〉 and |3〉 are
coupled by a strong coupling laser with Rabi frequency Ωc, leading to the dressed states |3d+〉
and |3d−〉. Figure (b) shows the absorption profile of the probe laser dependent on the detuning
δ from resonance: In the case of high coupling strength Ωc, two separated lines spaced by ~Ωc
are observed (green dashed line). In the case of the red solid line quantum interference causes
a reduced absorption at δ = 0. The gray dashed curve shows the non-coupled Lorentzian
absorption line.

laser field with Rabi frequency Ωc is applied to the transition |2〉 → |3〉, the states |2〉 and
|3〉 will be coherently coupled. As a result, these states will be replaced by the new shifted
states |3d+〉 and |3d−〉 spaced by ~Ωc which are called the dressed states. These are the
eigenstates of the time-independent Hamiltonian of the combined atom-light system. If a
probe light resonant to the |1〉 → |3〉 transition is applied and scanned across the upper
level, the absorption profile will show a characteristic line splitting called the Autler-
Townes-Doublet [20]. If the splitting ~Ωc exceeds the natural linewidth of the atomic
states, the cancellation of absorption is simply due to the fact that the spectral overlap
between the dressed states and the spectral profile of the laser is zero at resonance δ = 0.
The absorption profile then shows two distinct line shapes spaced by ~Ωc as depicted by
the green dashed line in figure 2.2 (b). However, if the coupling Ωc is small enough so that
the splitting is comparable or less than the natural linewidths, the absorption will cancel
due to quantum interference between the two dressed states. In this case, the observed
line shape shown by the red solid line in figure 2.2 (b) is not simply the sum of two single
lines but has a more complicated structure, in which a narrow dip at δ = 0 appears.

2.1.2. EIT in a 3-level Λ-system

The effect of EIT is closely related to the concept of coherent population trapping (CPT).
They can both be explained by the same physics and EIT can be considered as a special
case of CPT. In either case the atoms get trapped in a dark state, which is created by
external laser fields and is called dark since it is decoupled from the light fields [2]. Thus, it
is convenient to first consider CPT and introduce the concept of dark states in the dressed
state picture to understand the underlying physics of these phenomena.
The observation of EIT and CPT usually requires a three-level atomic system, in which
one transition is dipole forbidden whilst the other two transitions are dipole coupled. In
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Figure 2.3.: Three basic configurations for a 3-level-system interacting with two light fields: (a) Λ-system,
(b) V-system, (c) ladder-system. In all cases, the |1〉 → |2〉 transition is dipole forbidden and
the states |1〉 and |2〉 are coupled to |3〉.

figure 2.3 the three basic level schemes called the Λ-, V- and ladder-system are shown. In
all schemes, |1〉 → |2〉 is the dipole forbidden transition and |1〉 is a ground state, whereas
for the Λ-system |2〉 is typically a meta-stable state. In the following the focus lies on the
Λ-scheme and CPT and EIT for this system are investigated. Thus, consider the Λ-system
shown in figure 2.4, in which the two dipole-allowed transitions are driven by two laser
fields with Rabi frequencies Ωp of the probe laser and Ωc of the coupling laser, respectively.
The Rabi frequencies are determined by the field amplitudes Ep and Ec as

Ωp =
d13Ep

~
and Ωc =

d23Ec
~

(2.1)

in which d13 and d23 are the dipole transition elements of the corresponding transitions.
The field detunings from resonance are given by δp = ωp − ω31 and δc = ωc − ω32, respec-
tively, where ωp and ωc are the laser frequencies and ω31 and ω32 are the frequencies of
the dipole allowed transitions. For now, the radiative decay rates Γ31 and Γ32 and the
dephasing rate γ21 of state |2〉 will be ignored in the dressed state picture. They are in-
troduced in the next chapter where the optical response of the system is determined using
the density matrix formalism.
If the coupling laser is close to the atomic resonance, i.e. δc is small, atoms which are
initially in state |2〉 will be excited to state |3〉 and afterwards can decay to either of the
states |2〉 or |1〉. Thus the atoms are optically pumped into |1〉. Likewise the probe field
Ωp will pump atoms from state |1〉 into state |2〉. Usually optical pumping enhances the
absorption of a light field which excites the pumped state, since there is an increased
population in this state. However, since both fields couple to the same excited state, de-
structive quantum interference causes a decreased absorption of both fields.
Consider the total Hamiltonian of the system given by the sum of the Hamiltonian H0

of the bare atom and the term Hint which describes the interaction of the atom with the
light fields:

H = H0 +Hint , (2.2)

where the interaction term using the rotating wave approximation (RWA) is given by

Hint = −~
2
[
Ωpe

−iωpt|3〉〈1|+ Ωce
−iωct|3〉〈2|+ c.c.

]
. (2.3)
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Figure 2.4.: Λ-system used for CPT. The dipole allowed transitions |1〉 → |3〉 and |2〉 → |3〉 are driven by
two laser fields with strength Ωp and Ωc, which are detuned from the resonance by δp and δc,
respectively. Γ31 and Γ32 are the decay rates out of state |3〉 and γ21 is the dephasing rate
between the two ground states.

The eigenstates of the complete system described by H are the dressed states. They are
a linear superposition of the bare atomic states |1〉, |2〉 and |3〉 induced by the two laser
fields. With time dependent amplitudes c1(t), c2(t) and c3(t) they can be written in the
form

|Ψ〉 = c1(t) |1〉+ c2(t) |2〉+ c3(t) |3〉 . (2.4)

To understand the origin of the quantum interference, it is useful to consider the super-
position states |+〉 and |−〉 rather than the ground states |1〉 and |2〉:

|+〉(t) =
Ωp

Ω′
e−iω1t|1〉+

Ωc

Ω′
e−iω2t|2〉 (2.5)

|−〉(t) =
Ωc

Ω′
e−iω1t|1〉 − Ωp

Ω′
e−iω2t|2〉 (2.6)

with Ω′ = (|Ωp|2 + |Ωc|2)1/2 and the frequencies ω1 and ω2 of the states |1〉 and |2〉,
respectively [21]. The important feature of these states is that they do not contain the
upper level |3〉. The transition dipole matrix elements which describe the excitation into
state |3〉 are given by 〈3|Hint|−〉 and 〈3|Hint|+〉, yielding

〈3|Hint|+〉 = − ~
2Ω′

(
Ω2
p e
−i(ωp+ω1)t + Ω2

c e
−i(ωc+ω2)t

)
(2.7)

〈3|Hint|−〉 = − ~
2Ω′

ΩpΩc e
−i(ωp+ω1)t

(
1− ei(ωp−ωc−ω2+ω1)t

)
(2.8)

The state |−〉 is especially interesting since its transition dipole element vanishes in the
case of two-photon resonance ωp − ωc = ω2 − ω1:

〈3|Hint|−〉 = 0 (2.9)
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Figure 2.5.: Dressing of the atomic states in the case of EIT of a 3-level Λ-system as shown in (a): The
coupling of the states |2〉 and |3〉 with a strong laser field leads to dressed states |3d〉 and |2d〉
as pictured in (b) (right side). The destructive interference of these two dressed states leads
to EIT when probing the |1〉 → |3〉 transition with a weak probe field.

Hence, this state is decoupled from the electromagnetic field and no excitation to state
|3〉 can occur. Therefore, |−〉 is known as a dark state, since an atom prepared in |−〉
will not absorb or emit any light and is thus trapped in that state. This phenomenon is
called coherent population trapping and its origin is the destructive interference between
the transition amplitudes |1〉 → |3〉 and |2〉 → |3〉.
In CPT the two laser fields have comparable strengths Ωp ≈ Ωc. In the special case of
EIT the coupling field Ωc is much stronger than the probe field, i.e. Ωp � Ωc. In this
situation only the stronger coupling field will induce coherent superposition states, whilst
the probe laser will be treated as a weak perturbative field which does not influence the
atomic states. Under this condition, the dark state |−〉 in equation (2.6) approaches the
ground state |1〉, in which the population is stored:

|−〉EIT = |1〉 (2.10)

In figure 2.5 the dressing of the atomic states is illustrated for the case of EIT. The
dressed states |2d〉 and |3d〉 are given by the coherent superposition of the upper bare
atomic states |2〉 and |3〉 caused by the coupling field. The ground state |1〉 is not included
in the coupling and thus becomes the dark state. For two-photon resonance δp = δc = δ,
the dressed eigenstates can be written as [22]

|2d〉 = cos θ|2〉 − sin θ|3〉 (2.11)
|3d〉 = sin θ|2〉+ cos θ|3〉 (2.12)

where the mixing angle θ is given by

tan 2θ =
Ωc

δ
. (2.13)
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In the case of a resonant coupling field δ = 0, the mixing angle approaches θ → π/2 and
thus the dressed states have the form

|2d〉 =
1√
2

(|2〉 − |3〉) (2.14)

|3d〉 =
1√
2

(|2〉+ |3〉) . (2.15)

Thus, for δp = δc = 0 the transition probability amplitudes for exciting an atom from
state |1〉 by the probe field are equal in amplitude but have opposite signs

〈2d|Hint|1〉 = −〈3d|Hint|1〉 . (2.16)

Therefore, the total transition amplitude vanishes and the medium becomes transparent
to the probe field. In the case of an off-resonant coupling field δc 6= 0, the bare states |2〉
and |3〉 contribute with different amplitudes to the dressed states, and the situation of a
vanishing transition amplitude will arise at the two-photon resonance δp = δc.

2.2. Semiclassical theory of light-matter interaction using the
density matrix

The interaction of an atomic system with coherent light fields can be described by different
theoretical models. One approach is to use the dressed state picture as introduced in the
previous chapter, i.e. the new eigenstates of the system obtained by diagonalization of
the total Hamiltonian. However, to account for the non-perturbative coupling field and
additional damping terms, a general density matrix approach will be used in this chapter
to determine the optical response of the medium. In this model the time evolution of the
populations of the atomic levels as well as the atomic coherences between those levels is
determined by using the master equation. Damping processes like spontaneous emission
and decoherences are introduced phenomenologically by adding an extra damping term
and thus using the master equation in the Lindblad form.
The linear optical response of an atom is given by the linear susceptibility, which is closely
related to the atomic coherences and thus can be determined by the steady state solutions
of the master equation. For this purpose a semiclassical approach is used in which the
atom is treated quantum mechanically and the light fields are considered as classical fields.
In the case of single photons and the propagation of quantized fields in EIT3, the fully
quantized treatment including dark-state polaritons would be required [25, 10].

2.2.1. Atomic susceptibility and density matrix

An atomic ensemble such as used in EIT experiments can be described by the density
matrix ρ, whose elements in the case of the pure state in equation (2.4) are given by the
amplitudes

ρij = ci c
∗
j , (2.17)

with i, j = 1,2,3. The populations are given by ρii = |ci|2 and the off-diagonal elements
ρij = ci c

∗
j with i 6= j are the coherences of the system, which can be related to the optical

3For example EIT in resonators, where the atom couples to the cavity modes of the resonator [23], or in
experiments of squeezed light with EIT [24].
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response of the atoms.
The atomic polarization pat of an atom induced by the laser field driving the transition
|i〉 → |j〉 can be written in terms of the coherence term ρij as [26]

pat = dij ρij (2.18)

in which dij is the dipole matrix element of the atomic transition. Thus, for an ensemble
of N atoms the macroscopic polarization P due to the light field is given by

P = N dij ρij . (2.19)

The linear response of a medium to near-resonant light is given by the linear susceptibil-
ity χ(1). It relates the induced polarization to the incident electrical field E

P = ε0χ
(1)E (2.20)

where ε0 is the vacuum permittivity. Combining equations (2.20) and (2.19) and introduc-
ing the Rabi frequency Ω = dij E/~ leads to the relation between the linear susceptibility
and the off-diagonal element ρij of the density matrix

χ(1) =
N

ε0~
d2
ij

Ω
ρij . (2.21)

The linear susceptibility is a complex quantity whose real part Re{χ(1)} describes the
refractive properties of the medium, whilst the imaginary part Im{χ(1)} determines the
absorption. In the absence of any magnetic field, χ(1) is related to the complex refractive
index n = nr + iκ by

n =
√

1 + χ(1) ≈ 1 +
χ(1)

2
. (2.22)

The real part of n is the refraction index nr of the medium and the imaginary part κ is
related to the absorption coefficient α by κ = αc/2ω, in which ω is the frequency of the
light field. Thus, refraction and absorption of the atomic ensemble can be expressed as

nr = 1 +
1
2

Re{χ(1)} (2.23)

α =
ω

c
Im{χ(1)} . (2.24)

Since in equation (2.21) the complex character of χ(1) is contained in the complex coherence
term ρij , one can rewrite the refractive index and absorption coefficient in terms of the
coherences of the density matrix:

nr =
Nd2

ij

2ε0~Ωij
Re{ρij}+ 1 (2.25)

α =
Nd2

ijω

ε0~Ωijc
Im{ρij} . (2.26)

These relations demonstrate that one obtains the optical response of a medium to a light
field from the coherences ρij , which can be determined using the master equation.
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2.2.2. Density matrix formalism for EIT in a Λ-system

In order to investigate EIT using the density matrix elements, the optical response of a
3-level Λ-system to a coupling and a probe field is determined. Therefore, we consider
the three-level system introduced in chapter 2.1.2, see figure 2.4. The Hamiltonian H0 of
the bare atom and Hint describing the interaction can be obtained by a generalization of
the Hamiltonian of a two-level system interacting with a single laser field to the 3-level
system. Therefore, H0 and Hint, which was given in the last chapter using the RWA, can
be expressed by

H0 = ~ω1|1〉〈1|+ ~ω2|2〉〈2|+ ~ω3|3〉〈3| (2.27)

Hint = −~
2
[
Ωpe

−iωpt|3〉〈1|+ Ωce
−iωct|3〉〈2|+ c.c.

]
in which ~ω1, ~ω2 and ~ω3 are the energies of the states |1〉, |2〉 and |3〉. The terms
|i〉〈i| = σii are the atomic projection operators and σij = |i〉〈j| are the atomic ladder
operators describing transitions from |j〉 to |i〉. As in the last chapter, Ωp and Ωc are
the Rabi frequencies of the probe and coupling field, respectively, and the detunings from
resonance are given by δp and δc.
The time evolution of the density matrix elements is given by the master equation [27]:

d

dt
ρij = − i

~
〈i| [H, ρ] |j〉 . (2.28)

In this chapter the quantity of interest is the optical response of a medium to resonant light,
which is determined by the off-diagonal elements ρ21, ρ31 and ρ32 of the density matrix, for
which ρij = ρ∗ji holds. In the master equation approach the effect of decoherence is taken
into account by including damping terms, where it is assumed that the off-diagonal matrix
elements ρij decay with the respective rates γij . In the case of ρ32 and ρ31, this contains
spontaneous emission from state |3〉 to |1〉 or |2〉, respectively, with the total spontaneous
emission rate Γ3 = Γ31 + Γ32. Furthermore, the off-diagonal decay rates are determined
by dephasing processes like collisions in an atomic vapor. In the presence of damping, the
time evolution of the coherences is then given by the Lindblad equations [27]

d

dt
ρ31 = − i

~
〈3| [H, ρ] |1〉 − γ31

2
〈3| (2σ13ρσ31 − σ33ρ− ρσ33) |1〉 (2.29)

d

dt
ρ32 = − i

~
〈3| [H, ρ] |2〉 − γ32

2
〈3| (2σ23ρσ32 − σ33ρ− ρσ33) |2〉 (2.30)

d

dt
ρ21 = − i

~
〈2| [H, ρ] |1〉 − γ21

2
〈2| (2σ12ρσ21 − σ22ρ− ρσ22) |1〉 . (2.31)

This leads to the following time dependences of the coherences:

d

dt
ρ31 = −

[
iω31 −

γ31

2

]
ρ31 + i

Ωp

2
e−iωpt(ρ11 − ρ33) + i

Ωc

2
e−iωctρ21 (2.32)

d

dt
ρ32 = −

[
iω32 −

γ32

2

]
ρ32 + i

Ωc

2
e−iωct(ρ22 − ρ33) + i

Ωp

2
e−iωptρ12 (2.33)

d

dt
ρ21 = −

[
iω21 −

γ21

2

]
ρ21 − i

Ωp

2
e−iωptρ23 + i

Ω∗c
2
eiωctρ31 (2.34)

with the transition frequencies ω31 = ω3 − ω1, ω32 = ω3 − ω2 and ω21 = ω2 − ω1 of
the atomic states, respectively. So far no assumptions regarding the field strengths of
probe and coupling fields have been made. In EIT the coupling is much stronger than the
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Figure 2.6.: The solid lines show the real part (a) and imaginary part (b) of the dressed susceptibility of
EIT, plotted against the probe detuning δp which is normalized to the decay rate γ31. The
dashed lines show the case of no coupling, which is the same as that of a two-level atom.

perturbative probe field, i.e., Ωp � Ωc. Thus, the off-diagonal elements can be evaluated
to the lowest order in Ωp, but all orders of the strong field Ωc must be kept. In addition
it is assumed that all atoms are initially in the ground state |1〉, i.e. ρ22(0) = ρ33(0) = 0
and ρ11(0) = 1. Evaluating the density matrix elements in orders of Ωp leads to

ρ11 ≈ 1 (2.35)
ρ22 = ρ33 = ρ32 ≈ 0

where the terms in the second line are set to zero because they contain only higher orders of
Ωp, whereas ρ11 includes a term 1−O(|Ωp|2), which means that for all times the population
stays in |1〉. However, the terms ρ31 and ρ21 contain only first order terms and can be
expressed by

d

dt
ρ31 = −

(
iω31 +

γ31

2

)
ρ31 + i

Ωp

2
e−iωpt + i

Ωc

2
e−iωctρ21 (2.36)

d

dt
ρ21 = −

(
iω21 +

γ21

2

)
ρ21 + i

Ω∗c
2
eiωctρ31 . (2.37)

By introducing new variables ρ̃31 = ρ31e
iωpt and ρ̃21 = ρ21e

i(ωp−ωc)t and including the
probe detuning δp = ωp−ω31 and the two-photon detuning ∆ = δp− δc = (ωp−ωc)−ω21

one obtains
d

dt
ρ̃31 = i

(
δp + i

γ31

2

)
ρ̃31 + i

Ωp

2
+ i

Ωc

2
ρ̃21 (2.38)

d

dt
ρ̃21 = i

(
∆ + i

γ21

2

)
ρ̃21 + i

Ω∗c
2
ρ̃31 . (2.39)

These can now be solved in the adiabatic regime, i.e. ˙̃ρ31 = 0 and ˙̃ρ21 = 0. The optical
response of the atoms to the weak probe field resonant to the |1〉 → |3〉 transition is the
quantity of interest for EIT. Therefore only the susceptibility induced by the coherence
term ρ31 is considered here. Using equation (2.39) the solution of equation (2.38) is

ρ̃31 =
Ωp(2∆ + iγ21)

|Ωc|2 − (2δp + iγ31)(2∆ + iγ21)
. (2.40)
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As described in chapter 2.2.1, the susceptibility can be calculated from the coherences via
the macroscopic polarization that is induced. In the case of the probe field, the complex
linear susceptibility is given by

χ(1)
p =

N

ε0~
d2

13

Ωp
ρ̃31 (2.41)

with the dipole matrix element d2
13 of the probe transition. This is the relevant suscep-

tibility for describing the EIT effect, and χ
(1)
EIT is given by χ

(1)
p . The linear susceptibility

describing EIT is thus

χ
(1)
EIT =

Nd2
13

ε0~
2(2∆ + iγ21)

|Ωc|2 − (2δp + iγ31)(2∆ + iγ21)
. (2.42)

Separating this into its real and imaginary parts finally gives one the absorptive and
dispersive line shapes for EIT:

Refraction: Re{χ(1)
EIT} =

Nd2
13

ε0~

4∆
(
|Ωc|2 − 4δp∆

)
− 4δpγ2

21∣∣∣|Ωc|2 + (γ21 + 2i∆)(γ31 + 2iδp)
∣∣∣2 (2.43)

