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Abstract

To store a classical light pulse is an important capability for the realization of all-optical signal
processing schemes. Optical buffers that allow storing optical pulses can be extended to work
as optical quantum memories, in which quantum states of light can be stored. Those optical
quantum memories are crucial elements of large-scale quantum optical networks.

The storage of light has been achieved with several systems, such as cold or ultracold atoms.
Despite this, the realization of efficient and long-lived fiber-integrated optical memories is still
subject to active research.

In this thesis, I report on the progress towards a novel implementation of an optical quantum
memory. Here, a nanofiber-based experimental platform for trapping and optically interfacing
laser-cooled Cesium atoms is used, where the nanofiber is realized as the waist of a tapered
optical fiber. Despite the atoms being trapped close to the nanofiber surface, the system offers a
long ground state coherence time. This, in combination with the good coupling of the trapped
atoms to fiber-guided light fields, renders this system a promising candidate for the realization
of a fiber-coupled quantum memory.

I demonstrate the realization of an optical memory for weak optical pulses, using the effect
of electromagnetically induced transparency. This effect allows to drastically reduce the group
velocity of a fiber-coupled light pulse when propagating through the medium. Eventually, the
light pulse can be brought to a halt. In this context, I experimentally show storage and retrieval of
fiber-guided light at the single-photon level, while featuring a competitive characteristic memory
lifetime. The presented results are an important step towards realizing fully fiber-based quantum
networks.

For further improvement of the lifetime of the presented optical memory, it is of advantage
to gain better control over the trapped atom’s motional degree of freedom. One possibility to
achieve this goal utilizes the trapping light field-induced fictitious magnetic fields. It allows
the coupling between the external motional state and the internal hyperfine state of the atom.
As shown in this thesis, this coupling can be used to implement microwave sideband cooling,
allowing the preparation of the majority of the nanofiber-coupled Cesium atoms in the motional
ground state. Furthermore, the coupling can be utilized as a tool to probe specific parameters
of the trapped atoms, such as the trap frequency, the mean motional excitation number or the
heating rate.
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Kurzfassung

Die Fähigkeit klassische Lichtpulse abspeichern zu können ist unerlässlich für die Realisierung
vollständig optischer Methoden zur Signalverarbeitung. Diese optischen Zwischenspeicher kön-
nen derart erweitert werden, dass sie als optische Quantenspeicher operieren, in welchen die
Quantenzustände von Licht abgespeichert werden können. Solche Quantenspeicher sind unab-
dingbare Elemente weitverzweigter optischer Quantennetzwerke.

Das Abspeichern von Lichtpulsen wurde bereits mithilfe mehrerer Systeme erreicht, wie
zum Beispiel mit kalten oder ultrakalten Atome. Dennoch ist die Realisierung effizienter und
langlebiger optischer Speicher, integriert in einer Glasfaser, noch immer Ziel aktiver Forschung.

In dieser Doktorarbeit berichte ich über den Fortschritt in Richtung einer neuartigen Imple-
mentierung eines optischen Quantenspeichers. Zu diesem Zweck wird eine Nanofaser basierte
experimentelle Plattform verwendet, die das Fangen lasergekühlter Cäsium Atome erlaubt und
eine optische Schnittstelle zwischen dem fasergeführten Licht und den gefangenen Atomen be-
reitstellt. Die Nanofaser wird hierbei als eine verjüngte Glasfaser realisiert. Obwohl die Atome
nahe der Oberfläche der Nanofaser gefangen werden, bietet das System lange Kohärenzzeiten
des atomaren Grundzustandes. Dies, zusammen mit der guten Kopplung der gefangenen Atome
an das fasergeführte Lichtfeld, macht aus diesem System einen vielversprechenden Kandidaten
für die Realisierung eines fasergekoppelten Quantenspeichers.

Ich demonstriere die Realisierung eines optischen Speichers für schwache Lichtpulse, un-
ter Verwendung des Effekts der elektromagnetisch induzierten Transparenz. Dieser Effekt er-
möglicht es, die Gruppengeschwindigkeit eines Lichtpulses im atomaren Medium drastisch zu
reduzieren und sogar innerhalb des Mediums zu stoppen. In diesem Zusammenhand zeige ich
experimentell das Abspeichern und Abrufen fasergeführter Lichtpulse, bestehend aus einzelnen
Photonen, mit einer konkurrenzfähigen charakteristischen Speicherzeit. Diese Resultate sind ein
wichtiger Schritt in Richtung vollständig glasfaserbasierter optischer Speicher.