Absorption: Im{χ(1)
EIT} =

Nd2
13

ε0~

8γ31∆2 + 2γ21

(
|Ωc|2 + γ21γ31

)
∣∣∣|Ωc|2 + (γ21 + 2i∆)(γ31 + 2iδp)

∣∣∣2 . (2.44)

The latter determines the transmission as [22]

T = e−αz = exp
(
−Im{χ(1)

EIT}
ω31

c
z
)
. (2.45)

The line shapes of the real and the imaginary parts of the “dressed” susceptibility are
plotted in figure 2.6 as a function of the normalized probe detuning δp/γ31 from resonance.
The plot shows the ideal case of a perfect metastable state |2〉, i.e. γ21 = 0, and a resonant
coupling field ∆ = δp is assumed, whereby the normalized coupling strength is set to
Ωc/γ31 = 0.25. If the coupling is switched on, the imaginary part is zero at resonance
and the medium becomes totally transparent for the probe light. At the same time,
the real part of the susceptibility is still zero at resonance but exhibits steep anomalous
dispersion in a region of high transparency. This can, e.g., lead to anomalous slow group
velocities, since the group velocity at resonance depends on the change of the refraction
index nr =

√
1 + Re{χ(1)} with frequency, i.e. dnr/dωp, as [22]

vg =
c

n+ ωp
dn
dωp

(2.46)

Usually, in normal media a change in the group velocity is always associated with high
absorption. In EIT, the group velocity can be controlled by the strength of the coupling
field, which determines the width of the EIT resonance and the slope of the real part of
the susceptibility, i.e. dn/dωp, while the medium stays transparent. This steepness of the
dispersion function is the key parameter in order to obtain small group velocities of the
probe light, and it is directly related to the transmission width.
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2.2.3. Critical parameters in EIT

The shape of the EIT resonance and the transparency at the two-photon resonance de-
pends highly on parameters like the atomic coherences and the coupling strength. Since it
is necessary for the experimental observation of EIT to take care in choosing an appropri-
ate level system and in setting the experimental parameters, the dependence of the EIT
resonance on these parameters is investigated.
In the case of a resonant coupling laser ωc = ω32 there are two parameters which mainly
determine the shape and depth of the transparency window: the coupling strength Ωc

and the dephasing rate γ21 of the dipole-forbidden |1〉 → |2〉 transition. The amount of
transparency itself does not change with coupling strength, but depends highly on the
decoherence between the two lower states |1〉 and |2〉. In figure 2.7 (a) the influence of
the dephasing rate γ21 on the linear susceptibility is shown. In the case of γ21 = 0 perfect
transparency is obtained, but the amount of transparency decreases rapidly with increasing
γ21. If γ21 � Ωc, the EIT resonance will vanish due to insufficient ground state coherence,
but it can be recovered by increasing the coupling strength Ωc.
The coupling strength Ωc mainly affects the width of the EIT resonance, and in fig-
ure 2.7 (b) the EIT line shape is shown for different values of Ωc. In the limit Ωc � γ31

a single absorption profile with a narrow transparency window at resonance is observed.
The linewidth of this window is much narrower than the width γ31 of the total absorption
peak. With increasing coupling power the width of the EIT resonance becomes broader.
In the limit of |Ωc| > γ31, the spectral profile shows two distinct lines corresponding to
the two dressed states from section 2.1.2.
The condition for observing EIT depending on the parameters Ωc, γ31 and γ21 is given
as [22]

|Ωc|2 � γ31γ21 . (2.47)

The transmission width of the EIT resonance depends not only on the coupling power,
but also on the coherences, and it is directly related to the steepness of the real part of
the susceptibility at resonance. In the case of a homogeneously broadened system with
the width Γ3 of the upper state4, the EIT linewidth scales quadratically with the coupling
strength Ωc if Ωc � Γ3 [28]:

Γeit ∝
Ω2
c

Γ3
. (2.48)

The quadratic dependence on Ωc indicates power broadening in this regime. When per-
forming EIT on hot atomic gases the effect of Doppler broadening on the EIT linewidth has
to be considered. For a Λ-system, the condition for the two-photon resonance including
the Doppler shifts of the atoms is given by

ω21 = (ωp − ~kp · ~v)− (ωc − ~kc · ~v) (2.49)

where ~kp and ~kc are the wave vectors of the fields and ~v is the velocity of the atoms. For
co-propagating beams the Doppler shift becomes negligible if the residual Doppler shift
(ωp − ωc)v/c is small enough, which is typically fulfilled since the optical frequencies of
the lasers are comparable. Thus, the two-photon resonance is in principle independent

4Γ3 usually denotes the lifetime broadened width of the atomic resonance. In the presence of collisional
broadening it must be replaced by Γ3 + γcoll.
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Figure 2.7.: Dependency of the imaginary part of the susceptibility on the decoherence rate γ21 (a) and
the coupling strength Ωc (b).
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of Doppler broadening in this special case. However, only small deviations in the angle
of the beams are sufficient to cause a considerable residual Doppler shift. Assuming a
Doppler broadened resonance with linewidth ΓD, and also a non-vanishing ground state
decoherence γ21, an expression for the EIT width depending on Ωc can be estimated [28]:

Γeit ≈
Ω2
c

ΓD
if Ω2

c �
2γ21Γ2

D

Γ3
(2.50)

Γeit ≈
√

2γ21

Γ3
Ωc if Ω2

c �
2γ21Γ2

D

Γ3
. (2.51)

In the first situation the EIT width is proportional to the intensity Ω2
c of the coupling

field, and in contrast to the homogeneous broadened system, this occurs if the coupling is
strong enough so that the EIT linewidth exceeds the Doppler broadening of the resonance5.
In this regime the width is dominated by power broadening due to the coupling field.
In the second case the EIT linewidth scales linear with the coupling strength and it is
independendt of the Doppler width ΓD.

The model for EIT presented in this chapter is a basic model which assumes a simple
three level structure without any substructure. In experiments on EIT, sublevels like mF

sub-states must be taken into account, including their relative strength and selection rules.
As an example it is possible to observe multiple EIT resonances inside one absorption line,
corresponding to the different Λ-schemes formed by the mF -states, by applying a strong
magnetic field [21]. resonant coupling laser and a two-photon detuning ∆ = δp − δc 6= 0
the absorption profile becomes asymmetric. For small detunings ∆� γ31 one observes an
EIT resonance which is slightly off-resonance from the probe transition inside the broad
absorption line. However, if the detuning is large compared to the width γ31 of the upper
state, the absorption profile shows absorption line of a single two-level system plus an
additional narrow peak at the two photon resonance δp = δc.

5Assuming that ΓD � Γ3.



3. Frequency control and stabilization of
diode lasers

Basov et. al. [29] suggested in 1961, that stimulated emission of radiation could occur in
semiconductors by the recombination of charge carriers injected in a pn-junction. The
first lasing action of a semiconductor was then observed in 1962 [30]. Henceforward a
remarkable development in the field of laser diodes has been made and they have become
a key element in a variety of areas of science and technology. Semiconductor lasers have
particular advantages compared to other laser types: they are extremely compact and
small in size, can easily be operated by injecting a small current at low voltages, and
their frequency can simply be modulated by modulating the injection current. Thus,
they are particularly attractive for locking techniques such as phase locking of two optical
oscillators.
This chapter describes the basic principles of semiconductor lasers and their frequency
modulation via the injection current. Furthermore, the phase noise characteristics of
semiconductor lasers are investigated. Finally, in the last section, the stabilization of the
laser frequency via optical feedback and using the approach of polarization spectroscopy
is explained.

3.1. Fundamentals of diode lasers

Lasers are optical oscillators which are based on Light Amplification by Stimulated
Emission of Radiation. The important process for the laser to operate as a coherent
light source is that of stimulated emission of photons out of an atomic (or molecular)
state. The three basic components required to build a laser are the gain medium for am-
plification of the light, an energy source which pumps the gain medium and an optical
resonator, which provides frequency selective optical feedback of the emitted photons.
In order to achieve amplification of light, it is necessary to have population inversion in
the gain medium, so that more atoms are in the upper than in the lower state of the
laser transition. However, in thermal equilibrium the energy levels are occupied according
to the Boltzmann distribution, and there is always more population in the lower energy
states. Population inversion corresponds to a non-equilibrium situation and is achieved
by actively pumping the laser medium, so that for energies E2 > E1 one obtains

N2 −N1 > 0 , (3.1)

where N1 and N2 are the populations of the corresponding energy levels.

Semiconductor lasers

In the case of diode lasers, the semiconductor material has energy bands instead of discrete
energy levels. At zero temperature the valence band is fully occupied and no electron is
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Figure 3.1.: (a) Band structure of a pn-junction in thermal equilibrium with the fermi energy EF and the
potential difference V0 due to the diffusion of charge carriers. (b) Forward biased pn-junction
with the external voltage V . The fermi levels for electrons, Efc, and holes, Efv are separated
by eV , which leads to population inversion in the active area.

excited to the conduction band. The probability for a given energy state to be occupied
by an electron is described by the Fermi-Dirac statistic

f(E) =
1

1 + exp
(
E−EF
kBT

) (3.2)

with the Fermi energy EF, which is the maximum electron energy at T = 0, and the
Boltzmann constant kB. The probability for an energy level in the valence band to be
empty, i.e., to be occupied by a hole, is thus given by 1− f(E).
In a semiconductor laser, population inversion is achieved by pumping electrons in the
active region of a forward biased pn-junction. Figure 3.1 (a) shows the band structure
of a pn-junction in thermal equilibrium. The two different Fermi levels of the p- and
the n-regions must align in the case of thermal equilibrium, and no charge carriers are
present in the transition region. If an external forward biased voltage V is applied, the
equilibrium is violated and the charge carrier distribution is now described by the two
quasi-fermi levels Efv and Efc for the valence and the conduction band, respectively. This
situation is illustrated in figure 3.1 (b), where due to the separation between Efv and Efc

there is a net number of charge carriers in the active region. The occupation probabilities
for an energy level in the conduction and in the valence band are given as [31]

fv(E) =
1

1 + exp
(
E−Efc
kBT

) fc(E) =
1

1 + exp
(
E−Efv
kBT

) . (3.3)

The probabilities that a photon with energy E = hν = E2 −E1 is absorbed or emitted in
the active region are thus

fab = fv(E1)[1− fc(E2)]
fem = fc(E2)[1− fv(E1)] .
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The transition rates for spontaneous emission, rsp(E), and that for stimulated emission
and absorption, rem(E) and rab(E),can be determined by

rsp(E) = A21 ρc(E2)ρv(E1) fc(E2)[1− fv(E1)]
rem(E) = B21 ρc(E2)ρv(E1) fc(E2)[1− fv(E1)]
rab(E) = B12 ρc(E2)ρv(E1) [1− fc(E2)]fv(E1) ,

where ρv(E) and ρc(E) are the respective density of states in the valence and the con-
duction band, and the proportionality constants A21 and B21 = B12 are the Einstein
coefficients [31]. For lasing operation one is mostly interested in the net stimulated emis-
sion rate rst(E), which is given by

rst(E) = rem(E)− rab(E) (3.4)
= A21 ρc(E2)ρv(E1) [fc(E2)− fv(E1)] . (3.5)

In order to obtain population inversion, rst(E) has to be positive, which leads to the
inversion condition

fc(E2) > fv(E1) , (3.6)

which is the equivalent to equation (3.1), and according to which the occupancy probability
in the conduction band has to be larger than that of the valence band. The strong pumping
of carriers into the active area by the injection current, as illustrated in figure 3.1 (b), leads
to a shift of the quasi-fermi levels Efv and Efc, and condition (3.6) is fulfilled in the active
area if the separation between the quasi-fermi levels is larger than the photon energy
hν [31],

Efc − Efv > hν . (3.7)

The optical resonator of a laser diode is realized by the cleaved rear end facet of the semi-
conductor. Since semiconductor materials typically have large refractive indices (n ≈ 3.6),
there is a substantial back reflection due to the mismatch between the semiconductor re-
fractive index and that of the surrounding air. If R1 and R2 are the reflectivities of the
laser diode end facets, L the cavity length and αl the constant losses inside the cavity, the
threshold gain gth has to be equal to the total losses in order to obtain laser oscillations.
Additionally, the phase shift κL which the light experiences in one round trip has to be a
multiple integer of π. Thus, the lasing condition can be written as

gth = αl +
1

2L
ln
(

1
R1R2

)
(3.8)

with κL = mπ and m an integer. The lifetime of the photons is proportional to the inverse
of the total loss rate given by the right side of equation (3.8), which yields

τph =
1
gthc

. (3.9)

The dynamic behavior of a laser diode is characterized by investigating the propagation
of the optical field inside the semiconductor medium. Thereby, one can introduce a nor-
malized complex field amplitude E0(t) which is related to the photon number S by [31]

E0(t) =
√
S(t) exp(iϕ(t)) (3.10)



20 3. Frequency control and stabilization of diode lasers

with the phase ϕ(t) of the slowly varying amplitude
√
S(t) of the traveling wave. The

purpose of rate equations is to determine the temporal response of a laser diode. For the
photon number S(t), the carrier density n(t) and the phase ϕ(t) one can write the rate
equations

dS

dt
=

S

τph
(G− 1) +Rsp (3.11)

dn

dt
=
i− ith
eV

− 1
τe

(n− nth)− GS

V τph
(3.12)

dϕ

dt
=

α

2τph

∂G

∂n
(n− nth) , (3.13)

following the procedure in [31]. Here, Rst and Rsp are the effective stimulated and spon-
taneous emission rates taking into account the confinement of the light in the waveguide
formed by the structure of the laser diode. The normalized gain of the laser diode is de-
fined as G = Rst τph, and the lifetime of the charge carriers is given by τe. Furthermore, e
is the electron charge, V defines the volume of the active medium, i is the injected current
and ith denotes the threshold current for laser operation. In relation (3.13) describing
the phase variations, the term ∂G/∂n describes the dependence of the normalized gain
G = Rst τph on the carrier density, and nth is the carrier density at the threshold gain gth.
The parameter α depends on the complex refractive index µ = µ′ + iµ′′ of the medium
and relates changes of the real part of the refractive index, µ′, to changes in its complex
part µ′′, i.e.

α =
∆µ′

∆µ′′
. (3.14)

This parameter plays an important role in the phase noise characteristics of laser diodes,
as will be explained in section 3.3. Equations (3.11) to (3.13) are the basic relations
to describe the dynamic behavior of the laser diode and they can be used to study its
modulation response.

3.2. Theory of frequency modulation

In locking techniques such as optical phase locked loops, fast control of the laser frequency
is required. In the case of diode lasers this demands modulation of its injection current,
which causes a modulation of the output intensity as well as of the lasing frequency. This
section gives a short introduction to the general theory of frequency modulation, and
afterwards the modulation properties of semiconductor lasers are investigated in more
detail.

3.2.1. Introduction to frequency modulation

In order to describe the modulation of the frequency of an oscillator signal, consider the
carrier signal

vc(t) = Vc cos(ωct+ φ(t)) (3.15)

with amplitude Vc, frequency ωc and the time varying phase φ(t). Frequency modulation
(FM) uses a modulation signal, um(t), to vary the carrier frequency within a small range
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about its original value, i.e. the instantaneous output frequency of the oscillator is varied
proportionally to the modulation signal. The instantaneous frequency of the signal is

ω(t) = ωc +
dφ(t)
dt

= ωc + ∆ω(t) , (3.16)

where ∆ω(t) = dφ(t)
dt is the instantaneous frequency deviation. The latter is an important

quantity in understanding the concept of frequency modulation, and it is proportional to
the modulation signal um(t),

∆ω(t) = kFM um(t) , (3.17)

where kFM is the modulation sensitivity. The maximum (temporal) change of the carrier
frequency is the peak frequency deviation

∆Ω = |∆ωmax| . (3.18)

Considering a sinusoidal modulation signal

um(t) = Um cos(ωmt) , (3.19)

the peak frequency deviation is directly proportional to the modulation amplitude Um,

∆Ω = kFM Um . (3.20)

One should note that ∆Ω is time independent and thus a real frequency, which has no
Fourier component in the output spectrum. It is rather a measure of the maximum
amplitude of the modulation signal.
The modulation index β is an important parameter in the characterization of FM spectra,
and it is defined as the ratio between the peak frequency deviation and the modulation
frequency:

β =
∆Ω
ωm

. (3.21)

Thus, according to relation (3.20), the modulation index is a function of both the amplitude
and the frequency of the modulating signal.
Using relations (3.16) and (3.17), the frequency modulated signal can be written in the
form

vFM(t) = Vc cos
(
ωct+ kFM

∫
um(t)dt

)
. (3.22)

With the definition of β this leads to the following expression for the FM signal:

vFM(t) = Vc cos (ωct+ β sin(ωmt)) . (3.23)

This equation describes how the modulated signal varies with time. In order to obtain the
output spectrum in the frequency domain one can rewrite vFM(t) in the complex form [32]

vFM(t) = Vc Re {exp(iβ sin(ωmt)) exp(iωct)} . (3.24)

The complex envelope contains the modulation frequency ωm and the modulation index,
and thus all information about the modulation. It can be written in terms of the Bessel
functions Jn [32], yielding
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Figure 3.2.: Illustration of the spectra of a frequency modulated signal for different modulation indices β.
The modulation amplitude Um is held constant and the modulation frequency is varied. As β
increases, the number of sidebands increases, and for very large modulation indices the number
of sidebands cannot be resolved.

vFM(t) = Vc Re

{
(i)n

∞∑
n=−∞

Jn(β) exp[i(ωc + nωm)t]

}
. (3.25)

The FM output spectrum in the frequency domain is given by the Fourier transform of
equation (3.25). This relation indicates that the FM signal contains an infinite num-
ber of sideband pairs symmetrically distributed around the carrier frequency, where the
separation between neighbouring sidebands is given by the modulation frequency1. The
amplitude of the nth pair of sidebands is thereby given by the Bessel function coefficient
Jn(β). In practice, however, only a finite number of sidebands within a certain bandwidth
are significant, depending on the modulation index β.
In order to obtain the peak frequency deviation ∆Ω from the FM spectrum, its dependence
on the modulation index β has to be considered. Figure 3.2 shows the theoretical FM spec-
tra for different values of β in the case of a constant modulation amplitude, i.e. a constant
∆Ω, and increasing modulation frequency [33]. The number of sidebands increases with
larger modulation indices. In the case of small β only a few sidebands are obtained and
∆Ω is smaller than the range of significant sidebands. However, for very large modulation
indices the number of sidebands cannot be resolved, but the envelope determines the peak
frequency deviation ∆Ω, which in this limit can be obtained by measuring the edges of
the FM spectrum envelope.

3.2.2. Frequency modulation of laser diodes

The FM spectrum of a laser diode whose injection current is modulated by a sinusoidal
signal is investigated in this section. A variation in the injection current leads to a change
of the laser intensity and also of the optical frequency. Two main effects determine the
modulation response of a laser diode. First of all, a modulation of the charge carrier
density causes a modulation of the photon number and of the refractive index, which in

1This can be seen more obvious by writing equation (3.25) in the explicit form.
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turn changes the frequency. Furthermore, temperature variations of the laser diode also
lead to a change in the emission frequency due to a modulation of the cavity length.
In order to determine the FM response of the laser diode, the intensity modulation (IM)
characteristics have to be considered first. If a step-current pulse above threshold is applied
to the laser diode, the current pulse increases the carrier density above the lasing threshold
nth. This consequently causes an increased photon number S, since the normalized gain
G = Rst τph in equation (3.11) includes the stimulated emission rate, which depends on
the charge carrier density. The additional photons in turn lead to an enhanced rate of
generated photons due to stimulated emission. However, this large number of photons
“consumes” a lot of charge carriers, which again leads to a reduction of n below nth. This
on the other hand causes the photon number S to decrease rapidly again, which also
increases the carrier density again and so on. These relaxation oscillations are damped
due to spontaneous emission and a steady state is reached after a certain time (typically
1 ns). The occurrence of relaxation oscillations is due to the fact that the photon lifetime
is typically much shorter than the lifetime of the charge carriers, i.e. τph � τe.
In order to obtain the response to a sinusoidal modulation signal rather than a step
function, consider the modulated current

i(t) = 〈i〉+ ∆i cos(ωmt) , (3.26)

with the amplitude ∆i of the modulation signal, the modulation frequency ωm and the
mean value of the injection current 〈i〉. In the case of small modulation amplitudes
|∆i| � 〈i〉, this leads to a sinusoidal variation of the photon number S and the carrier
density n with deviations ∆S and ∆n, respectively. One can derive an expression which
connects the current changes to the changes of the photon number, which, as described
in [31], yields

∆S
∆i

(
e

τph

)
=

1

1 + iωm
ωd

+
(
iωm
ωr

)2 . (3.27)

Here, ωr is the relaxation resonance frequency and ωd is the damping frequency. They are
given by [31]

ωr =
1
τph

√
〈S〉 ∂G/∂n

V
ωd
∼=
ω2

r τph

γ
, (3.28)

where ωr depends on the average photon number 〈S〉 and the partial derivative of the
normalized gain G with respect to the carrier density. The frequency ωd describes the
damping of the relaxation oscillations, in which the term γ is related to the spontaneous
emission and nonlinearities of the gain G such as the effect of gain compression [34].
Depending on the operating current the relaxation damping is dominated by spontaneous
emission, in the case of small photon numbers, whereas for larger photon numbers the gain
compression becomes more relevant.
Based on equation (3.27) the frequency response of a laser diode can be calculated. For
this purpose, one has to find an expression which connects the frequency changes ∆ν to the
photon number variations ∆S. A change in the optical frequency is related to the phase
changes given in equation (3.13), since ∆ω = ω − ωth = dϕ/dt. By expanding G from
equation (3.11) in terms of n = nth and combining this with the phase rate equation (3.13),
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Figure 3.3.: Typical frequency response ∆ν/∆i of a laser diode whose injection current is modulated. The
graph shows the response of a GaAlAs laser diode and is obtained from reference [31].

a relation ∆ν/∆S can be derived for the case of a small sinusoidal modulation, yielding [31]

∆ν
∆i

=
∆ν
∆S

∆S
∆i

=
α τph ωc

4πe 〈S〉
1 + i(ωm/ωc)

1 + (iωm/ωr)2 + i(ωm/ωd)︸ ︷︷ ︸
carrier density effect

+Ct
1

1 + i(ωm/ωt)︸ ︷︷ ︸
thermal effect

. (3.29)

The first term due to carrier density modulation is similar to that for intensity modula-
tion, but additionally contains the characteristic frequency ωc, which describes the relation
between intensity and frequency modulation. The thermal effects were not incorporated
in the considerations of the intensity modulations, and they are additionally included by
the second term. This describes the response similar to that of a low pass filter, where
the cutoff is here given by the thermal cutoff frequency ωt which is typically in the range
of 100 kHz. . .1 MHz. The thermal constant Ct depends on the thermal resistance and the
temperature sensitivity of the laser diode.
In figure 3.3 the typical FM response of a laser diode is shown. The pronounced peak
in the frequency range above 1 GHz corresponds to the relaxation oscillations, and the
carrier density effect dominates at large frequencies of more than 10 MHz (solid line). For
low modulation frequencies the FM response is mainly determined by the thermal effects
and starts to decrease in the range of 10 kHz, dependent on the thermal cutoff frequency
(dashed line).
The correlation between intensity and frequency modulation is described by the charac-
teristic frequency ωc, and for low modulation frequencies (< 1 GHz) the FM response is
proportional to the IM response, with the proportionality determined by ωc. It is expe-
dient to describe the relation between FM and IM by their modulation indices βFM and
βIM, respectively. For frequency modulation βFM is given by equation (3.21), and in the
case of amplitude modulation the modulation index is defined as the maximum deviation
of the photon number from the mean value, i.e.,

βFM =
∣∣∣∣2π∆ν
ωm

∣∣∣∣ βIM =
∣∣∣∣∆S〈S〉

∣∣∣∣ . (3.30)
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The ratio between the two modulation indices can be written as [31]

βFM

βIM
=
α

2

√
1 +

(
ωc

ωm

)2

. (3.31)

The factor α is given in equation (3.14) and typically takes values between 3 . . . 7. The
characteristic frequency lies in the low GHz-range, dependent on the optical intensity.
Thus, for slow modulation frequencies below 10 MHz we find βFM � βIM. If the laser diode
is modulated at low modulation currents (in amplitude) one can thus have a significant
frequency shift in conjunction with negligible intensity modulation.

3.3. Phase and frequency noise of laser diodes

The linewidth of a laser is broadened due to phase and frequency noise of the optical
field. Schawlow and Townes predicted a fundamental limit for the laser linewidth which
originates from spontaneous emission in the laser medium [35]. Whereas photons generated
by stimulated emission have the same phase, the phase of spontaneously emitted photons
is random, and each spontaneously emitted photon is further multiplied by stimulated
emission. This leads to considerable phase fluctuations of the lasing field, and the resulting
linewidth has a Lorentzian shape.
However, in semiconductor lasers it was found that the linewidth is significantly larger
than that predicted by Schawlow and Townes [36], and typical values are in the range
of 100 MHz. It was Henry who realized that a correction factor is required, whose origin
is the strong coupling between amplitude and phase noise in semiconductor lasers [37].
Spontaneous emission in diode lasers leads to fluctuations of the refraction index µ,

∆µ = ∆µ′ + i∆µ′′ , (3.32)

within the duration of the relaxation oscillations. During this time, until the oscillations
are damped, there will be a net change in the laser gain ∆G ∝ ∆µ′′ due to changes in the
absorptive part µ′′ of the refractive index. The origin of ∆µ′′ is a fluctuation of the charge
carrier density n. Since the real and imaginary part of µ are related by the Kramers-
Kroning relations, this also leads to fluctuations of the dispersive part ∆µ′. Hence, there
is a coupling between the phase and the amplitude of the laser field, which is described by
the factor α given in equation (3.14). The resulting modified Schawlow-Townes linewidth
is given by [37]

∆ν =
2πhν(∆νc)2

P
(1 + α)2 . (3.33)

This formula describes the linewidth due to spontaneous emission, which corresponds
to white frequency noise and results in a Lorentzian line shape of the laser spectrum.
However, there can be a significant contribution of 1/f -frequency noise to the spectral
broadening of lasers. In semiconductor lasers fluctuations in the charge carriers and in
temperature, due to technical noise of the injection current, can lead to a 1/f -dependence
of the frequency noise spectrum. It can be shown [31, 38] that the spectral line shape for
1/f -frequency noise is linked to a Gaussian line shape. Usually one has to consider both
white and 1/f -frequency noise, and the frequency noise spectrum is given by the sum of
both noise processes. The resulting laser line shape is a convolution of the Lorentzian and
the Gaussian spectrum, i.e. in this case the laser line shape is described by a Voigt profile.
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Figure 3.4.: Littrow (a) and Littman-Metcalf configuration (b) for implementation of an external cavity
diode laser.

Finally, one should note that the relaxation oscillations also contribute to the frequency
noise of a diode laser, and they cause a large peak in the frequency noise spectrum at
the relaxation oscillation frequency ωr, equivalent to the peak in the modulation response
in figure 3.3. As long as the linewidth is considerably smaller than relaxation resonance
frequency, the linewidth can be estimated by formula (3.33), or in the case of significant
1/f -noise by the Voigt profile.

3.4. Frequency stabilization

3.4.1. Optical feedback

The linewidth of semiconductor lasers can be reduced by passive stabilization of the optical
frequency via optical feedback. An external resonator which is build around the laser diode
does not only reduce the laser linewidth but also improves frequency tuning.
An effective way to implement optical feedback is by using a diffraction grating which
reflects the emitted light back into the laser diode. The external resonator is then formed
by the rear end facet of the laser diode and the external grating, resulting in an external
cavity diode laser (ECDL). In this configuration the laser frequency is determined by the
overlap of the two resonator modes. The selected wavelength λ is determined by the
grating equation

mλ = d (sin θ + sin ξ) , (3.34)

where d is the grating constant, m the diffraction order and θ and ξ are the incident
angle of the laser beam to the grating and the diffraction angle, respectively [39]. Two
common configurations to implement optical feedback are often used, which are the Littrow
configuration as shown in figure 3.4 (a) and the Littman-Metcalf configuration illustrated
in figure 3.4 (b).
In the Littrow arrangement the grating reflects the first diffraction order back into the laser
diode, and the zeroth order provides the output laser beam. Here, the angle of incidence
is equal to the diffraction angle, i.e. θ = ξ, and the laser wavelength is thus determined
by

mλ = 2d sin θ . (3.35)
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The Littrow setup is easily implemented and the wavelength can be adjusted by tilting
the grating and thus changing the diffraction angle. However, it has the disadvantage that
tilting of the grating also changes the angle of the output beam.
The Littman configuration in contrast circumvents this problem by using an extra mirror,
which reflects the diffracted beam back into the laser diode and thus forms the external
resonator. Here, the angle ξ between the first diffraction order and the grating is adjusted
by tuning the mirror in order to select the laser wavelength according to the grating
equation (3.34). As in the Littrow setup, the zeroth order is used to couple out the laser
beam. The double pass configuration of the Littman-Metcalf setup leads to an increased
selectivity and the incidence angle θ can be chosen independently of the wavelength. This
allows one to illuminate most grooves of the grating by choosing a large angle θ.

3.4.2. Polarisation spectroscopy

In order to actively stabilize the laser frequency to an atomic transition, an error signal
proportional to the frequency difference from resonance is required. The method of po-
larization spectroscopy can be used to overcome the Doppler-broadening of the spectral
line shapes by detecting the change in the polarization state of a probe laser caused by a
second counter-propagating pump beam [40, 41]. The obtained polarization spectrum is
an ideal error signal for frequency stabilization.
The basic idea of polarization spectroscopy is to induce a birefringence in an atomic gas by
selectively pumping the mF -states of an atomic transition. The schematic setup is shown
in figure 3.5 (a). The circularly polarized pump beam enters the gas cell and the opti-
cally pumped atoms are probed with a weak counter-propagating probe beam, where both
beams are assumed to originate from the same laser. According to the transition rules
and in the case of degenerate sublevels, the strong pump beam only excites transitions
with ∆mF = +1, as shown in figure 3.5 (b) for a transition J = 1 → J = 2, where the
quantization axes is chosen in the direction of the pump beam. This leads to an unbalance
in the population of the mF -states and hence a net spatial orientation, resulting in an
optical anisotropy of the atomic ensemble.
If a 45◦-linearly polarized weak probe beam passes through the pumped atomic ensemble,
its polarization state is rotated due to the induced birefringence. To see the origin of
this effect, the probe beam can be decomposed into two σ+- and σ−-circularly polarized
beams. Due to the anisotropy, the refractive indices n+ and n− for the two counter-
rotating waves are different, and so are the absorption coefficients α+ and α−. For an
interaction region with length L, the phase shift caused by the difference in the refractive
indices, ∆n = n+ − n−, and the absorption difference are given by [40]

∆φ =
ωL

c
∆n ∆α =

∆α0

1 + (ω−ω0
γ )2

. (3.36)

Here ω − ω0 is the detuning from resonance, γ is the power broadened linewidth of the
atomic transition, and ∆α0 is the absorption difference at resonance ω = ω0. The absorp-
tion difference of the two circularly polarized components is a Lorentzian function and
causes an ellipticity of the transmitted probe light, an effect also known as circular dichro-
ism. The difference in the refraction index ∆n causes a rotation of the polarization axes,
which is the important effect in order to obtain the error signal. As an important point,
one should note that the atoms are probed Doppler-free, since the counter-propagating
pump and probe beams interact with a different velocity class of atoms as long as their
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Figure 3.5.: (a) Basic setup for polarization spectroscopy using a circular polarized pump beam and a
linear counter-propagating probe beam, which can be written as a superposition of σ+- and
σ− polarized light. (b) mF -state selective optical pumping by a σ+-polarized pump beam for
a transition J = 1→ J = 2.

frequency difference is larger than the natural linewidth of the probed transition.
In order to use the birefringence for frequency locking, the difference in the power of the
s- and p-polarized components of the probe field, i.e. the rotation δφ, has to be detected.
This dispersive signal gives the derivative of the Lorentzian line shape, which then provides
the error signal for frequency locking. The advantage of this differential error signal is that
one can lock to the center of the atomic transition, whereas e.g. in saturation absorption
spectroscopy one has to lock to the side of the saturated absorption dip. Furthermore, the
steepness of the slope can be adjusted carefully by adjusting the power and polarization
of the laser beam.



4. Optical phase locked loops

Optical phase locked loops (OPLL) are an essential element of phase-coherent lasers, which
form the basis for coherent quantum optic experiments such as EIT, lasing without in-
version (LWI) or stimulated Raman adiabatic passage (STIRAP). The principle operation
of an OPLL is the same as that of a standard PLL used in many electrical systems to
provide phase stable signals. This chapter gives an introduction to phase locked loops
and discusses the fundamental theory of optical PLLs and their characterization. The
experimental realization of an OPLL will be discussed in chapter 4.

4.1. Introduction to phase locked loops

4.1.1. What is a phase locked loop?

In a phase locked loop the phase of an oscillator is compared with the phase of a reference
signal, also called local oscillator (LO). The detected phase difference is converted into
a voltage, which can be used as the error signal to control the phase difference of the
two oscillators. In the locked condition they will have a fixed phase relation, and since
frequency is the time derivative of phase, this implies that the frequency of the slave
oscillator, which is the one which is stabilized by the loop, will be exactly proportional to
that of the LO.

Figure 4.1.: Mechanical analogy of (a) a frequency lock and (b) a phase lock adopted from [42]. Initially
the wheels rotate with the same frequency (top), then the slave wheel gets temporarily slowed
down (center) and afterwards they rotate again with the same frequency (bottom), but only
in (b) the phase relation is recovered.
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Figure 4.2.: Power spectra on a logarithmic scale of a noisy signal in the case of frequency locking (a) and
phase locking (b). In (a) the frequency lock only corrects the center frequency to the reference
value f0, and in (b) the phase lock additionally reduces the noise around the carrier frequency.

In figure 4.1 the difference between phase and frequency locking is illustrated using a
mechanical analogy adopted from reference [42]. Consider two wheels which are both
rotating with a certain angular frequency given by the “master wheel” (M). As long as
there is no influence from outside, the “slave wheel” (S) follows this frequency because
both wheels are coupled with a belt. In the case of frequency stabilization, the belt is
represented by an inelastic v-belt. If an external force changes the frequency of the slave
wheel (e.g. by slowing down the wheel with the hand), the v-belt will continue to slip over
it with the frequency of the master wheel. After the disturbance the frequency will again
be the same as that of the master, but the original phase relation will be lost. In contrast,
if one considers two cog wheels instead which are coupled by an elastic chain, a short
change of the slave wheel’s frequency will cause stretching of the chain on one side of the
wheel and compression on the other side. Afterwards, the chain will recover the original
phase relation by forcing the slave wheel to rotate with a higher frequency for a short time,
until the stretching and compression caused by the disturbance is compensated. Thus, the
original phase relation between the two wheels is preserved.
To demonstrate the effect of a PLL on the slave signal which gets stabilized, it is convenient
to consider the power spectrum of the signal. As depicted in figure 4.2 (a), a frequency
lock sets the frequency of the signal to some reference value f0 but does not change its
shape, i.e. a frequency lock does not suppress the noise which causes broadening of the
signal. In contrast, a phase lock will not only correct the signal’s center frequency but will
additionally decrease its spectral width, that is it suppresses the noise so that one obtains
only a narrow peak at the center frequency, which is given by the LO.

4.1.2. Optical phase locking of two lasers

An optical phase locked loop is a special kind of PLL in which the two oscillators are
represented by lasers. Their frequencies or phases, respectively, are either locked so that
they have the same frequency (homodyne optical phase locking), or their phase difference
is locked to a stable reference oscillator (heterodyne optical phase locking). Lasers are
coherent optical oscillators which are characterized by their long coherence time, which
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is due to the stimulated emission of radiation in the lasing process. The coherence of a
laser is limited by spontaneous emission also inherent in the laser medium, which causes
a random walk of the phase of the laser field. In this sense, the coherence time can be
regarded as the time during which no phase fluctuations of the light field are present.
However, the phases of two independent lasers are uncorrelated and there is no coherence
between the two light fields. In order to couple those coherently, the frequency of the slave
laser has to be controlled with a servo loop relative to the frequency of the second master
laser.
The electric fields of the lasers can be expressed as [21]

E1(t) = E01 exp [i(ω1t+ ϕ1(t))] (4.1)
E2(t) = E02 exp [i(ω2t+ ϕ2(t))] (4.2)

where E01 and E02 are the field amplitudes. The fields oscillate with frequencies ω1 and
ω2, respectively, and ϕ1(t) and ϕ2(t) denote the phase fluctuations of the lasers. The
instantaneous phases of the light fields are given by

φ1(t) = ω1t+ ϕ1(t) and φ2(t) = ω2t+ ϕ2(t) , (4.3)

which leads to the instantaneous frequency difference

∆ω =
d

dt
∆φ =

d

dt
[φ1(t)− φ2(t)] = (ω1 − ω2) + [ϕ̇1(t)− ϕ̇2(t)] . (4.4)

If there are no phase fluctuations between the two light fields, i.e. if

ϕ̇1(t)− ϕ̇2(t) = 0 (4.5)

and thus the phase difference ∆ϕ(t) = ϕ1(t) − ϕ2(t) is constant in time, the lasers are
perfectly coherently coupled and the instantaneous frequency difference has a fixed value
∆ω = ω1 − ω2. Therefore, stabilization of the lasers’ phase difference leads to a constant
frequency difference between the lasers.
Figure 4.3 shows the basic setup for heterodyne optical phase locking. It is composed
of a master laser, a slave laser, two local oscillators and the feedback loop. In order to
perform phase locking of two lasers at a large frequency difference, their beat signal has
to be detected by superimposing the two light fields on a fast photodiode. The intensity
on the photodiode is then given by

I(t) =
1
2
ε0c |E1(t) + E2(t)|2

=I1 + I2 + 2
√
I1I2 cos[∆ωt+ ∆ϕ(t)] , (4.6)

where I1 and I2 are the intensities of the two laser fields and ε0 is the vacuum permittivity.
Since only the oscillating term is needed, the dc-terms I1 and I2 are ignored. By detecting
the beat signal oscillating at ∆ω, the frequency gets down-converted at the photodiode
from the THz-range to the microwave range, meaning that the master laser acts as a refer-
ence oscillator. The resulting beat signal is an electrical quantity which can be processed
by the control loop.
In our specific case the frequency of the beat signal lies in the GHz-range, but most phase
detectors work in the MHz-range. Thus it is necessary to down-convert the beat signal
further at a second conversion stage. For this purpose the beat signal can be compared
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Figure 4.3.: Basic scheme of heterodyne optical phase locking at large frequency offsets. The beat signal
of the lasers is detected with a photodiode and mixed with a local oscillator (LO1). The phase
is then compared with the phase of a second oscillator (LO2) at the phase detector. Both
oscillators are phase stabilized to the same 10 MHz reference. The loop filter converts the
output of the PD into a control voltage and thus provides the feedback to the slave laser.

with a stable radio frequency (RF) signal from a local oscillator (LO1) at a mixer1. The
analog mixer multiplies the two input signals and its output oscillates at the sum and
difference frequency of the beat signal and the LO1. After suppressing the unwanted fast
oscillating part with a low pass filter, the output of the mixer is given by

vmixer(t) ∝ cos[(ωLO1 −∆ω)t− (ϕLO1(t)−∆ϕ(t))] (4.7)

with the phase ϕLO1(t) and frequency ωLO1 of LO1. The phase of this signal is then
compared with the phase ϕLO2(t) of a second local oscillator LO2, set to the desired
frequency of the down-converted signal, using a phase frequency detector whose output
voltage represents the phase difference of the two input signals within a certain phase range.
The output of an analog phase detector (APD), after filtering out the high frequency part,
can be written as [43]

vAPD(t) ∝ cos[∆ϕ(t)− ϕLO1(t) + ϕLO2(t)] . (4.8)

In order to ensure a stable PLL it is necessary that the phase difference of the two local
oscillators, ∆ϕLO(t) = ϕLO1(t) − ϕLO2(t), does not change in time. Therefore they must
be phase locked to the same frequency reference, e.g., a GPS disciplined oscillator or a
stable 10 MHz reference signal typically provided by signal generators. As a last step, the
output of the phase detector, that is the error signal, is adjusted by a loop filter. This
filter is necessary to process the error voltage and to provide an appropriate control voltage
to the slave laser which causes a frequency change in a direction so that the phase error
∆ϕ(t)−∆ϕLO(t) is reduced.
Phase locking two lasers is typically challenging due to the high amount of phase noise
inherent in the lasers compared to noise in electronic signal sources. For this reason, a large
loop bandwidth on the order of the combined linewidths of the lasers is required in order
to strongly suppress the low and high frequency noise. Even in the locked condition the

1Another way would be to use a frequency divider to divide the signal down by the desired factor.
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instantaneous frequency difference ∆ω is not a perfect single frequency but still contains
some residual phase noise. In order to build a stable phase locked system, the remaining
phase error at the output of the phase detector should not exceed the dynamic range of
the detector, otherwise “cycle slips” occur and disturb the phase coherence of the lasers.