Um die Speicherzeit weiter erhöhen zu können, ist es vorteilhaft mehr Kontrolle über die
Bewegungsfreiheitsgrade der gefangenen Atome zu erhalten. Eine Möglichkeit um dies zu er-
reichen wird in dieser Arbeit vorgestellt. Hier macht man sich die fiktiven Magnetfelder zunutze,
welche durch die Fallenlichtfelder induziert werden und die Kopplung zwischen dem externen
Bewegungszustand und dem internen Hyperfeinzustand der Atome ermöglichen. Dies erlaubt
die Implementierung von Mikrowellen Seitenbandkühlen, was einen befähigt den Großteil der
gefangenen Cäsium Atome im niedrigsten Bewegungszustand zu präparieren. Zusätzlich kann
diese Kopplung verwendet werden um diverse Parameter der gefangenen Atome, wie zum Bei-
spiel die Fallenfrequenz, den mittleren Bewegungszustand oder die Heizrate, zu untersuchen.
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CHAPTER 1
Introduction

Quantum communication via quantum networks allows the user to efficiently exchange infor-
mation and secure the latter by means of quantum cryptography [1–4]. To this end, the ability
to distribute quantum states over distances of several 100 km is essential. To achieve such ex-
tensive networks, the connected quantum systems exchange information via photons, where
the required transmission channels are usually optical fibers or free-space. In general, these
transmission channels are subject to loss, which limits the distance over which two connected
quantum systems can reliably communicate. Although the losses of optical fibers of less than
0.2 dB/km at telecommunication wavelengths are quite low, they still have a high impact on
the photon transmission rate for a quantum network operating on a worldwide scale. On such
a large scale the transmission rate can be reduced by several orders of magnitude. In classical
communication networks, this problem can be solved by using repeaters that amplify the signal.
This approach, however, cannot be directly applied for quantum networks due to the no-cloning
theorem [5, 6]. Instead, one relies on quantum repeaters that are based on entanglement [7].
Here the transmission channel is divided into segments, that are spanning a shorter distance,
and entanglement is created for each individual segment. In the following, the entanglement is
distributed from one segment to the next via entanglement swapping [8]. This leads to an entan-
glement between the sender and the recipient in the end, without the need of direct interaction
between both. In order for the entanglement swapping to properly perform, the entanglement
of each individual segment has to be stored in a quantum memory until the entanglements in
the adjacent segments have been established successfully [9]. One possible approach towards a
quantum repeater [10] proposes the use of atomic ensembles as a quantum memory due to the
strong and controllable coupling between the atomic ensemble and photons.

An example for the implementation of a quantum memory using an ensemble of atoms is
via electromagnetically induced transparency (EIT) [11–13]. EIT leads to a modified optical
response of an atomic ensemble, caused by a quantum interference between possible excitation
paths between the atomic states, due to a coherent control light field. For the example of a three-
level system, this results in the atomic medium being transparent for a light field resonant with
the transition between two energy levels. Furthermore, EIT leads to an increased dispersion in
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1. INTRODUCTION

the spectral region of reduced absorption, giving rise to several effects including, e.g., reduced
group velocities, longitudinal pulse compression and storage of light [14]. It is these features
that render EIT very attractive for the realization of a quantum memory for photons, since it
allows the transfer of quantum states and coherences to collective atomic spin excitations. In
several experimental realizations, the capability of the EIT scheme to store light pulses as well
as single photons has been demonstrated (e.g. [15,16]). Furthermore, it has been shown that the
nonclassical character of the correlation between a photon pair survives the storage and retrieval
process [17].