4.2. Theoretical analysis of optical phase locked loops

Since optical phase locking can be described by the same theory as that of normal PLLs,
the basic principles of PLLs are discussed in this chapter. Subsequently, the special case
of an optical PLL, in which the VCO is represented by a laser diode, is covered in more
detail. Furthermore, a general introduction to phase noise characteristics is given and the
power spectrum of a phase locked beat signal is calculated. Thereupon the propagation
of phase noise in OPLLs is specified further.

4.2.1. Fundamentals of control theory

Control systems are mostly negative feedback circuits used to control the output of a dy-
namical system depending on its input. The actual value of the output signal is compared
with a desired reference signal and the control loop provides feedback of the error signal.
A PLL is a special feedback system which consists essentially of a voltage controlled oscil-
lator (VCO), a phase detector (PD) and a loop filter (LF) [44]. Here, the loop controls the
phase of the VCO (slave) with respect to the phase of the master oscillator. This is the
simplest form of a PLL, but in general, such as for an optical phase locked loop, the PLL
can contain several other components like mixers or frequency dividers. For simplicity and
because other components can be easily included afterwards, at first only the basic PLL
is considered.
The most important tool to analyze PLLs is the concept of transfer functions and that of
the related Laplace transform, which is widely used in signal processingt [45]. For linear
time-invariant systems the transfer function K describes the relation between the output
and the input of the system. In the time domain, the output of a system is given by the
convolution of the pulse response of the system with the input signal. In the frequency
domain it is simply the product of the transfer function K and the system input:

vout = K · vin . (4.9)

If the system consists of several components, the overall transfer function is simply the
product of all the transfer functions of the components. A PLL can be treated as a linear
system if one considers only small phase errors, so that one can neglect any non-linearity
of the components such as the phase detector. In this situation the concept of transfer
functions can be applied to PLLs. In the following, small letters v(t) and φ(t) are used
for signals in the time domain, and capital letters V (s) = L{v(t)} and Φ(s) = L{φ(t)} for
the frequency domain, in which L{·} denotes the Laplace transform and s is the complex
Laplace variable related to the frequency by s = iω.
In figure 4.4 the block diagram of a PLL is shown. The input signal is the phase φr(t)
of the reference oscillator, which is compared with the output signal given by the phase
φo(t) of the slave oscillator (VCO) at the phase detector. In a PLL phase is transferred
to voltage at the phase detector and back into frequency at the VCO. In the time domain
the linearized output of the phase detector is given by the error voltage [44]

verr(t) = Kd(φr − φo)(t) , (4.10)
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Figure 4.4.: Block diagram of the PLL: φr and φo are the phases of the reference and slave oscillator,
F (s) is the loop filter transfer function and verr(t) and vc(t) are the error and control voltages,
respectively.

where Kd denotes the linear sensitivity of the phase detector and φerr = φr− φo describes
the phase error between the input and the output signal. Similarly, one can express this
relation in the frequency domain as

Verr(s) = Kd(Φr − Φo)(s) . (4.11)

The error voltage provided by the phase detector is the input of the loop filter, whose
output is the control voltage

Vc(s) = F (s)Verr(s) , (4.12)

in which the transfer function of the loop filter is given by F (s).
The control voltage provided by the loop filter is applied to the VCO, which is an oscillator
whose output frequency can be controlled by the input voltage. Thus, the control voltage
vc(t) = L−1{Vc(s)} leads to a frequency deviation ∆ωo(t) of the VCO from its mean value,

∆ωo(t) = Kovc(t) , (4.13)

where Ko describes the constant proportional gain of the VCO. This equation describes
the frequency output of the VCO, however, the phase output Φo(s) is the desired quantity,
and it can be determined using the relation

d

dt
φo(t) = ∆ωo(t) = Kovc(t) . (4.14)

The relation between the output phase and the input voltage in the frequency domain is
obtained using the Laplace transform, which yields

L{ d
dt
φo(t)} = sΦo(s) = KoVc(s) . (4.15)

The transfer function of the VCO is thus given as the product of the linear gain Ko and
an integral term 1/s, representing the conversion from frequency to phase:

Φo(s) =
Ko

s
Vc(s) . (4.16)
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The open-loop gain G(s) describes how a phase error Φerr(s) transforms to the output of
the VCO in the open-loop condition. It is defined as the product of the transfer functions
of all the components in the loop [44]:

G(s) =
Φo(s)

Φerr(s)
=
KdKoF (s)

s
. (4.17)

When feedback is implemented (i.e. in the closed-loop condition), the steady state solution
yields the closed-loop gain H(s) and the error transfer function E(s), which describe
how an input signal Φr(s) appears at the output Φo(s) and at the phase error Φerr(s),
respectively [44]:

H(s) =
Φo(s)
Φr(s)

=
G(s)

1 +G(s)
(4.18)

E(s) =
Φerr(s)
Φr(s)

=
1

1 +G(s)
. (4.19)

On the basis of the Bode plot of a transfer function one can easily get insight to several
characteristics of the system like stability and bandwidth. The shape of the closed-loop
gain is usually similar to that of a common low pass filter. It has unity gain for lower
frequencies and for higher frequencies the gain decreases, i.e. the feedback is “perfectly”
matched to the reference signal within the locking bandwidth. In contrast, E(s) performs
a high pass filtering operation, and it has negative gain in the frequency range where
|H(s)| = 1 in order to suppress the noise, whereas outside the loop bandwidth its magni-
tude is |E(s)| = 1, meaning that the loop is not able to suppress any noise at frequencies
larger than the loop bandwidth.
The stability of the system is a key consideration in feedback systems, and by inspection
of equations (4.18) and (4.19) one can see that both transfer functions have a pole at
G(s) = −1. The denominator 1 +G(s) = 0 is called the characteristic equation, and it is
satisfied if the following two conditions are fulfilled:

|G(s)| = 1 (4.20)

Arg[G(s)] = 180
◦
. (4.21)

In this situation the system will be completely unstable. Furthermore, instead of sup-
pressing the noise one will get noise enhancement if the denominator in equations (4.18)
and (4.19) meets the following criterion:

|1 +G(s)| < 1 . (4.22)

Hence, servo bumps appear in the output spectrum of the VCO at frequency for which
this condition is met, e.g. if the phase comes close to -180◦ and |G(s)| < 1, indicating the
bandwidth of the loop.
When phase locking two diode lasers, it makes sense to have a closer look on the shape of
the transfer function Ko of the VCO, i.e. the slave laser diode in this case. In chapter 3.2.2
it is explained that for modulation frequencies below 10 MHz, a change in the laser diode
temperature is the dominant effect which causes a change in the laser frequency, whereas
carrier density modulation can be neglected. Since the desired loop bandwidth is typically
less than 10 MHz, it is reasonable to assume that the transfer function of the laser diode is
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determined only by this effect, and in this case the gain of the laser diode can approximately
be written as [46]

Ko = Kld
α

α+ s
(4.23)

where Kld denotes the sensitivity of the laser diode and α is a factor which has to be
measured experimentally. Equation (4.23) describes a one-pole transfer function with a
pole at α = iω and α typically lies between 100 kHz and 1 MHz, corresponding to the
thermal cutoff frequency as explained in section 3.2.2. Thus, already at frequencies of
several 100 kHz the system can become unstable due to the phase shift of the laser diode.
Since the desired bandwidth of an OPLL is typically of the order of several MHz, the loop
must be able to compensate for this phase shift.
Another issue in designing OPLLs can be due to delay times in the feedback loop. A
substantially large delay time causes a significant phase shift at higher frequencies and
thus can limit the bandwidth of the loop. To account for that, an extra factor describing
the loop delay τ can be included in equation (4.17), which leads to the following open-loop
gain for the OPLL:

G(s) =
KdKldF (s)

s
e−sτ

α

α+ s
. (4.24)

With this equation, the loop bandwidth is limited by the phase shift due to the delay τ
and the factor α of the laser diode transfer function.

4.2.2. Characterization of phase noise

The performance of an OPLL is typically quantified by measuring the residual phase noise
or, equivalently, by measuring the frequency noise. In the time domain, the frequency
stability of a signal is often characterized using the Allan variance. Alternatively one can
characterize the phase noise of a signal in the frequency domain by measuring its power
spectral density (PSD). In metrology and for long term measurements, the Allan variance
is the favored quantity to measure frequency stability. However, the OPLL in this thesis
will be used for experiments performed on short time scales, in which case the PSD is the
more convenient method for measuring the quality of the phase lock. This chapter gives an
introduction to the properties of phase noise in oscillator signals and its characterization
with power spectral densities.
Ideally, the output of a signal source would be a purely sinusoidal signal without any
unwanted modulation in amplitude, phase or frequency. The total power of this ideal
signal would be contained in one single frequency. However, no practical oscillator provides
such a pure spectral signal and noise is always present at the output. Thus, the output
voltage of an oscillator containing noise can be written as

v(t) = [A+ a(t)] cos (2πf0t+ φ(t)) , (4.25)

in which a(t) represents the amplitude noise and φ(t) denotes the phase noise [47]. It
is assumed that φ(t) describes a stationary random process and all phase fluctuations
and frequency deviations from the carrier frequency f0 are contained in φ(t). Amplitude
noise is usually neglected in the analysis of phase noise, and for small phase fluctuations
φ(t) < 1, the oscillator signal can be expressed as [47]

v(t) ≈ A cos(2πf0t)−Aφ(t) sin(2πf0t) . (4.26)
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The second term indicates the phase noise for frequencies f 6= f0 outside the carrier
frequency,

vf 6=f0(t) = Aφ(t) sin(2πf0t) . (4.27)

The power spectral density is a very useful tool to characterize oscillator signals, and
it describes how the power of a time series is distributed with frequency. If noise is
considered, the noise power spectral density identifies the noise power of a signal per 1 Hz
bandwidth. Mathematically, the PSD of any quantity x(t) is defined as the square modulus
of its Fourier Transform X(f) = F{x(t)}. However, stationary random functions are not
square integrable and thus their Fourier transform does not exist. In this case it is common
to use the PSD defined by the Wiener-Khintchine-Theorem as the Fourier transform of
the autocorrelation function Rx(τ) [48]:

Sx(f) = 2
∫ ∞

0
Rx(τ)e−2πifτdτ , (4.28)

where the autocorrelation function of the time-varying quantity x(t) is given by

Rx(τ) = 〈x(t+ τ)x∗(t)〉 , (4.29)

in which the angled brackets denote the time average. In equation (4.28), Sx(f) describes
the one-sided spectral density defined as

Sx(f) =

{
2Sdx(f) , f ≥ 0

0 , f < 0
(4.30)

where Sdx(f) is the double-sided PSD. By using the one-sided power spectrum, the negative
frequencies are folded onto the positive frequency axis, which is reasonable in most physical
measurements.
In the case that x(t) is represented by the phase fluctuations φ(t) and the frequency
fluctuations f(t) of a signal, the two corresponding power spectral densities Sφ(f) and
Sf (f) are not independent, since phase and frequency are related by

f(t) =
1

2π
dφ(t)
dt

. (4.31)

Hence, the relation between the spectral densities Sφ(f) and Sf (f) is given by [32]

Sφ(f) =
Sf (f)
f2

. (4.32)

The phase noise spectral density Sφ(f) of a signal as given in equation (4.26) can be calcu-
lated from the measured power spectrum Pv(f) of the signal. In order to experimentally
quantify the phase noise correctly, a careful interpretation of the different spectral power
densities is necessary.

• The signal power spectral density Sdv (f) describes the power distributed around
the center frequency f0 of the oscillator signal in a 1 Hz bandwidth. In theory it is
given by the Fourier transform of the autocorrelation function of v(t). According to
equation (4.26) it consists of a δ-peak at frequency f0, which is broadened due to
the presence of phase noise φ(t). The raw measured power spectrum Pv(t) depends
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on the settings of the spectrum analyzer (SA) and does not directly give the desired
spectral density, since Sdv (f) describes the power in a 1 Hz bandwidth, whereas the
resolution bandwidth (RBW) of the SA is usually considerably larger than 1 Hz.
In order to obtain the true spectral density of the signal, one has to normalize
the measured spectrum to the resolution bandwidth of the SA. If the amplitude is
measured on logarithmic scale, this is done by subtracting 10 log(RBW). This of
course does not give a 1 Hz resolution, since the resolution is still set by the RBW
of the SA, but is gives the power spectrum in units of dB/Hz.

• The phase noise spectral density Sφ(f), in contrast to the two-sided power
spectral density Sdv (f) which is a direct measure of the physical signal v(t), is typically
a one-sided spectrum that describes the noise power relative to the total power in the
carrier signal in a 1 Hz bandwidth at a frequency offset f from the carrier frequency
f0. Commonly it is expressed in units of dBc/Hz, or equivalently rad2/Hz, and is
widely used in PLLs to characterize the phase noise of a signal2. The spectrum Sφ(f)
is obtained from the measured spectrum Pv(f) as

Sφ(f) =
10

Pv(f−f0)
10

RBW · 10
Pv(f0)

10

(4.33)

and afterwards using only the positive frequencies to obtain the one-sided spectrum.
The term Pv(f0) denotes the power of the carrier, which is commonly the peak value
of the spectrum. This is only an approximation to the correct power and it depends
on the setting of the SA, especially on the RBW and the number of data points.

The phase noise variance is given by the root mean square (rms) of the phase fluctuations
σ2
φ = 〈φ(t)φ∗(t)〉 = ∆φ2

rms, and it can be determined by the integral of its power spectral
density over all (positive) frequencies,

σ2
φ = 2

∫ ∞
0

Sφ(f)df , (4.34)

in which the factor 2 takes into account that Sφ(f) is a one-sided spectrum. In the time
domain, as illustrated in figure 4.5, phase noise is represented as timing jitter ∆tjitter, i.e.
the zero crossing of the slope of the signal fluctuates in time [49]:

∆tjitter =
1

2π
σ2
φ

f0
. (4.35)

4.2.3. Spectrum of a phase stable laser field

In order to obtain the power spectrum of a phase-stabilized laser field, i.e. with small
residual phase error, consider the electromagnetic field [48]

E(t) = E0 exp[i(2πf0t+ φ(t))] (4.36)

with negligible amplitude fluctuations and the stationary random phase fluctuations φ(t).
The autocorrelation function of the signal is given by

RE(τ) = E2
0 exp[2πif0τ ] 〈exp[iφ(t+ τ)− iφ(t)]〉 . (4.37)

2dBc means “dB carrier”, which is dB relative to the power of the carrier signal.
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Figure 4.5.: Illustration of phase jitter in the time domain due to phase noise φ(t) of the carrier signal.

If φ(t) is represented by a Gaussian process, which is often assumed in the case of white
noise sources, the latter term can be written as

〈exp[iφ(t+ τ)− iφ(t)]〉 = exp
[
−1

2
〈
[φ(t+ τ)− φ(t)]2

〉]
(4.38)

using the Gaussian moment theorem as outlined in reference [50]. The exponent on
the right side of this equation can be written in terms of the autocorrelation function
Rφ(τ) = 〈φ(t+ τ)φ∗(t)〉 of the phase fluctuations,

exp
[
−1

2
〈
[φ(t+ τ)− φ(t)]2

〉]
= exp[−Rφ(0) +Rφ(τ)] , (4.39)

where Rφ(0) describes the phase noise variance Rφ(0) = 〈φ(t)φ∗(t)〉 = σ2
φ. Hence, the

autocorrelation function of the laser field is given as

RE(τ) = E2
0 exp[2πif0τ ] exp[−Rφ(0) +Rφ(τ)] . (4.40)

With equation (4.28), the power spectrum SE(f) of the laser field is thus given by

SE(f) = 2
∫ ∞

0
RE(τ) exp[−2πifτ ] dτ (4.41)

= 2E2
0

∫ ∞
0

exp[2πi(f0 − f)τ ] exp[−σ2
φ +Rφ(τ)] dτ . (4.42)

For small phase fluctuations σ2
φ � 1 it is justified to expand the second exponential term

and keeping only the first terms [32]:

SE(f) = 2
∫ ∞

0
exp[2πi(f0 − f)τ ] [1− σ2

φ +Rφ(τ)] dτ . (4.43)

Thus, by using the definition of the Dirac delta function δ(f0−f), the spectrum of a phase
stabilized beat signal can be expressed as

SE(f) = 2E2
0

[
(1− σ2

φ)δ(f0 − f) + Sφ(f0 − f)
]
. (4.44)

Apparently the spectrum consists of the carrier signal at frequency f0 and an additional
noise term that describes the noise sidebands given by the phase noise spectral density
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Sφ(f0 − f) at an offset f from the carrier frequency.
The ratio between the carrier power SE(f0) and the total power of the spectrum, which
is the integral of the power spectrum over all frequencies, is given by

η =
SE(f0)∫∞

−∞ SE(f)df
. (4.45)

This expression can also be estimated via the residual phase error as [46, 48]

η = e−σ
2
φ , (4.46)

if the assumption of a small residual phase error σ2
φ � 1 is valid, which is typically fulfilled

in the case of a properly functioning OPLL.

4.2.4. Propagation of phase noise in an optical phase locked loop

Each device in the loop can superimpose phase noise to the signal. To begin with the
reference oscillator, the phase noise of the microwave reference appears directly in the
spectrum of the beat signal, and it puts a limit on its absolute phase stability, since the
best achievable phase noise spectrum is that of the reference oscillator itself. Another
source for additional phase noise is due to shot noise caused by the quantum nature of
light in the detection process at the photodiode. Using a digital phase detector, shot
noise is translated into phase noise, since amplitude noise causes the output of any digital
counting device to have timing jitter, and the phase detector itself also intrinsically adds
noise. These noise sources are referred to as additive noise sources, since they are not
controlled by the feedback loop.
In contrast to the additive noise, the phase noise of the VCO is the one which the loop
is trying to suppress. In a heterodyne OPLL the VCO is represented by the beat signal
between the master and the slave laser. The phase noise of the unlocked beat signal, i.e.
without any feedback applied, is determined by the input phase noise spectra of the master
laser, Sφ,m, and that of the slave laser, Sφ,s. The output spectrum of a mixer, which in the
case of optical signals includes the photodiode, is the sum of its two input noise spectra
if those are uncorrelated [44]. Thus, the unlocked phase noise spectrum of the beat signal
can be written as the sum of the two laser noise spectra,

Sφ,beat(f) = Sφ,m(f) + Sφ,s(f) . (4.47)

To obtain an expression for the residual phase noise spectrum Sφ,res of the phase locked
beat signal dependent on the loop parameters, consider the noise model in figure 4.6. In
this model the VCO, i.e. the beat signal, is considered to be the sum of a noise-free
oscillator and an internal noise source which adds phase noise φbeat(t) = φm(t) + φs(t),
where φm(t) and φs(t) are the phase fluctuations of the master and slave laser, respectively.
The noise caused by all other components is merged together in one noise term φadd(t),
describing all possible noise sources which cause additional phase noise at the error signal.
The fact that negative feedback is applied is indicated by the negative sign of the control
voltage output of the loop filter, and from system analysis the output of the VCO is
obtained to be [51]

ΦB(s) =
G(s)

1 +G(s)
Φadd(s) +

1
1 +G(s)

Φbeat(s) , (4.48)
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Figure 4.6.: Noise model for the OPLL. In this picture the VCO is represented by the beat signal. The
gray box indicates that the beat signal is assumed to be the sum of an ideal noise-free oscillator
and an internal noise source φbeat = φm + φs, which contains the phase noise of both lasers.
The quantity of interest is the residual phase noise spectrum Sφ,res(f) at the output of the
beat signal. The term φadd combines all additive noise sources which can be present in the
loop. The transfer functions of the phase detector and the loop filter are given by Kd and
F (s), respectively.

where the open-loop gain G(s) is the product of all the transfer functions as described in
section 4.2.1. The capital letters Φadd(s) and Φbeat(s) denote the Laplace transform of the
respective phase fluctuations φadd(t) and φbeat(t). The first term in equation (4.48) indi-
cates that all additive noise sources are not suppressed by the loop, since they propagate
with the closed-loop transfer function H(s) as given in equation (4.18). Since Φadd also
contains the phase noise of the reference oscillator, this shows that the best phase noise
spectrum one can obtain is a direct replica of that of the stable reference.
However, the residual phase noise is normally determined by the lasers and in most cases it
is not limited by the reference oscillator. The second term in equation (4.48) describes the
suppression of the phase noise of the beat signal by the error transfer function E(s), see
equation (4.19). Usually the loop does not perfectly suppress this noise, and even in the
locked condition the phase noise of the lasers dominates the residual phase noise spectrum
Sφ,res(f). Hence, one can neglect the additive noise part in equation (4.48) and Sφ,res(f)
is given by the input phase noise of the lasers as

Sφ,res(f) =
∣∣∣∣ 1
1 +G(s)

∣∣∣∣2
s=2πif

[Sφ,m(f) + Sφ,s(f)] , (4.49)

in which relation (4.47) is used to express the phase noise spectrum of the beat signal.
With equation (4.24) the open-loop gain G(2πif) can be modeled assuming a simple filter
as explained in reference [46], and G(s) can then be approximated by

G(2πif) = K
e−2πifτ

if
, (4.50)
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where K is the overall linear gain of the loop. The input frequency noise spectrum Sf,in(f)
of the lasers can be modeled as a superposition of white and 1/f -frequency noise [46]:

Sf,in(f) = (2π)2

[
Cw +

C1/f

2πf

]
(4.51)

with the coefficients Cw and C1/f for white and 1/f -frequency noise, respectively. The
phase noise spectrum is determined from the frequency noise by using the relation (4.32).
Assuming equal frequency noise for both lasers, and combining equations (4.49), (4.50)
and (4.51) yields the following expression for the residual phase noise spectrum of the beat
signal:

Sφ,res(f) =
1
f2

∣∣∣∣ if

if +K e2πifτ

∣∣∣∣2 (2π)2

[
Cw +

C1/f

2πf

]
. (4.52)

In figure 4.7 the single-sideband (SSB) phase noise spectrum is plotted for different values
of K, where a constant delay time τ = 100 ns and equal coefficients Cw = C1/f are
assumed. Note, that this directly gives one the typical shape of a phase locked signal
as depicted in figure 4.2, if one plots all negative and positive frequencies together with
the delta function at f0. In the case of no feedback, i.e. K = 0, the phase noise highly
increases with decreasing frequency. The black dashed line in figure 4.7 shows the case of
weak feedback, so that the noise at low frequencies is slightly suppressed, but the loop is
not able to reduce any phase noise at higher frequencies. The red solid line illustrates the
case of a properly adjusted loop gain, where the phase noise is suppressed up to frequencies
of 1 MHz. In this model, the maximum loop bandwidth is limited by the phase shift due
to the delay τ . This determines the position at which the servo bump occurs in the case
of too large feedback gain, as indicated by the blue dashed line.

Figure 4.7.: Theory plots of the single sideband (SSB) phase noise of an oscillator signal containing white
and 1/f -frequency noise according to equation (4.52), plotted for different values of the linear
gain K, where K has units of MHz/rad. The delay time is set to τ = 100 ns and it is assumed
that the frequency noise of the unlocked beat signal is composed of equal parts of white and
1/f -frequency noise, i.e. Cw = C1/f = CL.



5. Realization of an optical phase locked
loop

In EIT experiments, the transparency and the width of the dark resonance depends highly
on the coherence time τ between the two lasers needed for EIT. Thus, it is necessary
that τ is on the order of the duration of an experimental sequence to ensure a fixed
phase relation during the measurement. Furthermore, it is desired that one can perform
several successive experiments without the need for relocking the system. Therefore, a
phase locked loop should on the one hand be able to highly suppress the phase noise and
reduce the linewidth of the beat signal to the sub-Hz regime, and on the other hand it
should recapture lock in the case of large frequency fluctuations and thus ensure longterm
stability. Since the free running linewidth of diode lasers is typically in the range of MHz,
a fast feedback loop with a loop bandwidth of several MHz is necessary to meet the first
requirement. Fast control demands a steep slope of the error signal provided by the phase
detector at the locking point. Furthermore, the phase noise of the phase detector should
be as small as possible in order to minimize the residual phase error, and a wide capture
range is required to ensure a stable lock for several hours.
In this chapter, the realization of a heterodyne OPLL at a frequency offset of 9.192 GHz,
corresponding to the hyperfine splitting of the cesium ground state, using a simple low
noise digital phase frequency detector is described.

5.1. Experimental setup

This section describes the implementation of the laser system used to perform optical
phase locking of two diode lasers for the use in EIT experiments on cesium atoms. In the
first part, the lasers and the optical setup are presented. The optical detection of the beat
signal and its processing through the loop is described in the second part.

5.1.1. Optical setup and laser system

Laser system

The two lasers are diode lasers named coupling and probe laser, corresponding to their
use in EIT experiments. Regarding the OPLL the coupling laser serves as the master
whereas the probe laser is used as the slave, which is stabilized to the master laser by the
feedback loop. Diode lasers are particular suitable to realize a compact phase locked laser
system, since they are small, inexpensive and their frequency can easily be controlled via
the injection current.
The coupling laser is a home made diode laser in Littrow configuration, see section 3.4.1,
whose design follows that described in reference [52] and is shown in figure 5.11. A col-
limation tube2 is used to collimate the divergent beam of the laser diode. Together with

1For this laser a SDL-5401 laser diode from Spectra Diode Labs operating at 852 nm is used
2LT220P-B from Thorlabs
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Figure 5.1.: Schematic drawing of the top (a) and side (b) view of the grating stabilized diode laser in
Littrow configuration implemented in this theses.

the laser diode chip it is mounted to an L-shaped aluminum block. The diffraction grating
used here3 is made of 1800 lines per mm and is glued to an aluminum holder, which is
screwed to the L-shaped aluminum block as depicted in figure 5.1. A micrometer screw
can be used to tilt the grating, and two further screws allow for precise vertical adjustment
of the back reflected beam into the laser diode. The angle of the grating can be tuned
additionally with a piezoelectric actuator in order to select the desired wavelength and to
scan the frequency of the laser.
The current of the laser diode is controlled by a home made laser controller. The thresh-
old current is measured to be about 13 mA and the laser typically operates around 80 mA
with an output power of about 60 mW. A peltier element is used to stabilize the tempera-
ture of the laser diode by controlling the temperature of the aluminum block. The entire
construction is surrounded by a metal housing for acoustic shielding and mounted to a
massive steel block to guarantee mechanical stability. Two cylindrical lenses are used to
compensate for the ellipticity and the astigmatism of the laser diode beam.
The probe laser4 is a diode laser in Littman-Metcalf configuration as explained in chap-
ter 3.4.1. The angle of the tuning mirror can be adjusted with a piezoelectric actuator for
wavelength adjustment. In the same as it is done for the coupling laser the temperature
is stabilized using a peltier element. The laser typically operates at a current of −120 mA
with an output power of about 40 mW.

Optical setup

The experimental setup of the optical system is sketched in figure 5.2. For each laser, a
Faraday isolator with 60 dB isolation5 prevents back reflections into the laser diode. In
order to detect the beat signal, the beams are overlapped at a 50/50 beam splitter cube
and afterwards focused on a fast photodiode. Two lenses with a long focal length are used
to achieve better mode matching of the two beams. The laser beams are split into the
different arms by using several polarizing beam splitter cubes (PBS) in conjunction with

3GR13-1850 from Thorlabs
4Sacher LION-SYS-500
5Linos DLI-1
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Figure 5.2.: Optical setup of the laser system used to implement the OPLL. The beat note detection is
marked by the blue dashed beams, where the lenses 1 and 2 with a long focal length are
used to obtain good mode matching of the two beams. Two acousto optic modulators both in
double pass configuration are implemented, whereof AOM 1 provides the possibility to scan the
frequency of the probe laser, and AOM 2 allows one to shift the frequency of the coupling laser
before the beam enters the setup for polarization spectroscopy. For their use in the experiment
both lasers are coupled into single mode fibers. In the case of the probe laser one can choose
between the original beam and the one shifted by the AOM for this purpose.
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Figure 5.3.: Differential polarization spectrum of the coupling laser for the |F = 3〉 → |F ′ = 4〉 transition.

λ/2-plates, so that the powers can be adjusted individually. Concerning the probe laser,
an acousto optic modulator (AOM) in double pass configuration [53] provides the possi-
bility to scan its frequency across the EIT resonance by using a special AOM controller,
which is phase stabilized to the same 10 MHz reference as the local oscillators used in the
OPLL6.
The frequency of the coupling laser is locked to an atomic transition using polarization
spectroscopy as described in chapter 3.4.2. For EIT experiments on cesium atoms, the
|F = 3〉 → |F ′ = 4〉 transition of the D2 line in cesium is used, where F and F ′ are the
hyperfine levels in the ground and excited states (the energy level structure of cesium is
shown in appendix A.1). Before the coupling laser beam enters the spectroscopy setup, its
frequency is shifted by an AOM again in double pass configuration. This allows one to lock
at the crossover between the states |F ′ = 2〉 and |F ′ = 4〉 in order to be resonant with the
|F = 3〉 → |F ′ = 4〉 transition. The frequency difference between the state F ′ = 4 and the
crossover is 176.23 MHz, and thus the frequency of the AOM is tuned to approximately
88.11 MHz. Furthermore, the AOM allows one to precisely adjust the detuning of the
coupling laser from resonance.
For polarization spectroscopy, the coupling laser beam is circularly polarized by a λ/4-plate
after the double pass AOM and enters a 50 mm cesium gas cell. Thereupon it passes a
45◦-polarizer realized by a PBS cube which is turned 45◦ with respect to the horizontal
axes of the table. The back reflected beam, after again passing through the cesium cell, is
detected by a differential photodiode consisting of a PBS and two photodiodes detecting
the s- and p-components of the incident light. The difference between the two photo-
diode signals provides the error signal to lock the laser frequency. This simple compact
setup for polarization spectroscopy has the disadvantage that the laser beam which is de-
tected passes the cell twice. This leads to a reduced amplitude of the absorption signal

6Therefore, the voltage controlled oscillator (VCO) in the AOM controller is replaced by an external
signal generator, which provides the possibility for external stabilization. Another possibility to scan
the frequency of the probe laser would be to scan the local oscillator at the input of the phase detector
of the OPLL.
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at resonance, since the intensity of the probing laser depends on how much pump light is
absorbed by the atoms. Additionally, this setup is susceptible to optical interferences due
to reflections of vibrating optical elements. However, this setup is used here because of
lack of space and provides a sufficiently stable error signal.
The differential polarization spectrum of the coupling laser is shown in figure 5.3, where
the red dot indicates the locking point. The lock is stable for several hours even in a noisy
environment and ensures longterm stability of the coupling laser. The locking bandwidth
is approximately 1 kHz due to mechanical resonances of the piezo7. By measuring the time
domain error signal in the locked condition, it is found that the mean frequency deviation
of the laser is approximately 300 kHz.
Finally, one should note that the AOM 2 of the coupling laser does not disturb the phase
relation between the coupling and probe lasers established by the OPLL, since both cou-
pling beams, used for detection of the beat signal and EIT experiments, do not pass the
AOM 2. In this configuration the AOM only affects the absolute stability of the coupling
laser, but the relative stability between the two lasers is not influenced.

5.1.2. Detection and processing of the beatsignal

In order to detect the beat signal at a frequency difference of 9.192 GHz, a fast photodiode8

with a specified bandwidth of more than 10 GHz is used. The current i at the photodiode
is determined by the total optical power P incident on the photodiode chip and depends
on the quantum efficiency η of the detector [54],

i =
eηP

hf
, (5.1)

where e is the electron charge and hf the photon energy. The effect of the beating part of
the light field on the photodiode is determined by the interference term in equation (4.6)
by integration over the beam cross section area A [54],

Pbeat = 2ε0c cos[∆ωt+ ∆ϕ(t)]
∫∫

~E1(~r) · ~E2(~r) dA , (5.2)

where ~E1(~r) and ~E2(~r) are the spatially dependent field amplitudes and ∆ϕ and ∆ω are
the phase and frequency difference of the lasers, respectively. In order to obtain a high
value for the overlap integral in Pbeat, careful mode matching of the beams is necessary.
The quality of the beam overlap can be estimated by comparing the AC component of
the photodiode signal with the DC component, where the modulation depth is given by
the ratio of the peak-to-peak value of the modulation amplitude and the mean value
of the AC signal [55]. Since no oscilloscope is available which can detect the desired
frequency difference of 9.192 GHz, the lasers are locked to the same hyperfine ground state
so that their frequency difference lies in the MHz range in order to measure the modulation
depth. By carefully overlapping the two beams a modulation depth of 70 % at a frequency
difference of 387 MHz is obtained. This value can differ by a small amount from the
modulation depth at 9.192 GHz, since the modes of the laser beam can slightly change
with frequency. However, it was tested that the change in the beam profile is small, and
thus the measured value gives a good estimate for the modulation depth. In the case of
accurate mode matching, the integral in equation (5.2) equals the product of the single

7This was tested by comparing the error signal of the lock-box in the locked and unlocked condition.
8ET-4000 GaAs PIN detector from EOT
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fields, and the electrical power P el
beat of the beat signal measured at the load resistor R is

given by

P el
beat =

〈
i2beat

〉
R = 2R

(
eη

hf

)2

P1P2 , (5.3)

where
〈
i2beat

〉
is the mean value of the squared current. An important quantity for the

phase lock is the signal-to-noise ratio (SNR) of the beat signal. The optical powers P1 =∫
I1(~r)dA and P2 =

∫
I2(~r)dA of the DC terms I1 and I2 in equation (4.6) do not contribute

to the beat signal power, but they do contribute to the noise in the detection process.
There are mainly three effects which cause noise in the detector. One is Johnson-Nyquist
noise due to the thermal motion of the charge carriers. Furthermore, shot noise is generated
in a photodiode by random fluctuations of the flowing current, resulting on the one hand
from the dark leakage current, which is independent of the signal, and more importantly
from the photocurrent induced by the light detection. If the intensity of the light fields is
chosen high enough, the thermal and dark current noise can be neglected and the noise
current is determined only by the shot noise of the photocurrent ip as〈

i2sn
〉

= 2eipBd , (5.4)

where Bd is the bandwidth of the detector [42]. The photocurrent ip is given by the total
current caused by the incident optical powers P1, P2 and P12. Since the oscillating beat
part averages out over time, the shot noise current isn at the photodetector is only given
by P1 and P2, yielding 〈

i2sn
〉

=
2e2ηBd

hf
(P1 + P2) . (5.5)

With equation (5.3) the signal-to-noise ratio is then given by

SNR =

〈
i2beat

〉
〈i2sn〉

=
η

hf Bd

P1P2

P1 + P2
. (5.6)

Thus, for a constant total power, the signal-to-noise ratio can be improved by using equally
high powers for both laser beams. The damage threshold of the photodiode is 10 mW, thus
the laser powers for the beat signal detection are set to P = 4.5 mW for each beam. In
this setup, amplitudes of the beat signal which are typically 40 dB above the noise floor
are achieved.
In figure 5.4 the processing of the beat signal after its detection at the photodiode is
shown. It is amplified by +34 dB in a first step using an ultra low noise pass band
amplifier with a frequency range of 8 to 10 GHz. The amplifier exhibits excellent phase
noise performance with a noise figure9 of 1.05 dB @ 9 GHz. Thereupon a second amplifier
adds another +12 dB to the signal, where the direction of the amplifiers is chosen so that
the amplifier directly after the photodiode has the better noise performance. A DC-block
is used to filter out the AC–signal, which afterwards is mixed down at a double balanced
mixer10 using a stable quartz oscillator. For this purpose, two oscillators with low phase

9The noise figure is defined as the ratio between the signal-to-noise ratio of the input signal, SNRi, and
that of the output signal, SNRo. Note, that always SNRo <SNRi, and thus the noise figure will always
be > 1 since every device intrinsically adds noise.

10The output of a normal unbalanced frequency mixer contains both input frequencies, the harmonics of
the two input frequencies and all sum and difference frequencies which are possible between those fre-
quencies. Instead, a double balanced mixer will suppress the two input frequencies and their harmonics.
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Figure 5.4.: Schematic of the beat signal processing after its detection with the fast photodiode. The used
components are listed in table 5.1.

Components Model Company Comment
Amplifier 1 AUL-8010 Microsemi Bandpass 8-10 GHz
Amplifier 2 ZX60-14012L Minicircuits
Amplifier 3 ZFL-500LN Minicircuits
Amplifier 4 ZFL-500HLN Minicircuits High output power
DC Block BLK-18 Minicircuits
Directional Coupler ZFDC-10-1 Minicircuits
Frequency Mixer ZMX-10G Minicircuits
Local oscillator 1 KU LO 92 PLL Kuhne @ 9.216 GHz
(two alternatives) MKU LO 95 PLL Kuhne @ 9.486 GHz
Local oscillator 2 N5182A MXG Agilent Provides 10 MHz reference
Low pass filter VLFX-500 Minicircuits High rejection
Phase frequency detector HMC439QS16G Hittite Ultra low phase noise

Table 5.1.: Components used for processing the beat signal.
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noise performance of −110 dBc/Hz @ 100 kHz, each at a fixed frequency of 9.216 GHz
and 9.486 GHz, respectively, are available and can be chosen depending on the desired
frequency output of the mixer (see table 5.1). Both oscillators can be stabilized using
the optional input for an external 10 MHz reference signal. Since the output of the mixer
oscillates at both the sum and difference frequencies of the input signals, a high rejection
low pass filter is used to block the unwanted high frequency part. A −10 dB directional
coupler splits the beat signal into two parts, whereof 10 % can be used for monitoring the
beat signal with the spectrum analyzer (SA). The remaining 90 % are further amplified
using two low noise amplifiers, each with a gain of +20 dB. Thereof the last one is a high
power amplifier with a large possible output power of +16 dBm. Altogether, the beat
signal is amplified to a level of about +5 dBm, i.e. 3.2 mW in a 50 Ω–system, and finally
sent into the phase frequency detector, which will be characterized in detail in the next
section. A second local oscillator LO2 provided by a vector signal generator is used as
the reference input of the phase detector. The internal 10 MHz reference of this signal
generator is used to stabilize the phase of the two local oscillators LO1 and LO2. All
components are directly connected by SMA adapters and no cables are used in order to
avoid long signal tracks and large phase delays at higher frequencies. In fact, the delay
time has been estimated to be less than 10 ns, which causes a negligible small phase delay
of less than 10 mrad @ 1 MHz.