In order to prepare an atomic ensemble, and provide a versatile light-matter interface, laser-
cooled atoms confined in an optical dipole trap are of particular interest. Optical dipole forces
have proven to be a universal tool for trapping and manipulating dipoles, such as, e.g., neu-
tral atoms, ions or nitrogen-vacancy centers. These forces occur when dipoles interact with
an electromagnetic field that features a gradient in its intensity. Depending on the frequency
of the light field with respect to the transition frequency of the atom, the dipole forces can at-
tract an atom towards the intensity maximum or repel it from the latter [18]. In the last years
a couple of notable achievements have been made with optical dipole traps. Those include the
investigation of quantum-degenerate gases [19, 20], quantum simulation of many-body systems
in optical lattices [21], long-lived quantum memories for light [22] and optical frequency stan-
dards as well as precision spectroscopy [23]. Optical dipole traps that are able to confine a single
atom or a few atoms to a small volume are usually referred to as optical microtraps. They pro-
vide a strong spatial confinement for laser-cooled atoms and can be realized, e.g., with strongly
focused light beams [24,25] or in the near fields of optical nanoscale waveguides as well as pho-
tonic nanostructures. Such devices have been utilized recently to, among others, study Rydberg
interactions [26, 27] or investigate collisional entangling dynamics between two atoms [28]. A
possibility to create optical microtraps in the near field of waveguides is to use tapered optical
fibers. They offer a strong transverse confinement of the fiber-guided light over the full length of
the taper section and, thus, allow a homogeneous and efficient coupling to ensembles of trapped
atoms [29, 30]. Due to the interaction of the atoms with the trapping light fields, the energy
states of the atom experience a shift that depends on the considered internal state as well as
the motional state. In conjunction with the atoms being in a thermal state, i.e., many motional
states are populated, this leads to an inhomogeneous broadening of the transitions, resulting in
reduced coherence times. The latter can be a limiting factor considering the duration for which
light pulses or photons can be stored using an EIT scheme. To reduce the effect of decoherence,
it is beneficial to prepare the atoms in a defined motional state, e.g., by cooling them to the
motional ground state.

In this thesis, I demonstrate that EIT can be implemented using laser-cooled atoms, that
are trapped in the evanescent field surrounding an optical nanofiber, with fiber-guided probing
and control light fields. In addition, I show experimental results indicating the reduction of
the group velocity of a fiber-guided light pulse as well as storage and retrieval at the single
photon level [31]. Moreover, I demonstrate how one can take advantage of confinement-induced
fictitious magnetic fields, enabling the coupling of the nanofiber-trapped atom’s motional state
with their internal hyperfine states. I present recorded microwave spectra, used to infer the
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temperature of the atoms as well as the trap parameters. I show, that the microwave coupling of
the motional quantum states can be tuned by controlling the state-dependent displacement of the
trapping potential, either by means of homogeneous magnetic field or by additional fiber-guided
light fields. Lastly, I present experimental data for the implementation of microwave sideband
cooling, which is used in order to reduce the mean number of motional quanta to a value close
to the motional ground state [32].

The structure of this thesis is as follows: In Ch. 2, I introduce optical fibers with a sub-
wavelength diameter, here referred to as optical nanofibers, and describe their production pro-
cess. I give a brief overview of how to derive the mode profile function of the fundamental mode
guided in the nanofiber and explain the polarization properties in the evanescent field surround-
ing the nanofiber. In Ch. 3, I discuss the interaction between the nanofiber-guided light field
and the neutral Cesium atoms that allow one to realize an optical two-color dipole trap. Further-
more, I motivate how this interaction leads to the existence of fictitious magnetic fields in the
vicinity of the nanofiber and give examples of the effects they can have on the nanofiber-trapped
atoms. Chapter 4 contains the experimental setup, explaining all components necessary for the
realization of the presented experiments. In Ch. 5, I give a brief description of EIT. Moreover,
I discuss how it can be utilized in the presented setup, to slow down a nanofiber-guided light
pulse and, eventually, store it within the nanofiber-trapped ensemble of neutral Cesium atoms.
At last, in Ch. 6, I describe how one can take advantage of the gradients of the fictitious magnetic
field to achieve coupling of the motional state of the nanofiber-trapped atoms to their internal
hyperfine states using microwave transitions. I detail how one can infer the temperature of the
atomic ensemble in this system and give examples of how the aforementioned coupling can be
tuned and used to reduce the mean number of motional quanta in the direction of the fictitious
field gradient.
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CHAPTER 2
Optical nanofibers

Nowadays, glass fibers are indispensable for modern communication technology as they form
the backbone of the worldwide communication network. They are necessary to transport light
over vast distances with only very little losses. Their working principle is rather simple, as it
is solely based on total internal reflection. Here, the light is reflected off the interface between
the silica fiber and the surrounding medium, which must have a lower refractive index. In order
to protect the optical fibers, e.g., against pollution, they consist of two layers, namely core and
cladding. The majority of the light is confined inside the core and the surrounding cladding,
which is usually silica as well, has a lower refractive index. By carefully dimensioning core and
cladding and adding dopants to either of them, optical fibers can be tailored to guide light in a
wide range of wavelengths with losses as low as 0.2 dB/km.

While the cladding protects the fiber-guided light from environmental influences, it also pre-
vents access to the evanescent field, that extends outside of the fiber core. To allow interactions
between a fiber-guided light field and cold atoms access to this evanescent field is required.
To this end, the diameter of the optical fiber is reduced down to a diameter comparable to the
wavelength of the guided light for a small section of several millimeters in length.

The first section of this chapter will elucidate the process of producing an optical nanofiber
out of a standard optical fiber. It will be followed by a short overview regarding the derivation
of a model to describe nanofiber-guided electromagnetic modes. At the end, a description of the
properties and features of evanescent fields around optical nanofibers will be given.

2.1 Tapered optical fibers

Optical nanofibers are granting access to the evanescent field of a fiber-guided light field. They
have to fulfill a couple of requirements [33]. One of them is the need for a uniform diameter on
the order of the guided field’s wavelength over the whole taper section. In addition, the coupling
of the light field into the nanofiber should be efficient to be able to interface the trapped atoms
with negligible losses. To achieve this, the nanofiber is realized as the waist of a tapered optical
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2. OPTICAL NANOFIBERS
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Figure 2.1: (a) Sketch of the tapered optical fiber. The darker gray area indicates the cladding
and the light gray area the core of the fiber. Section I is the standard optical fiber. Section II is
the taper region, where the fiber diameter is adiabatically reduced. Here the fiber-guided light
field is transferred from core guided to cladding guided. Section III is the waist section with
a diameter of 500 nm. (b) Sketch of the fiber pulling rig. The fiber (F) is mounted onto two
translation stages (TS), which can be moved along the same axis and allow to move the fiber
(TS1) and to stretch it (TS2). A burner (B) is used to heat up the fiber via a hydrogen-oxygen
flame. A control computer (CC) is used to operate the TS and B. Using a CCD camera the
fiber diameter can be monitored. The laser (L) and the photodiode (PD) allow measuring the
nanofiber transmission.

fiber (TOF) in this group. A schematic of the fiber radius profile is shown in Fig. 2.1(a). Starting
from the unprocessed part (I) the fiber diameter is adiabatically reduced in the taper section (II)
to a diameter of about 500 nm. This diameter is kept for about 5 mm (III), before the diameter
is adiabatically increased again until it merges with the unprocessed fiber. It is critical, that the
taper transition is shaped such that the fiber guided light field is adiabatically transferred from
the core guided mode to the cladding guided mode [34] and vice versa. At first the light field
is compressed due to the shrinking fiber diameter. Once the core diameter is smaller than the
wavelength of the light field, the latter expands and leaves the core. It is then solely guided
by the cladding [35]. In the waist section of the nanofiber the evanescent field extends into
the surrounding vacuum. After propagating through the waist section the process is reversed
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2.2. Nanofiber-guided modes

and the light field is guided by the standard fiber core. For a well designed taper transition the
transmission through the nanofiber can be 99 % [36] or even more [37].

In this group the nanofibers are produced on a custom-made fiber pulling rig in a heat and
pull process. A sketch of the device is shown in Fig. 2.1(b) [33, 38]. The fiber is mounted
on two stacked high precision translation stages that can move along one common axis. A
hydrogen-oxygen flame is used to heat the fiber, while the bottom translation stage (TS1) is used
to move the fiber over the flame to uniformly heat the silica. During this oscillatory movement
the fiber is stretched and therefore thinned by moving the second translation stage (TS2) in a
well defined manner. The translation stages and the burner are controlled by a computer system,
enabling precise and reproducible production of the nanofibers [39]. After the pulling process is
complete the fiber is fixed onto an aluminum mount. To maintain the high transmission through
the nanofiber a dust-free environment is essential. Without dust particles that stick to the fiber
and act as scatterers, the maximum optical power that can be safely guided can be as high as
100 mW [40], even in vacuum. Since the optical powers required for our purposes are in the
range of several ten mW, the capability to safely transmit such relatively high powers is of
importance for our experiment.

2.2 Nanofiber-guided modes

The propagation of electromagnetic waves in optical fibers is well understood [41, 42]. In
this section a brief overview regarding the eigenmodes of an electromagnetic field propagating
through a cylindrical step index optical fiber will be given. The complete and more extensive
derivation can be found in [42].