5.2. The phase frequency detector

5.2.1. Introduction to phase detectors

In the OPLL the most important component is the phase detector, which is required
to provide the error signal. In chapter 4.2.1 the phase detector was assumed to be a
perfectly linear device whose output voltage is proportional to the phase difference, i.e.
v(t) = Kd∆φ(t), with the linear gain Kd. However, no such ideal phase detectors exist,
and every physical detector has a maximum possible output voltage and a limited dynamic
range inside which phase excursions are tracked.
The phase detector defines a number of important parameters of the OPLL. The capture
range is the maximum frequency difference ∆f of the input signals at which the PLL is
still able for initial phase–lock acquisition. It is mainly determined by the behavior of the
phase detector and should not be confused with the phase detection range, that is the
linear dynamic range of the phase detector. The bandwidth of a properly working loop
should be a few times the linewidth of the (RF) beat signal, which is typically several
hundreds of kHz up to a few MHz. In order to obtain the desired stability and bandwidth,
it is of great importance to lock at a frequency which significantly exceeds the desired
loop bandwidth, i.e. usually more than several tens of MHz for an OPLL. Furthermore,
if it is desired to scan the frequency of the slave laser by scanning the local oscillator at
the phase detector input, a phase detector with a wide operating bandwidth is required.
Finally, the phase noise floor of the phase detector should be as low as possible to reduce
additional noise in the loop.

Analog phase detectors

The best performance regarding noise and fast control is offered by an analog phase de-
tector, which is a simple analog frequency mixer. They are fast low noise devices whose
noise is mainly determined by shot noise of the electric current and some flicker noise at
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Figure 5.5.: Error output voltage of an analog phase detector depending on the phase difference of its two
input signals. The red and blue dots indicate two types of locking points, depending on the
polarity of the signal.

low frequencies [56]. Since the analog phase detector multiplies its two input signals, the
output varies sinusoidal with phase as shown in figure 5.5. The blue and red dots indicate
two different, in each case indistinguishable, locking points depending on the polarity of
the phase difference. Due to the sinusoidal shape, the monotonic range is ±π/2 and the
output is linear only for a phase differences of ∆φ < 1 rad. Unless the phase error is very
small, cycle slips occur very likely for phase excursions which exceed π/2. Since the capture
range of analog phase locked loops is typically on the order of the loop bandwidth [56],
frequency changes of more than the bandwidth will cause the loop to lose track of the
signal. Likewise, if the PLL is initially out of lock and the signal frequency difference
exceeds the loop bandwidth, the error signal averages to zero, what makes it impossible
for the loop to acquire lock. This makes it rather difficult to lock a fairly noisy input
signal, as it is in the case of the beat signal of two lasers, without any pre-stabilization of
the signal.

Digital phase detectors

Digital phase frequency detectors are intrinsically noisier and the analog to digital con-
version of the signal can be highly susceptible to amplitude-to-phase noise conversion.
Additionally, the loop bandwidth can be limited due to substantial delay times of the
comparators, which are typically several ns compared to the fast response in the range of
hundred ps of analog phase detectors. Nevertheless, digital phase detectors are often used
in PLL applications since they provide a wide capture range, a small cycle slip rate and
good longterm stability.
There are several types of digital phase detectors, and the most common three examples
are shown in figure 5.6, namely the folding (a), periodic (b) and the saturating (c) type.
The folding type is usually implemented by an EXOR gate and is similar to the analog
type. The phase tracking is limited to the range −π/2 < ∆φ < π/2, however with a con-
stant linear gain Kd, and the locking point depends on the polarity of the signal. The
periodic phase detector, as depicted in figure 5.6 (b), changes its sign when it reaches the
maximum (or minimum) output voltage. This detector type also suffers from multiple
locking points, but the periodic behavior allows for sideband selection, i.e. only one of
the possible polarities of the phase difference leads to a stable lock. It can be realized
using an edge-triggered JK-flip-flop [57], wherewith a phase error range of −π < ∆φ < π
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Figure 5.6.: Error output voltage of (a) a folding, (b) a periodic and (c) a saturating digital phase detector
depending on the phase difference of the two input signals. The dots indicate the locking
points, whereby in (a) two types exist corresponding to the polarity of the phase difference.

is achieved. The bandwidth of such digital phase detectors is limited by the maximum
toggle frequencies of the flip-flops. In contrast to the previous types, the output of the
saturating phase detector shown in 5.6 (c) remains at the respective maximum and the
minimum voltage level after reaching the edges of its linear range. This behavior has the
advantage of a well-defined locking point. If the phase escapes the dynamic range, the
detector is not able to detect the phase difference anymore, but the sign of the output
voltage still indicates in which direction the frequency has to be adjusted. One possible
implementation is a phase counter [46], for which the linear range is only limited by the
number of bits of the counters. This allows the loop to recapture lock even for large
phase excursions without losing the phase information. However, these phase counters
are not sensitive to phase fluctuations smaller than 2π, since they count the phase dif-
ference between the input signals in multiples of 2π, leading to a stepwise error function.
Consequently, information about phase changes within one period are lost and fast phase
fluctuations around the locking point cannot be detected.

5.2.2. Implementation of a phase frequency detector

Several designs of phase locked laser systems using all kinds of phase detector implemen-
tations can be found in the literature, some examples are given in [46, 56, 58]. It depends
on the specific application of the laser system what is the primary goal of the OPLL. In
the fields of optical frequency standards and metrology, it is of great importance that no
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Figure 5.7.: Logic diagram (a) and state diagram (b) of a common three state phase frequency detector.

cycle slips occur for a very long time interval. A digital phase counter as presented in the
previous chapter allows for cycle-slip free measurements even in the presence of significant
residual phase errors. In order to additionally reduce the phase noise, combined analog-
digital phase detectors are developed using a digital frequency counter in conjunction with
a fast analog phase detector. However, these systems are rather complex and require a
careful interplay between the two detectors, and their scan range is often limited to some
tens of MHz. In this thesis a digital phase frequency detector11 (PFD) with excellent
phase noise performance and an ultra low noise floor of -153 dBc/Hz @ 10 kHz offset is
used to implement an OPLL. Although it is a digital device, it has a very large operating
bandwidth from 10 to 1300 MHz, which allows for a wide scanning range of the slave laser
frequency.
The behavior of a PFD differs from normal phase detectors, since it does not only detect
the phase difference of its two input signals but also their difference in frequency. A com-
mon type of phase frequency detector is a three state sequential PFD, which is a digital
logic circuit whose output depends linear on the phase error within a dynamic range of
±2π. In figure 5.7 (a) the logic diagram of the simplest type of a three-state PFD often
found in PLL applications is shown [57, 59]. It consists of two D-flip-flops in conjunction
with a simple AND-gate. The two flip-flops are named “UP” and “DOWN” and their pos-
sible outputs are the two logic states 0 and 1, accordant to a low and high voltage level,
respectively. The AND-gate is used to disable the unstable situation when both outputs
are in the high state 1 by resetting both flip-flops to the low state 0. Thus, all together
there are three possible output states of the PFD circuit:

+1 : U = 1, D = 0 (5.7)
0 : U = 0, D = 0 (5.8)
−1 : U = 0, D = 1 . (5.9)

The output signals of the flip-flops are additionally inverted, so that altogether the PFD
circuit provides four possible outputs U, NU, D and ND. The input signals are the beat
signal (RF) and the local oscillator (LO), respectively, and the output states Q of the
flip-flops are set by the rising slopes of the input signals. A low Q output will transition
high on the next positive edge of its input, whereas a high Q output will stay high. The

11Hittite HMC439QS16G
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Figure 5.8.: Timing diagram for the different output signals U, NU, D and ND of the PFD together with
the difference Vdiff between NU and ND, depending on the input signals RF and LO. In (a) RF
leads LO whereas in (b) RF lags the LO. This leads to a sign of the difference voltage which
depends on the phase relation between RF and LO.

state diagram of the PFD is shown in figure 5.7 (b). According to this, a positive slope of
the RF signal transfers the PFD in the next “higher” state, unless it is already in state +1,
whereas the LO signal does the opposite.
Figure 5.8 shows the timing diagram of the PFD outputs for equal frequencies fLO = fRF.
The difference between the inverted outputs NU and ND is the relevant output of the PFD
which will provide the error signal. The case that RF leads LO, i.e. ∆φ = φRF −φLO > 0,
is shown in figure 5.8 (a), where it is assumed that the PFD circuit is initially in state 0.
As soon as the RF signal arrives, it forces the “UP” flip-flop and thus the U output in
the high voltage state, whereas the D output stays at its low level, thus the PFD cir-
cuit is transferred into state +1. The delayed LO signal then brings the PFD back into
state 0, since the transfer of the “DOWN” flip-flop into 1 causes the AND to reset both
flip-flops. Hence, the output of U continuously switches between its low and high level
whereas the D output always stays at its low level, and the PFD circuit toggles between
the states 0 and +1. As a result, one obtains negative output pulses of the differential
signal Vdiff = NU − ND, whose duration depend on the phase difference. The averaged
voltage V diff will thus increase (negative) with increasing phase difference. The opposite
situation when RF lags LO, i.e. ∆φ < 0, is shown in figure 5.8 (b), which leads to posi-
tive differential output pulses and thus a positive averaged error voltage. This swapping
between the pair of “toggling states” as ∆φ changes sign is essential for the circuit to act
as a phase detector.
To demonstrate the phase characteristics of the PFD used in this theses, figure 5.9 shows
the averaged voltages NU and ND and their difference V diff depending on the phase differ-
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Figure 5.9.: Averaged output voltages of the phase frequency detector measured with two signal generators.
The graphs show the outputs NU and ND and their difference V diff.
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Figure 5.10.: Timing diagram of the differential output Vdiff of the PFD in the case of slightly different
frequencies of RF and LO. Here, the case of fRF < fLO is shown, where the pulses of Vdiff are
positive. The average voltage V diff is then a sawtooth function with the periodicity given by
the frequency difference.

ence between input signals of the PFD12. It is measured by independently adjusting the
phase of the RF and the LO signal using two signal generators which are both stabilized to
the same 10 MHz reference13. If RF leads LO, the ND output stays at a constant level of
5 V whereas the NU voltage is a sawtooth function with an amplitude between 3 V and 5 V
and a periodicity of 2π. In the contrary situation the NU output is at a constant voltage
of 5 V, and the output ND varies between 3 V and 5 V. Thus, the differential voltage is a
multivalued sawtooth function with an amplitude either between 0 and the positive volt-
age +2 V or the negative voltage -2 V, whose sign depends on the phase relation between
the RF and the LO signal.
The sign swapping of the output as ∆φ crosses zero does not occur if the two input signals
have different frequencies. In figure 5.10 the timing diagram is shown for the situation that
fRF < fLO. In this case the duration of the output pulses is not constant but increases
with time, with a periodicity depending on the frequency difference. Since the rising slopes
of the LO signal always arrive “earlier” than that of the RF signal, the sign of the phase
difference does not change until the frequencies will be equal, and thus the sign of the
output pulses will always be the same. As a result, the average output voltage V diff shows
a sawtooth shape with a periodicity given by the inverse of the frequency difference. In
this case the PFD acts as a frequency detector, and the sign of the output indicates in
which direction the frequency has to be adjusted. This kind of PFD can acquire lock even
for large frequency differences of the input signals, which is in principle only limited by
the operating bandwidth of the PFD.
The electrical circuit of the surface mount PFD chip which is used in the OPLL is shown
in appendix A.2. The error signal is obtained using an additional differential amplifier14 to
subtract the NU and ND outputs. The transfer function Kd of the PFD after the amplifier
is measured in the linear range between ±π by adjusting the relative phase between the
RF and the LO signal, and the result in shown in figure 5.11. By fitting a line this gives

12This data is measured with a PFD which is equivalent to that used in the OPLL, but on an evaluation
board, to demonstrate the operating principle of the PFD. In the OPLL an individual surface mount
chip of the same PFD is used instead.

13This is necessary to have full control of the phase relation between the two signal generators.
14OpAmp THS4031ID
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Figure 5.11.: Linear gain of the PFD including the differential amplifier. The sensitivity is obtained by
fitting a line (black) to the measured data (red dots).

a sensitivity of the PFD of

Kd = 0,467
V

rad
. (5.10)

5.3. Implementation of the feedback

5.3.1. Introduction

In order to build a stable phase lock it is essential to have slow and fast control of the
slave laser frequency, and three different feedback paths are combined to obtain the desired
loop bandwidth. The piezoelectric actuator used to tilt the grating can compensate slow
frequency variations and longterm drifts in the frequency range below several kHz, and
thus provides the slow feedback path of the system. The medium and fast frequency
fluctuations are both controlled via the injection current. The medium path uses the DC-
coupled modulation input of the laser controller15, wherefore the bandwidth is limited by
the electronic bandwidth of the device. The fast path uses a Bias-T16 to directly modulate
the injection current of the laser diode. The bandwidth of this path is limited by the high
frequency cutoff of the Bias-T, which is about 100 MHz, and the low frequency cutoff of
the AC-coupled input of the Bias-T.
The bandwidth of all three paths is measured by modulating the probe laser frequency with
a sinusoidal signal and measuring the peak frequency deviation ∆Ω in units of MHz/mV for
different modulation frequencies and for a constant modulation amplitude, see section 3.2.
Since modulation of the probe lasers frequency directly appears at the output spectrum of
the beat signal, the frequency deviation of the beat signal is used to measure the response
of the probe laser. The frequency of the coupling laser is thereby stabilized to an atomic
transition as described in section 5.1.1, and a spectrum analyzer (SA) is used to measure
the spectrum of the modulated beat signal. The value obtained for the peak deviation

15MLD-1000 from Sacher
16BT25-V2 from Sacher
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Figure 5.12.: Peak frequency deviation ∆Ω of the beat signal dependent on the modulation frequency in
the range between 1 Hz and 1 MHz. The frequency of the probe laser is modulated via the
piezoelectric actuator (black) and the injection current using the laser controller (blue) and
the direct modulation input of the laser diode (red).

is only a rough estimate, but still gives some useful results in terms of the bandwidth
and sensitivity of the different modulations paths. The settings of the spectrum analyzer,
and especially the sweep time, have to be chosen carefully so that the displayed spectrum
is consistent with the real frequency modulated (FM) spectrum of the input signal. The
signal must be monitored for a period of time which is long enough to ensure that the peak
deviations on both sides of the signal really occur, i.e. the modulation frequency has to be
at least twice the sweep frequency of the SA. In fact, the modulation frequency should be
significantly larger than the sweep frequency in order to measure a meaningful spectrum17.
Hence, the sweep time is always set to an appropriate value depending on the modulation
frequency. Accordant to chapter 3.2.1 the modulation amplitude is chosen so that the
modulation index is always larger than 100 in order to measure ∆Ω. Additionally, since
the probe laser frequency is not stabilized and thus slowly drifts in time, a large modulation
amplitude ensures that ∆Ω considerably exceeds the drift of the beat signal on time scales
of the SA sweep.
In figure 5.12 the peak frequency deviation ∆Ω is plotted on a logarithmic scale versus
the modulation frequency for the three different feedback paths. The sensitivity of each
path can be estimated by fitting a line to the data points in the flat linear range. For the
slow path, the voltage of the piezoelectric actuator is modulated around its DC value. The
first mechanical resonance is observed at a modulation frequency of about 1 kHz, which
limits the bandwidth of the slow path to less than 1 kHz, and the sensitivity is found

17The Fourier spectrum of a time varying periodic signal can only be properly displayed by the SA, if the
modulation frequency is too fast for the input band pass filter to “see” the instantaneous frequency, i.e.
it is not able to measure a single line on each data point in the spectrum. The SA will then display
the time independent Fourier components of the input signal, which correspond to the Bessel functions
explained in chapter 3.2.1.
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to be 3.49 MHz/mV. To measure the frequency deviation for the medium and fast path,
the frequency of the probe laser is modulated via the injection current. For the medium
path using the laser controller, the DC current has to be smaller than the upper limit
of the operating current of −121 mA, since the controller automatically disables at larger
currents to prevent any damage of the laser diode. Otherwise the modulation will be
asymmetric, and hence the DC current is set to −115 at which the laser is still in single
mode operation. The response of the medium path is shown by the blue data points in
figure 5.12, and it is flat from DC up to frequencies of about 10 kHz with a sensitivity of
0.45 MHz/mV. A resonance is observed at 500 kHz, and the OPLL the bandwidth of this
path will be restricted to frequencies up to 100 kHz, since this path is only needed to cover
the intermediate frequencies in the range of several tens of kHz. Since this path goes
down to DC, it is not implicitly necessary to use the slow path. However, the maximum
frequency deviation of the current is limited by mode hops, whereas the external grating
provides a tuning range of several GHz. Thus, it is reasonable to use the piezo rather than
the DC-coupled current path at low frequencies to compensate for large frequency drifts.
In the case of the fast feedback path one is primarily interested in the lower cutoff frequency
of the AC input of the Bias-T. The plot clearly shows the corner frequency in the range of
1 kHz, indicating the high-pass behavior of the Bias-T. The curve is flat in the frequency
range between 1 kHz and 30 kHz, and in this range the sensitivity is about 0.88MHz/mV. At
higher frequencies the peak deviation slowly starts to decrease according to the low pass
shape of the thermal current-to-frequency transfer function in the FM signal of a laser
diode, given in equation (3.29). To account for this effect, the feedback gain of the OPLL
should be increased for larger frequencies in order to achieve a locking bandwidth in the
range of several MHz.
The measurements shown in figure 5.12 are performed at a fixed modulation amplitude in
each case, and a linear dependence of ∆Ω on the amplitude according to equation (3.20)
is assumed. In order to verify this linear behavior, ∆Ω was also measured at a fixed
modulation frequency but for different amplitudes. For all three paths, it is found that the
voltage-to-frequency conversion is linear up to the largest measured modulation amplitude
of 200 mV.

5.3.2. Loop filter design

The error output of the PFD is send into three filters, which provide the control voltage
for the different feedback paths according to their specific bandwidth and sensitivity. The
quality of the loop is highly sensitive to the correct design of the loop filters. If multiple
feedback is used, crosstalk between the different paths can lead to spurious components in
the output spectrum, which can significantly reduce the quality of the lock. Thus, special
care has to be taken at the crossover frequencies of the filters in order to avoid crosstalk.
Furthermore, one has to make sure that all control signals have the same polarity and
correct the frequency in the right direction.

Piezo loop filter (slow path)

The loop filter of the slow part is implemented as shown in figure 5.13 (a). The error
signal is integrated by a proportional-integral (PI) controller [43] to adjust the length of
the external cavity. The integrator ensures high gain at low frequencies, and the cut-off-
frequency is about 160 Hz. A voltage divider is used to reduce the feedback voltage to
an appropriate level, and a potentiometer can be used to adjust the overall gain. The
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Figure 5.13.: Schematic circuit diagram (a) of the filter used for feedback to the slow grating path and the
corresponding magnitude plot of the frequency response (b).

Figure 5.14.: Schematic circuit diagram (a) of the filter used for the medium feedback path via DC-coupled
current modulation at the laser controller. In (b) the corresponding magnitude plot of the
frequency response is shown.

magnitude of the filter transfer function is plotted in figure 5.13 (b)18, where the actual
values of the magnitude in the OPLL can differ slightly from the plotted values, depending
on the exact setting of the voltage divider. After the filter, a summing amplifier adds the
output of the PI controller to the constant DC voltage of the piezo (see appendix A.2).

Laser controller loop filter (medium path)

The medium path is used to control frequencies between several 100 Hz up to 100 kHz. The
filter is realized using a PI controller with an extra resistor, which is connected parallel to
the PI part in the feedback of the controller, as shown in figure 5.14 (a). The additional
P-part cuts off the integrator at a frequency of about 10 kHz, so that the response is flat
down to DC, as depicted in figure 5.14 (b). This ensures that the slow integration part
dominates the frequency control at low frequencies. The upper cut-off-frequency is about
160 kHz to make sure that the resonance found for the laser controller at 500 kHz does
18All plots are obtained using the student version 9.1. of the simulation program PSpice.
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Figure 5.15.: Schematic circuit diagram of the laser diode loop filter to implement the fast feedback path.
The key element is a phase advance circuit which shifts the phase and thus widens the loop
bandwidth.

not affect the loop. Again, a voltage divider including a potentiometer is used to adjust
the overall gain, and the exact values of the magnitude depend on the specific ratio of the
voltage divider ratio.