The electric (E) and magnetic (H) fields, respectively, propagating inside a cylindrically
symmetric waveguide along the fiber axis can be calculated by solving the wave equation

∆E− µε(r)∂
2E

∂t2
= −∇

(
1

ε(r)
E ·∇ε(r)

)
(2.1)

∆H− µε(r)∂
2H

∂t2
= 0 (2.2)

that can be derived from Maxwell’s equations. Here µ is the vacuum permeability, ε(r) the
permittivity of the medium, r the radial coordinate and ∆ the Laplace operator which is given
by

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
φ + ∂2

z , (2.3)

in cylindrical coordinates. For a cylindrical symmetric waveguide the variation of the permittiv-
ity (∇ε(r)) can be neglected, resulting in the right hand side of Eq. 2.1 to vanish. The solutions
of the wave equation are of the form

E(r, t) = E(r, φ) exp(i(ωt− βz)) + c.c. and (2.4)

H(r, t) = H(r, φ) exp(i(ωt− βz)) + c.c., (2.5)
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2. OPTICAL NANOFIBERS

with the envelope vectors E and H, the angular frequency ω, the time t, the cylindrical coor-
dinates r, φ and z as well as the propagation constant β. The transverse components Er,φ and
Hr,φ of the electric and magnetic fields, respectively, can be expressed in terms of the longi-
tudinal components Ez and Hz using Maxwell’s equations [42]. Therefore it is sufficient to
solve the wave equation only for the latter. Inserting Eq. 2.4 into Eq. 2.1 one obtains, with the
wavenumber k = µεω2,(

∂2
r +

1

r
∂r +

1

r2
∂2
φ + (k2 − β2)

)(
Ez(r, t)
Hz(r, t)

)
= 0. (2.6)

Separating Eq. 2.6 in r and φ, with solutions(
Ez(r, φ)
Hz(r, φ)

)
=

(
Ez(r)
Hz(r)

)
exp(±ilφ), (2.7)

it can be simplified to(
∂2
r +

1

r
∂r + (k2 − β2 − l2/r2)

)(
Ez(r, t)
Hz(r, t)

)
= 0. (2.8)

The variable l can be seen as a parameter similar to the orbital angular momentum quantum
number of an electron in an azimuthally symmetric potential [42]. The sign of the exponent can
be interpreted as describing the sense of rotation (clockwise or counter-clockwise) with respect
to the direction of propagation.

Equation 2.8 is the Bessel differential equation, with the solution depending on the sign
of k2 − β2. In a step index fiber the refractive index in the core (n1) is higher than in the
cladding (n2). A fiber guided mode is lossless if its propagation constant β is within the range
of n1k0 > β > n2k0, with k0 = ω/c. In the core k2 − β2 = h2

1 > 0, thus, Eq. 2.8 is solved by

J0(h1 r) J1(h1 r) Y0(h1 r) Y1(h1 r)

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

h1r

I0(h2 r) I1(h2 r) K0(h2 r) K1(h2 r)

0 1 2 3 4 5
0

2

4

6

8

10

h2r

(a) (b)

Figure 2.2: (a) Bessel functions J0(h1r), J1(h1r) in blue and green as well as Y0(h1r), Y1(h1r)
in red and orange, respectively. (b) Modified Bessel functions I0(h2r), I1(h2r) in blue and green
as well as K0(h2r),K1(h2r) in red and orange, respectively.
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2.2. Nanofiber-guided modes

a linear combination of the Bessel functions of the first (Jl(h1r)) and second (Yl(h1r)) kind

ψ(r) = c1Jl(h1r) + c2Yl(h1r). (2.9)

In the cladding β2 − k2 = h2 > 0, with Eq. 2.8 solved similarly by a linear combination of the
modified Bessel functions of the first (Il(h2r)) and second (Kl(h2r)) kind

ψ(r) = d1Il(h2r) + d2Kl(h2r). (2.10)

Figure 2.2(a) shows the Bessel functions Jl(h1r) and Yl(h1r) of order l = {1, 2}. One can
observe, that Yl(h1r) diverges for r approaching zero. To prevent the fields in the core from
diverging, c2 is set to zero and only the Jl(h1r) are considered, giving(

Ez(r, t)
Hz(r, t)

)
=

(
A
B

)
Jl(h1r) exp

(
i(ωt± lφ− βz)

)
. (2.11)

In Fig. 2.2(b) the modified Bessel functions Il(h2r) and Kl(h2r) are depicted. Here Il(h2r)
diverges for h2r approaching∞, while Kl(h2r) diverges for r → 0. In order to have a decaying
evanescent field the divergence at r → ∞ has to be avoided, thus d1 = 0 and only the Kl(h2r)
are considered, resulting in(

Ez(r, t)
Hz(r, t)

)
=

(
C
D

)
Kl(h2r) exp

(
i(ωt± lφ− βz)

)
. (2.12)

The coefficients A,B,C and D, determining the strength of the field components, as well as β
can be calculated by considering the boundary conditions for the fields. The electric field com-
ponents that are parallel to the interface between n1 and n2 have to be continuous at the radial
position of the interface r = a [43] and the same holds true for the magnetic field components
that are orthogonal to the interface. With this a set of four relations can be derived, yielding
a nontrivial solution for the coefficients. Using the acquired solution one can determine the
propagation constant β by writing down the mode condition [42]

J ′l (h1a)

Jl(h1a)h1a
= −n

2
1 + n1

2

2n2
1

K ′l(h2a)

Kl(h2a)h2a

±

√(
n2

1 − n1
2

2n2
1

)2( K ′l(h2a)

Kl(h2a)h2a

)2

+
l2β2

n2
1k

2

(
1

h2
2a

2
+

1

h2
1a

2

)2

. (2.13)

Rearranging the above equation one gets a set of two equations, that can be assigned to the
hybrid modes EH and HE

Jl+1(h1a)

Jl(h1a)h1a
=

n2
1 + n1

2

2n2
1

K ′l(h2a)

Kl(h2a)h2a
+

l

h2
1a

2
−
√
· · · (2.14)

Jl−1(h1a)

Jl(h1a)h1a
= −n

2
1 + n1

2

2n2
1

K ′l(h2a)

Kl(h2a)h2a
+

l

h2
1a

2
−
√
· · ·, (2.15)

respectively. The square root
√
· · · in Eq. 2.14 and in Eq. 2.15 represents the square root in

Eq. 2.13. The transcendental equations can be solved either numerically or graphically. In the

9



2. OPTICAL NANOFIBERS

special case of l = 0 one can find solutions for the above mode equations where only three
out of six field components are not zero. For Eq. 2.14 all field components except for Hr, Hz

and Eφ are zero, consequently the electric field varies only in the transverse plane. This mode
is referred to as transversely electric TElm, where l = 0 and m ∈ N are the different mode
solutions. Similarly for Eq. 2.15 all field components apart from Er, Ez and Hφ vanish for
l= 0. The mode is referred to as transversely magnetic TMlm since the magnetic field has only
transverse components.

As discussed earlier in this chapter we use an optical nanofiber with a diameter of 500 nm
to have access to a strong evanescent field. In the nanofiber the light is guided due to total
internal reflection at the interface between fused silica (n1 = 1.4525) and vacuum (n2 = 1).
The nanofiber is only capable of guiding the fundamental mode HE11 for light fields in the
wavelength range used in this experiment. To be able to calculate the fields of the fundamental
mode in the nanofiber the electric field amplitude A has to be determined. This can be done by
using the relation of A to the total power P of the electromagnetic field propagating in the fiber
via the Pointing vector P = 1/2 Re(E×H∗), reading [44]

A =

√
βP

πa2ωε

1√
Din +Dout

. (2.16)

Here Din and Dout are proportional to the fractions of the light field’s power traveling inside and
outside the nanofiber [44, 45]

Din = n2
1

h2
2K

2
1 (h2a)

h2
1J

2
1 (h1a)

[
(1− s)(1− s1)

(
J2

0 (h1a) + J2
1 (h1a)

)
+ (1 + s)(1 + s1)

(
J2

2 (h1a)− J1(h1a)J3(h1a)
) ]

(2.17)

Dout = n2
2

[
(1− s)(1− s2)

(
K2

1 (h2a)−K2
0 (h2a)

)
+ (1 + s)(1 + s2)

(
K1(h2a)K3(h2a)−K2

2 (h2a)
) ]
, (2.18)

with

s =

(
1

h2
2a

2
+

1

h2
1a

2

)(
J ′1(h1a)

h1aJ1(h1a)
+

K ′1(h2a)

h2aK1(h2a)

)−1

s1 = s
β2

k2
0n

2
1

s2 = s
β2

k2
0n

2
2

. (2.19)

Having calculated the field amplitude one can write down the envelope vectors E(r) and H(r)

10



2.2. Nanofiber-guided modes

of the quasi-circularly polarized HE11 mode’s electric and magnetic field [44, 45], respectively:

Er = i
h2K1(h2a)

h1J1(h1a)

(
(1− s)J0(h1r)− (1 + s)J2(h1r)

)
(2.20)

Eφ = −h2K1(h2a)

h1J1(h1a)

(
(1− s)J0(h1r)− (1 + s)J2(h1r)

)
(2.21)

Ez =
2h2K1(h2a)

βJ1(h1a)
J1(h1r) (2.22)

Hr =
ω ε0 n

2
1 h2K1(h2a)

βh1J1(h1a)

(
(1− s1)J0(h1r)− (1 + s1)J2(h1r)