Laser diode loop filter (fast path)

The fast feedback path is the most important one in order to reduce the phase noise of
the beat signal and to achieve the desired loop bandwidth of several MHz. The slow and
medium paths are mainly used to stabilize the signal to the range of the phase detector.
The design of the laser diode filter is more challenging since it has to account for the phase
shift of the laser diode in the range between 100 kHz and 1 MHz.
In order to build the perfect filter it would be necessary to have full information about the
transfer function of the system, i.e. the open-loop gain given in equation (4.17) without
the filter F (s). One could then easily design a filter F (s) which leads to the desired
closed-loop and error transfer function, respectively. According to equation (4.23) the
system transfer function includes the phase detector sensitivity Kd, the delay time τ and
the transfer function of the laser diode. The linear gain Kld of the laser diode, as written
in equation (4.24), is given by the sensitivity of the probe laser, which was measured in the
previous section. However, the last term in equation (4.24) is the particularly important
one, since it describes the pole of the transfer function of the laser diode. In principle, one
could measure this transfer function with a network analyzer (NWA), which measures the
frequency response of a device by comparing the magnitude and phase between the output
voltage and the input of the device for different signal frequencies. In order to measure
the frequency response of the laser diode, an output voltage which is proportional to the
frequency modulation of the laser field is required. For this purpose one could in principle
measure the output of the PFD versus current modulation. However, this only works
if the beat signal is already phase locked and thus within the linear range of the PFD.
Therefore, the filter is designed empirically based on the filter described in reference [46],
and with the help of PSpice it was possible to design an appropriate filter for the laser
diode feedback.
The final version of the loop filter is shown in figure 5.15 and the Bode plot in figure 5.16
shows the magnitude and phase of the filter frequency response. The key element to achieve
the desired loop bandwidth is a phase advance filter, which shifts the phase in the frequency
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Figure 5.16.: Bode Plot of the frequency response of the fast feedback filter. The phase advance circuit
shifts the phase in the range around 1 MHz and also increases the gain in this region.

range between 500 kHz and 3 MHz and also highly increases the gain for large frequencies.
The second capacitor in series with the phase advance is used to increase the gain at lower
frequencies in the range between 10 kHz and 100 kHz. The extra resistor parallel to the
phase advance (10 kΩ) mainly determines the gain at lower and intermediate frequencies up
to 1 MHz. Finally, the resistor which is connected parallel to ground primarily influences
the amount of the phase shift caused by the phase advance, which is about 50◦ in the case
of a 300 Ω resistor. In the end, the chosen values in the circuit in 5.15 are found to be
the best ones to obtain a stable lock with the widest possible loop bandwidth. Since the
fast feedback path is build without any active device, which would add extra noise and
possibly limit the bandwidth, the polarities of the slow and medium paths are adjusted
according to the polarity of this path.

The crossover frequencies of the three filters can be estimated on the basis of the plots in
figures 5.13, 5.14 and 5.16 of the filter transfer functions, and they are found to be around
10 Hz for the slow and medium path, whereas the filters of the medium and fast paths cross
around 100 kHz. The plots do not include the different sensitivities of the three feedback
paths measured in the previous chapter, and thus the actual crossover frequencies differ
slightly from these values. However, in the end the gain of each filter is adjusted so that
no crosstalk components are present at the output of the beat signal.

5.3.3. Phase lock performance

In this subsection the performance of the OPLL is examined in terms its capability to
initially acquire lock, its scanning range, and its longterm stability. The residual phase
noise and thus the ability of the loop to suppress the phase noise of the beat signal is
characterized in more detail in section 5.4.
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Figure 5.17.: Error voltage of the PFD measured in the time domain in the case of a weakly locked beat
signal using only the slow and medium feedback (blue line), and in the locked condition (red
line). In (a) a scan over 50 ms is shown and (b) shows a measurement over 100µs.

Phase lock acquisition

In order to acquire lock the spectrum analyzer (SA) is usually used to watch the frequency
of the beat signal. The DC voltage of the piezoelectric actuator can be adjusted so that
the beat signal is within the capture range of the phase detector, and the feedback for the
three paths is enabled by switching on the corresponding filters one by one. The spectrum
displayed by the SA provides a convenient measure for the lock performance of the loop.
Alternatively, the output voltage of the PFD can be used as an indicator to detect if the
loop is in its locked condition. If the frequency of the beat signal is outside the linear range
of the PFD, the output voltage will be either positive or negative in sign. Once the slow
PZT and medium current feedback paths are switched on, the beat signal is stabilized to
the LO frequency, but still exceeds the linear range of the PFD. The output voltage of the
PFD in this condition is shown by the blue curve in figures 5.17 (a) and (b) for different
scanning times, where one can see that the noisy beat signal drives the PFD out of its
linear range. As soon as the fast feedback is included, the beat signal stays within the
linear range of the PFD and the output voltage is zero plus some residual noise, as shown
by the red lines in figure 5.17.

Scanning range

The operating bandwidth of the PFD is specified from 10 MHz to 1.3 GHz, and in principle
the scanning range is limited to this range. However, it is found that the phase detector
used here does not work properly in the frequency range below 100 MHz. The reason for
this behaviour could not be identified. Nevertheless, in the frequency range above 100 MHz
the loop works properly up to frequencies of at least 700 MHz. This is the cutoff frequency
of the high rejection low pass filter which is used after the mixer in figure 5.4. Within
this frequency range, one can scan the frequency of the slave (probe) laser by scanning the
frequency of the LO input of the PFD. This is tested by using a stepwise frequency sweep
of the signal generator used as LO2. By replacing the low pass filter with one which has
a a larger cutoff frequency, one could probably increase the operating bandwidth of the
loop to the high frequency limit of the PFD of 1.3 GHz.
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Longterm stability

Several factors determine the longterm stability of the OPLL. First of all, the frequency
lock of the master (coupling) laser has to be stable for several hours in order to ensure
a longterm stable phase lock, which is typically the case when locking the master laser
to an atomic resonance using polarization spectroscopy as described in section 5.1.1. A
second important factor is the operating current of the probe laser. It is observed that the
stability of the OPLL is highly dependent on the exact setting of the probe laser current,
and even if it is in single mode operation, a slight change in the operating current can
cause an unstable lock. Finally, it is the ability of the slow feedback path to recapture
lock in the case of large frequency changes which determines the longterm stability of the
OPLL. If the corresponding loop filter is adjusted properly, it is found that the lasers stay
phase locked over several hours even in a noisy laboratory environment.

Finally, it is checked that the OPLL does not affect the intensity fluctuations of the
probe laser. Since the current of the laser is modulated, this could additionally cause
unwanted intensity modulation. However, corresponding to equation (3.31) and for small
modulation currents it is expected that the intensity is not influenced much by the OPLL.
This is verified by measuring the output of a photodiode over a time intervall of 200 s, and
no change in the maximum intensity fluctuation could be detected.

5.3.4. In-loop measurements

Once the loop is working and the signal stays within the range of the PFD, one can measure
the frequency response of the feedback loop, i.e. the closed-loop transfer function H(s)
and the error transfer function E(s), and also the transfer function of the optical system
including the laser diode using the network analyzer. For this purpose, the NWA signal
has to be injected in the loop as an error signal. The propagation of this noise through
the feedback loop describes the different transfer functions of the system. The position
at which one has to measure the output signal in order to obtain the different transfer
functions, e.g. H(s) and E(s), depends on the position at which the noise is added in.
Figure 5.18 illustrates the measurement setup. The NWA19 signal Vin is injected in the
loop directly after the phase detector and before the loop filter of the fast feedback path
by using a differential amplifier20, whose output voltage is named V1. The slow (PZT)
and medium feedback paths (DC), indicated by the light gray colored filters, are used to
lock the beat signal, but they are not included in the loop through which the NWA signal
propagates. The output voltage of the fast path (AC) loop filter is named V2, and V3

denotes the error voltage directly after the PFD (Kd). From system analysis, the transfer
functions can be obtained by the following relations:

E(2πif) =
V1

Vin
H(2πif) =

V3

Vin
(5.11)

G(2πif) =
V3

V1
S(2πif) =

V3

V2
, (5.12)

where i is the imaginary unit and S(2πif) is the system transfer function, that is the
open-loop gain G(2πif) without the (AC) loop filter. These ratios are measured with
the NWA, which displays the ratio S/R of its reference (R) and signal input (S). The

193577A from Hewlett Packard
20AD844 with a bandwidth of 60 MHz
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Figure 5.18.: Schematic setup for measuring the transfer functions with the network analyzer. The dashed
box indicates that the master (coupling) laser is not directly included in the loop, but it is
the transfer function of the slave laser diode which determines the frequency response.

input signals are provided by the voltages measured at the different positions in the loop,
depending on the desired transfer function. For these measurements, the OPLL was in
its locked condition using a first version of the fast laser diode loop filter. At this stage,
the filter parameters have not been perfectly adjusted yet and the loop bandwidth was
approximately 1 MHz, which is sufficient to be in the linear range of the PFD.
In figure 5.19 the magnitudes of the error and closed-loop transfer functions E(2πif) and
H(2πif) are plotted in the frequency range between 10 kHz and 10 MHz. For frequencies
up to 1 MHz the magnitude |H(2πif)| of the system transfer function is at zero dB,
corresponding to the expected unity gain within the loop bandwidth, and decreases very
rapidly for frequencies larger than 1 MHz. Conversely, the error transfer function |E(2πif)|
shows the expected high pass filtering behavior, meaning that the loop is able to suppress
noise for frequencies up to 1 MHz. In both plots the bandwidth is indicated by the bump
around 1 MHz, which is more pronounced for the error transfer function, where one can see
the effect of noise enhancement in the vicinity of the loop bandwidth. These plots confirm
the characteristic behavior of the PLL transfer functions as explained in section 4.2.1.
The system transfer function S(2πif) includes the PFD transfer function Kd and the
transfer function of the probe laser diode, whereas the delay time can be neglected since
it is sufficiently small. The phase and magnitude of the frequency response is shown
in figure 5.20. The magnitude |S(2πif)| decays almost linearly, similar to that of an
integrator. That is expected since the PFD transfers the frequency output of the beat
signal into phase. However, the measured response decreases more rapidly than one would
expect from a pure integrator, which decays 20 dB per decade and whose linear frequency
response is indicated by the dashed black line in figure 5.20. Thus, the actual magnitude
of the transfer function of the laser system starts to drop off at frequencies between 10 kHz
and 100 kHz, which is in agreement with the frequency response measured in section 5.3.1.
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Figure 5.19.: Magnitude Bode Plots of the system (a) and error transfer function (b). The system transfer
function has unity gain (0 dB) up to 1 MHz and decreases with higher frequencies. The error
transfer function in (b) demonstrates that the loop is able to suppress phase noise with a
bandwidth of around 1 MHz, indicated by the servo bump.
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Figure 5.20.: Magnitude of the transfer function of the system consisting mainly of the phase detector and
the probe laser diode. The loop filter is not included in this measurement. From the PFD
one expects the shape of an integrator, indicated by the black dashed line.

The effect of the loop filter on the system transfer function is shown in figure 5.21, where
the phase and magnitude of the system transfer function are plotted together with the
open-loop gain G(2πif), which is S(2πif) multiplied by the filter. As can be seen in the
amplitude plot, the filter decreases the overall gain which is due to the voltage divider used
to adjust the feedback voltage to an appropriate level. The effect of the phase advance
filter starts to appear around 400 kHz, which increases the gain for higher frequencies as
explained in the previous section. Simultaneously, the phase of the system is shifted about
45◦ between 100 kHz and 1 MHz. According to the integrator included in the transfer
function, the phase of the system starts at -90◦, drops of at higher frequencies and it
converges -180◦ in the range of several 100 kHz. At the same time the amplitude of S
crosses zero, and without the phase shift due to the phase advance the system would get
unstable. The bandwidth of the loop is limited to 1.2 MHz where the phase approaches
−180◦, and for frequencies around 1 MHz one obtains noise enhancement, since in this
region the phase is already very close to 180◦ and the amplitude of G is smaller than 1. This
noise enhancement causes the servo bump mentioned above, which is most pronounced in
the error transfer function in figure 5.19.
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Figure 5.21.: Effect of the loop filter on the system transfer function S by comparison with the open-loop
gain G. In (a) the magnitude is plotted and one can see that the filter increases the gain at
higher frequencies to account for the thermal low pass behavior of the laser diode. In (b) the
phase of S and G is shown, and the phase shift caused by the phase advance filter becomes
apparent.
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Figure 5.22.: Beat note signal between the two lasers locked at 176 MHz using only the slow and medium
feedback path. The red line shows the fit of a Voigt profile on the spectrum.

5.4. Phase noise analysis of the beat signal

The quality of the OPLL concerning the phase stability between the two lasers is charac-
terized by the phase noise spectral density of the beat signal. The beat note spectra are
measured in the locked condition while the master laser is frequency stabilized as explained
in section 5.1.1. The frequency of the beat signal is set by adjusting the local oscillator
LO2 at the phase detector input. For the measurements described here, the oscillator at
9.216 GHz is used as the LO1 to mix down the beat signal, and the frequency of LO2 is
set to 176 MHz.
In order to estimate the linewidth of the weakly locked beat signal, figure 5.22 shows the
beat note spectrum in the case that only the slow and medium feedback paths are used.
According to section 3.3, the line shape of a single mode semiconductor laser in the pres-
ence of 1/f-frequency noise can be described by a Voigt profile, and it is found that the
latter fits the measured spectrum best. The linewidth of the beat signal is thus estimated
by fitting a Voigt function on the spectrum. The linewidth ∆νv of the Voigt profile is
determined by the corresponding Gaussian width σ and Lorentzian widths γ, respectively,
by [60]

∆νv = 0.5346 γ +
√

0.2169 γ2 + σ2 . (5.13)

The fit values are γ = 142.30 kHz and σ = 287.52 kHz, resulting in a linewidth of
∆νB = 371,142 kHz of the weakly locked beat signal. Since still a considerable amount of
noise is contained in the wings of the spectrum, which spread over a frequency range of
several MHz, it is necessary for the loop bandwidth to exceed the linewidth of the beat
signal by a significant fraction.
By including the fast feedback path using the filter from section 5.3.2, the phase noise is
highly reduced and figure 5.23 shows the resulting beat note spectrum for different spans
of the SA. The narrow 500 Hz scan spectrum in 5.23 (e) is measured using an analog spec-
trum analyzer21 with a minimum resolution bandwidth (RBW) of 10 Hz. The spectra (a)
218568B from Hewlett Packard
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Figure 5.23.: Power spectra of the phase locked beat signal, normalized to the RBW of the SA and the
power in the carrier signal. (a): 15 MHz span, 3 kHz RBW. The noise suppression is about
40 dB compared to the carrier signal. (b): 10 MHz span, 3 kHz RBW. (c): 2 MHz span, 3 kHz
RBW. In (b) and (c) one can see that the noise suppression is even better in the vicinity of
several 100 kHz around the carrier. (d): 500 kHz span, 1 kHz RBW. One observes a flat noise
suppression in this frequency range. (e): 500 Hz span, 10 Hz RBW. The resolution is limited
by the RBW of the analog SA.
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to (d) are measured with a digital spectrum analyzer22 whose RBW is limited to 1 kHz,
which is sufficient for large scan ranges. The digital spectra are averaged over 100 scans,
whereas the analog spectrum is an average over 5 scans. All spectra are normalized to the
RBW of the SA and to the power P (f0) contained in the carrier frequency corresponding
to equation (4.33). Since in all scans the carrier signal consists of more than one data
point, the peak value is only an (under) estimation of the total power. It is determined
more accurately by integrating the RBW-normalized power spectral density over the fre-
quency range of the carrier.
From the spectra one obtains that the noise suppression compared to the carrier is ap-
proximately 40 dB. If the gain is increased, servo bumps occur at the corners of the flat
plateau, indicating a loop bandwidth of 2.4 MHz. The spurious peaks at 2 MHz in fig-
ures 5.23 (a) and (b) should not be confused with the servo bumps, since their amplitude
is independent from the loop gain and they are too narrow. The origin of these peaks is
not clear, however, they are suppressed by more than 30 dB compared to the carrier and
thus contribute only by a small amount to the residual phase noise. In the scan in (a), two
spurious peaks close to the carrier at 80 kHz are also observed. These peaks arise from the
power supply of the ion pump in the laboratory, which is turned off for all other scans.
In the frequency range of ±400 kHz around the carrier, as one can see in the scans in
figures 5.23 (b) and (c), the phase noise is even more suppressed and is 50 dB below the
peak amplitude of the carrier signal. If the gain of the medium feedback path is increased,
bumps appear in the range of 300 kHz due to crosstalk between the medium and the
fast feedback path. Figure 5.23 (d) shows a scan of 500 kHz around the carrier signal,
where another spurious component at 26.5 kHz is observed, however they are suppressed
by more than 40 dB compared to the carrier. This unwanted signal is present at any signal
measured in the laboratory and probably arises due to some digital power supply, whose
switching frequencies typically lie in the range of several kHz up to several 100 kHz.
The last scan with a span of 500 Hz is shown in figure 5.23 (e), where a 50 Hz oscillation
and its harmonics are observed. The peaks at 50 Hz and 150 Hz are the most pronounced
ones and they are suppressed by approximately 35 dB. The resolution in this scan is lim-
ited by the RBW of the SA of 10 Hz, and the shape of the carrier signal as well as that
of the spurious peaks is that of the reference oscillator of the SA. Hence, the width of the
phase locked beat signal cannot be resolved and is less than 10 Hz. This is not a surprising
result, since according to equation (4.44) in section 4.2.3 the beat note spectrum of the
two lasers is composed of a delta function at the carrier frequency f0, plus an additional
noise term which describes the residual phase noise of the signal.

The phase noise variance σ2
φ of the phase locked beat signal is determined as the integral

of the single sideband (SSB) phase noise spectrum. In order to obtain the phase noise
spectrum in the range between 40 Hz and 7.5 MHz, several beat note spectra are combined
to one phase noise spectrum, so that one has information about the phase noise over a
wide frequency range. Therefore, two more spectra with a span of 100 kHz and 1 kHz are
used in addition to the spectra shown above. Since the 15 MHz scan spectrum in 5.23 (a)
only contributes to the SSB phase noise in the range between 5 MHz and 7.5 MHz (below
5 MHz the SSB phase noise spectrum is determined by the other spectra), the presence of
the perturbation of 80 kHz is not included in the calculation of σ2

φ.
The resulting SSB phase noise spectrum Sφ(f) is shown in figure 5.24, where the noise
power per 1 Hz bandwidth, given in rad2/Hz, is plotted against the frequency offset from

22E4407B from Agilent
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Figure 5.24.: SSB phase noise of the phase locked beat signal in the frequency range between 40 Hz and
7.5 MHz, plotted on a logarithmic scale.

the carrier frequency on a logarithmic scale. The spurious peaks at 50 Hz plus harmonics,
26 kHz (weak), 2 MHz and 6 MHz are clearly visible, and additionally another oscillation
at 1.6 kHz is observed which arises due to electronic noise in the laboratory.
Integrating Sφ(f) and including the factor of 2 to account for the negative frequencies, the
residual phase error in the frequency range between 100 Hz and 7.5 MHz is found to be

σ2
φ = 0.038 rad2 , (5.14)

which gives an average phase deviation of 197 mrad. From this value, the fraction of power
in the carrier can be determined using the formula given in equation (4.46), which yields

η = 96.08 % . (5.15)

For comparison, the fractional power in the carrier is also determined using equation (4.45)
for the spectrum measured with a span of 15 MHz, which yields

η = 95.97 % . (5.16)

which gives almost the same result. This shows that the fraction of power in the carrier
can be determined by the residual phase noise in the case of σ2

φ � 1. Thus, more than 95%
of the power in the beat signal is available to coherently excite the two-photon transition
in the EIT experiment.
According to reference [61, 62], the average time between two cycle slips can be estimated
from the residual phase error σ2

φ by

tav ≈
1

BW
exp

(
0.6 θ
σ2
φ

)
, (5.17)
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where the factor θ is given by the linear range of the PFD in units of π, thus here it is θ = 2.
Using this formula, the average time between to cycle slips is determined to tav = 9.6 106 s,
which is negligible large. In fact, it can be seen from equation (5.17) that the probability
for a cycle slip becomes negligible small if the residual phase error is significantly smaller
than the range of the phase detector.

In conclusion, this phase locked laser system allows to stabilize the relative phase between
two diode lasers with a residual phase noise of less than 0.04 rad2. This value is comparable
to those obtained in the literature, where a residual phase noise between 0.01 rad2 and
0.08 rad2 is typically achieved [46, 56, 58, 63]. Thus, more than 95 % of the power of the
beat signal can be stored in the narrow carrier signal with a linewidth of less than 10 Hz.
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6. Electromagnetically induced transparency
on cesium atoms

The small linewidth of dark resonances, as predicted for electromagnetically induced
transparency (EIT), makes them particular attractive for applications in precision spec-
troscopy [21]. In real atomic media, it is essential for an effective quantum interference
that the atomic coherence is maintained during the interaction of the atom with the two
required laser fields. Any dephasing of the coherence will lead to a reduction and eventu-
ally to total destruction of the dark resonance.
The important parameter responsible for the reduced absorption in EIT is the ground state
coherence γ21 between the states |1〉 and |2〉 as explained in chapter 2. The lifetime of the
dipole-forbidden transition between the two ground states is negligibly large. Therefore,
the coherence is mainly determined by several experimental parameters, such as the simul-
taneous excitation of several closely spaced hyperfine or Zeeman levels, spontaneous decay
of the upper state |3〉, Doppler broadening, collisions between the atoms, and the phase-
and frequency stability of the laser fields. Hence, these parameters need to be controlled
carefully in order to obtain a narrow dark resonance.

6.1. EIT and decoherence on atomic cesium gas

In this thesis first measurements of EIT were performed on an atomic cesium vapor cell.
In cesium the 62S1/2-ground states with |F = 3〉 and |F = 4〉 can be used as the two
lower states |1〉 and |2〉 of the Λ-system as shown in figure 2.4. In both the D1- and
the D2-line the excited state |3〉 can be realized by either of the upper hyperfine states
|F ′ = 3〉 and |F ′ = 4〉, since the transition rules allow both to couple to the two ground
states. In the presence of magnetic fields, each of the hyperfine states is split into (2F +1)
magnetic sublevels [64], which leads to the formation of multiple Λ-systems. This leads to
a broadening of the EIT resonance due to the simultaneous excitation of several sublevels,
depending on the polarization of the lasers and the direction of the magnetic field [42].
For experiments on atomic vapor one also has to take into account several decoherence
mechanisms due to the motion of the atoms. The Doppler-broadening due to the different
velocities of the atoms can be calculated by

∆νD =
1
λ0

√
8kBT ln 2

m
, (6.1)

where λ0 is the transition wavelength, m the atomic mass, kB the Boltzmann constant and
T the temperature [65]. For a cesium gas at room temperature, one obtains a Doppler-
broadened linewidth of 357 MHz for the D1-line and 374 MHz for the D2-line. As a con-
sequence of the Doppler-shift, there are two velocity classes that can form a Λ-system for
a certain detuning of the coupling laser, i.e., the classes which are on resonance with the
|F ′ = 3〉 state and the ones resonant to the upper state |F ′ = 4〉.
For the D2-line at 852 nm in cesium [64], off-resonant single photon excitation from the
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ground states to the excited levels |F ′ = 2〉 and |F ′ = 5〉 can occur due to the Doppler-
broadening. This causes significant background absorption, and therefore 100 % trans-
parency cannot be achieved using the cesium D2-line [42]. Additionally, the non-zero
coupling to hyperfine states which do not contribute to the Λ-system leads to atomic de-
coherence and broadening of the EIT resonance. Since the largest transition strength
of the D2-line is that of the |F = 4→ F ′ = 5〉 transition, it is reasonable to use the
|F = 3→ F ′ = 4〉 ground state for the probe laser transition in order to minimize back-
ground absorption. However, there is still considerable background absorption to the
|F ′ = 2〉 state. For the D1-line at 894 nm, on the other hand, there are only the two upper
hyperfine states |F ′ = 3〉 and |F ′ = 4〉, which both contribute to the Λ-system but do not
contribute to any background absorption or decoherence.
Another effect in an atomic gas is time-of-flight (TOF) broadening of an atomic resonance.
The transit time of the atoms passing the laser beam contributes to the linewidth of the
atomic transition, if the lifetime of the excited state is longer than the transit time. The
linewidth due to time-of-flight broadening for a Gaussian beam profile can be estimated
by

∆νTOF =
4.7
2π

v

d
, (6.2)

where v is the mean velocity of the atoms and d is the beam diameter [65]. For example,
at room temperature and for a beam diameter of 1 mm, an atomic resonance in cesium is
broadened by 208 kHz due to the transit time of the atoms. Finally, collisions of atoms in a
dense atomic vapor cell lead to collisional broadening due to the interatomic dipole-dipole
interaction.
It is still not certain which effect dominates the width of an EIT resonance in atomic
vapor [66]. As explained in chapter 2.2.3, the Doppler-broadening can be avoided by
choosing co-propagating beams in the case of a Λ-system. However, all other linewidth
broadening effects can still contribute to the decoherence of the atomic system.

6.2. First experimental results for EIT on atomic cesium gas

The experimental setup to measure EIT on a cesium vapor cell is shown in figure 6.1. The
measurements were performed using the D2-line at 852 nm, since parts of the laser system
were already available in the lab.
Since it is advisable to use the |F = 3〉 ground state for the probe laser, as explained above,
the coupling laser is locked to the |F = 4→ F ′ = 4〉 transition for these measurements.
Both lasers are overlapped on a polarizing beam splitter cube (PBS) so that they have
orthogonal polarizations. The width of the EIT resonance can be broadened by several
MHz due to the residual Doppler-shift if there is only a slight angle of several mrad between
the two laser beams [67]. Therefore, both lasers are coupled into the same polarization
maintaining (PM) single mode fiber in order to guarantee perfect mode matching of the
two beams. Afterwards, the beams have a diameter of approximately 1 mm and are sent
through a 2.5 cm long cesium vapor cell. The cell is positioned in a box made of µ-metal
for magnetic shielding in order to prevent broadening of the EIT resonance due to Zeeman-
shifts of the mF -sublevels. The intensity of the probe beam is detected with a photodiode1

which measures the transmission through the cesium cell. The coupling laser is separated
from the probe beam using a second PBS.

1MFL250907A01
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Figure 6.1.: Optical setup to measure EIT on a cesium vapor cell. The coupling and probe lasers are
overlapped on a polarizing beam splitter cube (PBS) and afterwards coupled into a polarization
maintaining (PM) single mode fiber. The two lasers can be phase locked by the optical phase
locked loop (OPLL) described in chapter 5.

The probe laser can be scanned across the whole Doppler-profile of the upper hyperfine
states using the piezoelectric actuator. Furthermore, the optical phase locked loop (OPLL)
allows to scan the probe laser within a certain frequency range as explained in chapter 5.

Probe absorption profile in the presence of the coupling laser

In order to measure the Doppler-broadened absorption profile, the frequency of the probe
laser is scanned with the piezo, i.e., the lasers are not phase locked in this case. Figure 6.2
shows the probe transmission for different powers of the coupling laser at a probe power of
50µW. Without the coupling laser, one observes the usual Doppler-broadened absorption
profile as shown by the black transmission line.
In the presence of the coupling laser, two velocity classes of atoms are optically pumped
via the |F ′ = 3〉 and |F ′ = 4〉 states, leading to an enhanced absorption at five resonances
in the spectrum. In figure 6.3 the pumping is illustrated using the energy level scheme.
Assuming a resonant coupling beam, atoms with velocity zero are optically pumped via
the |F ′ = 4〉 state into the |F = 3〉 ground state, see figure 6.3 (a). This leads to an
enhanced absorption of the probe laser when it is on resonance with one of the |F ′ = 2,3,4〉
hyperfine states, and one observes three corresponding enhanced absorption resonances in
the transmission spectrum (see (1), (2) and (4) in figure 6.2). Additionally, the coupling
laser pumps atoms via the |F ′ = 3〉 state whose Doppler-shift is equal to the frequency
difference ∆34 between |F ′ = 3〉 and |F ′ = 4〉, see figure 6.3 (b). This leads to enhanced
absorption resonances which are shifted by ∆34 = 201.24 MHz compared to the non shifted
resonances. Thus, altogether one obtains five resonances, since the two labeled with (4) in
figures 6.2 and 6.3 occur at the same probe frequency. Inside this resonance one observes
an increased transmission: the EIT transparency window.



78 6. Electromagnetically induced transparency on cesium atoms

−800 −600 −400 −200 0 200 400 600 800
0

10

20

30

40

50
 

Pro
be 

tra
nsm

iss
ion

 (a
. u

.)

P r o b e  d e t u n i n g  ( M H z )

C o u p l i n g  p o w e r
 n o  c o u p l i n g
 0 . 0 7  m W
 0 . 6 0  m W
 3 . 0 0  m W

( 5 )

( 4 )

( 2 )( 1 )

( 3 )

Figure 6.2.: Probe transmission for different values of coupling powers. The probe laser is scanned across
the upper hyperfine states and the coupling laser is locked to the F = 4→ F ′ = 4 transition.
The enhanced absorption resonances can be identified as optical pumping as illustrated in
figure 6.3. Inside resonance (4) one observes the EIT transmission peak.

Even at very small coupling powers the EIT resonance is observed inside the corresponding
absorption resonance, see blue spectrum in figure 6.2 with a coupling power of 70µW, and
it becomes more pronounced with increasing coupling power. For optimized conditions it
is expected that the transmission increases even above the Doppler background [42]. The
width of the enhanced absorption resonances increases with increasing coupling power due
to power broadening. One should note that these spectra are measured with an unlocked
probe laser, which demonstrates the high frequency stability of the diode lasers.
The transparency of the EIT resonance is estimated by measuring the ratio of the EIT peak
height compared to the total transmission without the EIT resonance. The probe trans-
mission in the absence of the EIT peak is estimated by the mean value between the lowest
transmission measured on both sides of the EIT resonance. This gives an underestimation
of the transparency, since the enhanced absorption resonance is in fact more pronounced
as it is in the presence of the EIT peak. The error is calculated by the Gaussian propa-
gation of uncertainty. Transparencies between 12 % and 25 % could be obtained in these
measurements. Its dependence on the coupling power is shown in figure 6.4. One clearly
observes that the amount of transparency increases with coupling power and saturates
for powers larger than 3 mW. In references [68, 69], a similar dependency was observed,
although in both cases for rubidium atoms. Starting from low coupling powers, the power
has to be chosen high enough so that induced coherence exceeds the decoherence rate to
observe reduced absorption. At some point, increasing the coupling power only broadens
the EIT resonance, but the transparency is limited by the decoherences of the system.
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Figure 6.3.: Energy level diagram of the cesium D2-line to illustrate optical pumping due to the coupling
laser. The black arrow denotes the coupling laser, and the curly arrows indicate the sponta-
neous emission. The fact that the probe laser is scanned across all upper hyperfine states is
indicated by the blue arrows. (a) Pumping of atoms with velocity zero via the F ′ = 4 state.
(b) Pumping of atoms with a Doppler-shift ∆νdoppler = ∆34 = 201.24 MHz.
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Figure 6.4.: Transparency of the EIT resonance dependent on the coupling power at a beam diameter of
1 mm and 50µW probe power.
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Figure 6.5.: Scan of the probe laser across the EIT resonance by scanning the local oscillator (LO2) at
the phase detector input. The black spectrum shows the case that both lasers are not phase
locked, whereas the red line shows the scan while the lasers are phase locked.

Measurement of the EIT linewidth using the OPLL

In order to investigate how the optical phase locked loop (OPLL) influences the EIT
resonance, the probe laser is stabilized to the master laser using the OPLL described in
chapter 5. To scan the frequency of the probe laser across the EIT resonance, the LO2
at the input of the phase detector, see section 5.1.2, is scanned using the stepwise sweep
function of the signal generator. For the measurements performed here, the oscillator
MKU LO 95 PLL is chosen as LO1, and no AOM is included in the setup. The frequency
of LO2 is swept over the expected EIT resonance at 294 MHz, in the case of a resonant
coupling laser, in a range from 280 MHz to 330 MHz, and the power of the probe laser is
set to 50µW.
In figure 6.5 the EIT absorption spectrum with a coupling power of 100µW is shown.
In gray line shows the spectrum when the lasers are frequency offset locked using only
the slow piezo and current paths of the OPLL as explained in section 5.3.2. The second
spectrum (red curve) shows the case where the lasers are phase locked including the fast
feedback path. One can clearly see the strong effect of the OPLL on the EIT line shape.
The OPLL causes an increase of the probe transmission by about a factor of two compared
to the absorption background of the enhanced absorption resonance. In addition to the
increased transmission, the width of the EIT resonance is considerably narrowed by the
OPLL.
One observes that the center frequency of the EIT resonance is shifted by approximately
2.3 MHz. In the phase locked condition the EIT peak is located at an LO frequency
of 293.5 MHz, whereas it is at 295.8 MHz in the frequency offset locked condition. This
discrepancy could be explained by an inaccurate operation of the OPLL. A measurement
supporting this assumption showed that the beat signal is locked with an offset of −1 MHz
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Figure 6.6.: Dependence of the EIT linewidth ΓEIT on the pump power. The red dots show the obtained
linewidth in the case of phase locked lasers, whereas the black squares are measured for the
case that the lasers are offset frequency locked. In both cases a square root function is fitted
on the data.

to the frequency set by the LO2, if the fast path is not included in the loop. Such an
offset could cause the scan of the OPLL to start at a different frequency than expected
and could therefore in principle account for an offset of the two EIT peaks. A further
future investigation of the OPLL should resolve this issue.
The EIT transmission spectrum is measured for different coupling powers, in each case
both for frequency and phase locked lasers. In order to investigate the dependency of the
EIT linewidth ΓEIT on the coupling power, a Lorentzian is fitted to the EIT peak. This is
justified in the case of small coupling powers [66]. In figure 6.6, the dependency of ΓEIT on
the coupling power is shown, where the errors of the linewidth are obtained from the fit.
First of all, it is observed that the EIT linewidth can be reduced by approximately 1.5 MHz
using the fast feedback of the OPLL and keeping the lasers phase locked. Furthermore, in
both cases the linewidth increases more rapidly at lower coupling powers.
From equation (2.51) one expects a linear dependence of ΓEIT on the Rabi frequency Ωc,
which gives a square root dependence on the coupling power. The measured data shows
a good agreement with the expected behavior, as can be seen from the fitted square root
functions.

In summary, it could be shown that the optical phase locked loop is well suitable for EIT
measurements on cesium atoms. Both the transparency and the linewidth of the EIT
resonance could be improved by phase locking the lasers. Although there is still need for
further investigations, this laser system meets all requirements to perform highly coherent
spectroscopy on cesium atoms.
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7. Summary and outlook

Within the scope of this thesis, a phase locked laser system at a frequency offset of
9.192 GHz corresponding to the hyperfine splitting of the cesium ground state has been
successfully implemented and characterized. Such highly coherent lasers are an essential
tool for future experiments on coherent spectroscopy of cesium atoms, such as electromag-
netically induced transparency and slow light.

Using the technique of heterodyne optical phase locking, it was achieved to synchronize
the phases of two diode lasers so that their relative phase does not vary by more than
197 mrad. The quality of the phase locked loop was characterized by measuring the beat
note spectrum between the two lasers, where the residual phase noise was found to be less
than 0.04 rad2, which is comparable to the values obtained in the literature [46, 56, 58, 63].
The linewidth of the beat signal was measured to be less than 10 Hz. The true linewidth
could not be resolved due to the limited resolution of the spectrum analyzer. It was found
that more than 95 % of the power are contained in the narrow carrier signal, which is the
power available for coherent excitation of two-photon processes.
Using a digital phase frequency detector, a wide locking bandwidth of 2.4 MHz together
with excellent phase noise suppression has been achieved. Due to the all-digital phase and
frequency detection, the loop provides excellent longterm stability, a wide capture range
and it can be used to scan the slave laser frequency over a wide range of several hundreds
of MHz. One of the big challenges during the implementation of the phase locked loop
has been the realization of the required locking bandwidth of several MHz in order to
efficiently reduce the phase noise of the beat signal. Besides the phase frequency detector,
the design of the fast feedback path, where one directly modulates the current of the laser
diode, has been the key element in this context.
In the last part of this thesis, the applicability of the laser system for coherent spectroscopy
on cesium atoms has been demonstrated by performing first experiments of EIT on cesium
vapor. In these measurements it was shown that the transparency of the EIT resonance
can be considerably improved by using a phase locked loop to stabilize the two lasers. It
was also achieved to narrow the linewidth of the EIT signal by a factor of 2, and an EIT
linewidth in the low MHz range could be measured.

Throughout the development of the laser system, several issues have been observed that
could be improved in the future. The phase frequency detector which was implemented
in this thesis exhibits a so far unexplained behavior at frequencies below 100 MHz which
limits the scanning range of the loop. This problem can probably be solved using the
evaluation board of the same detector type which was used to measure the phase detector
characteristics in chapter 5.2. This could additionally avoid the problem that an offset is
observed in the frequency of the beat signal when using only the slow feedback path of
the loop. Furthermore, the scanning range of the lock is limited by the high pass filter in
the feedback loop. Choosing a filter with a higher cut-off frequency probably allows one
to expand the scanning range to more than 1 GHz.
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The EIT measurements in this thesis were performed on the D2-line in cesium. This
has the disadvantage of background absorption and broadening of the EIT resonance due
to the upper F ′ = 2 and F ′ = 5 hyperfine states. For future applications of EIT such as
precision spectroscopy in the sub-kHz regime, it is advisable to use the D1-line of cesium,
since no such loss channels are present in this case. It should be possible without any
difficulty to readjust the phase locked loop for phase locking of two different diode lasers.
In principle, it is only the filter which has to be adjusted according to the specific response
of the laser diode which is used as the slave laser.

The longterm goal of this laser system is to perform coherent spectroscopy on fiber-coupled
cesium atoms [13]. The trapping of cold cesium atoms close to the surface of an optical
nanofiber allows for direct integration of laser-cooled atoms inside optical fiber networks.
The high optical density of this system makes it particular attractive for the investiga-
tion of nonlinear coherent effects such as slow light [7, 8], the storage of light pulses [9],
quantum memories [10] and quantum repeater [11]. The laser system implemented in this
thesis forms the basis for a variety of those applications.
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A.1. Cesium level diagram

Figure A.1.: Energy level diagram of 133Cs
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A.2. Electrical circuits
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[38] G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu. Laser line shape and
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[65] W. Demtröder. Laser spectroscopy: Experimental techniques. Springer-Verlag, 4th
edition, 2008.

[66] E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky. Decoherence of electromag-
netically induced transparency in atomic vapor. Opt. Lett., 31:2625–2627, 2006.

[67] P. R. S. Carvalho, L. E. E. de Araujo, and J. W. R. Tabosa. Angular dependence of an
electromagnetically induced transparency resonance in a Doppler-broadened atomic
vapor. Phys. Rev. A, 70:063818, 2004.
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nenden Forschungsprojekt ermöglichte. Weiterhin danke ich Klaus Wendt dafür, dass er
sich die Zeit nahm das Zweitgutachten für diese Arbeit zu erstellen.
Ein großer Dank gilt meinen Betreuern und Kollegen Daniel Reitz, Samuel Dawkins,
Rudolf Mitsch und Eugen Vetsch, die mir während des letzten Jahres immer mit wertvollen
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Für das Korrekturlesen meiner Arbeit möchte ich mich ebenfalls bei Daniel, Rudi und Sam
bedanken, und besonders bei Sam für die hilfreichen Hinweise, wenn mal ein englisches
Wort zu offensichtlich in Leo nachgeschaut wurde. Weiterhin möchte ich auch Ariane
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Den restlichen Rauschis möchte ich für ein Arbeitsklima danken, das ich in Zukunft sehr
vermissen werde, ebenso wie die zahlreichen Kuchen, der nicht wegzudenkende Kaffee nach
der Mittagspause und die schönen Kinoabende.
Weiterhin bedanke ich mich bei Christine Best und Elvira Stuck-Kerth für die gute Betreu-
ung in allen organisatorischen Anliegen, mit denen ich während meiner Arbeit konfrontiert
wurde. Auch geht ein besonderer Dank an unseren Elektroniker Michael Boeßenecker für
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