)
(2.23)

Hφ = i
ω ε0 n

2
1 h2K1(h2a)

βh1J1(h1a)

(
(1− s1)J0(h1r)− (1 + s1)J2(h1r)

)
(2.24)

Hz = is
2h2K1(h2a)

ωµJ1(h1a)
J1(h1r) (2.25)

inside the fiber and

Er = i

(
(1− s)K0(h2r)− (1 + s)K2(h2r)

)
(2.26)

Eφ = −
(

(1− s)K0(h2r) + (1 + s)K2(h2r)

)
(2.27)

Ez =
2h2K1(h2r)

β
(2.28)

Hr =
ω ε0 n

2
2

β

(
(1− s2)K0(h2r)− (1 + s2)K2(h2r)

)
(2.29)

Hφ = i
ω ε0 n

2
2

β

(
(1− s2)K0(h2r)− (1 + s2)K2(h2r)

)
(2.30)

Hz = is
2h2K1(h2r)

ωµ
(2.31)

outside of the fiber. The electric and magnetic field for a quasi-linearly polarized fundamental
mode can be obtained by calculating the linear superposition of the clockwise and counter-
clockwise circularly polarized fields. They read [45]

E(r, φ, z) =
√

2A

 Er cos(φ− ϕ0)
iEφ sin(φ− ϕ0)
±Ez cos(φ− ϕ0)

 exp

(
i(±βz − ωt)

)
(2.32)

H(r, φ, z) =
√

2A

 iHr sin(φ− ϕ0)
Hφ cos(φ− ϕ0)
±iHz sin(φ− ϕ0)

 exp

(
i(±βz − ωt)

)
(2.33)

where ϕ0 denotes the orientation of the transverse field component with respect to the x-axis
and the ± accounts for the propagation direction along the fiber axis ±z. The real part of the

11



2. OPTICAL NANOFIBERS

electric field is depicted as a vector plot in Fig. 2.3, where (a) depicts the field in the x−y plane
and (b) in the x−z plane. The normalized intensity of the evanescent field is shown color-coded
in the background. The gray disk (a) or rectangle (b), respectively, represents the nanofiber. The
red double arrow indicates the main polarization axis of the light field in the transverse plane of
the fiber. In this example ϕ0 = 0, meaning the polarization is oriented along the x-axis. The plot
in (a) shows, that the field also has a component along y for x, y 6= 0. With time progressing
the orientation of the x and y component oscillates between positive and negative direction. The
intensity does not only decay in radial direction, it also varies in azimuthal direction. At y= 0
the intensity is at its relative maximum and decreases along φ for a fixed radial position, with
the minimum at φ=±π/2. From Fig. 2.3(b) one finds, that the field has a strong z component
depending on the axial position for a fixed point in time. When letting time evolve and fixing the
axial position z one can observe that the electric field vector rotates, clockwise on the right side
of the fiber and counter-clockwise on the left side of the fiber, for propagation along positive z
and looking along negative y onto the x−z plane. If the direction of propagation is changed
the sign of the circularity also changes, meaning that the electric field vector rotates counter-
clockwise on the right side of the fiber and vice versa on the left side of the fiber. Here the
intensity is uniform along the fiber axis.

Figure 2.3: Evanescent field in the vicinity of the nanofiber. The red arrows indicate the real part
of the electric field of the fundamental mode at a given point in time plotted in the (a) x−y and (b)
x−z plane, respectively. The double arrow indicates the main polarization axis of the nanofiber-
guided light field. The gray (a) circle and (b) rectangle, respectively, represents the nanofiber.
The colored density plot in the background shows the intensity of the evanescent field normalized
to its value at the fiber surface, with white showing high intensity. For the calculation a nanofiber
with diameter a = 250 nm, n1 = 1.45247 and a light field with wavelength λ = 852 nm was
assumed.
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2.2. Nanofiber-guided modes

2.2.1 Polarization properties of the evanescent field of optical nanofibers

As already indicated by the behavior of the electric field in the vicinity of the nanofiber, the
nanofiber-guided light has extraordinary polarization properties. Knowledge of these proper-
ties is crucial to fully understand the interaction between the fiber-guided light fields and the
nanofiber trapped atoms, as it influences which optical transition can be driven. A convenient
formalism to describe the polarization is to express the electric fields in terms of spherical tensor
components. Here three basis vectors e±1 and e0 describe the light field components that are
σ± and π-polarized, respectively. Without loss of generality the quantization axis can be chosen
to be along an applied external magnetic field, oriented along, e.g., the y-axis. The new basis
vectors can then be expressed by Cartesian coordinates as [44]

e±1 = ∓1/
√

2
(
ez ± iex

)
, e0 = ey. (2.34)

In this new basis the positive frequency envelope E of the electric field can then be written
as [44]

E =
∑
q

(
− 1
)qEqe−q, with q = −1, 0, 1. (2.35)

The Eq relate to their Cartesian representation in the same manner as the eq

E±1 = ∓1/
√

2
(
Ez ± iEx

)
, E0 = Ey. (2.36)

One has to pay attention to the changed representation of the polarization, as E+1 (E−1) ex-
presses σ− (σ+) polarized light. Figure 2.4 shows the spherical tensor components of the elec-
tric field [45]. All plots show a transverse cut through the fiber with the nanofiber depicted as
a gray disk. The main polarization axis is indicated by the red double arrow in the center of
the plot. For the calculations a nanofiber with radius a = 250 nm guiding a light field with a
wavelength λ = 852 nm was assumed. The light field propagates along z, where +z points
out of the plane towards the reader. The atoms are trapped at y = 0 nm and |x| > 250 nm,
which defines the main region of interest for this discussion. The quantization axis is chosen
to be along +y. In Fig. 2.4(a) the E−1 (E+1)-component is plotted for a main polarization axis
oriented parallel to the x-axis and light propagating along +z (−z). As mentioned before, this
corresponds to the fraction of σ+ (σ−) polarized light. On can directly see that the majority of
the evanescent field on the right side of the fiber is σ+ (σ−) polarized. Figure 2.4(b) depicts
the E+1 (E−1)-component for a main polarization axis oriented parallel to the x-axis and light
propagating along +z (−z). This corresponds to the fraction of σ− (σ+) polarized light of this
mode in the vicinity of the nanofiber. Here, the majority of the evanescent field on the left side
of the fiber is σ− (σ+) polarized. In both cases the fraction of π-polarized light is negligible
and the circularity reaches its peak value of 93 % at the fiber surface at y = 0 nm. The re-
maining 7 % can be attributed to circular polarization with the opposite circularity. When the
main polarization axis is oriented parallel to the y-axis this changes, as illustrated in Fig. 2.4(c).
Here the E0 component is plotted, indicating that the evanescent field is fully π-polarized at
y = 0 nm on both sides of the fiber. This behavior is independent of the propagation direction
of the fiber-guided light field.
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2. OPTICAL NANOFIBERS

Figure 2.4: The double arrow indicates the main polarization axis of the nanofiber-guided light
field. The gray disk represents the nanofiber. The colored density plot shows the square of
the spherical tensor components of the electric field (a) E∓1, (b) E±1 and (c) E0, respectively,
normalized to E2. For a light field propagating in positive z direction (out of the frame) this
corresponds to σ+, σ− and π respectively, considering a quantization axis along +y. Inverting
the direction of propagation (+z → −z) flips the sign of the circular polarization. For the
calculation the same parameters as in Fig 2.3 were assumed.

This shows that the choice of the orientation of the linear polarization, as well as the pro-
pagation direction, influences which optical transitions can be driven. Depending on the driven
transitions this can, e.g., lead to optical pumping of the trapped atoms [46].
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CHAPTER 3
Nanofiber-mediated atom-light

interaction

The optical nanofiber presented in the previous chapter allows accessing the evanescent part of
a nanofiber-guided light field. Thus, atoms that are in the vicinity of the nanofiber can couple
to this evanescent field enabling investigations of nanofiber-trapped atoms. While a waveguide
is not required to couple atoms to a light field, they have the considerable advantage of uniform
coupling over the whole length of the waveguide.

To keep the atoms in a close and defined distance to the nanofiber surface they have to be
confined in a trapping potential. The first section of this chapter will explain the mechanisms
required for trapping the atoms close to the nanofiber surface. This will be followed by a short
explanation of the techniques used to create a three-dimensional trapping potential. The last part
of this chapter will focus on the existence of fictitious magnetic fields and their effect on the
eigenstates of the trapped atoms.

3.1 Hyperfine interaction, AC Stark shift and Zeeman shift

Most quantum optics experiments working with neutral atoms use alkali atoms because of their
advantageous properties. Their electronic transitions are usually in the near infrared, they feature
a simple hydrogen-like level scheme and they offer closed transitions. The latter is an important
feature for cooling, trapping and manipulating alkali atoms with optical fields. The shells of
alkali atoms are fully occupied, with one valence electron in the outermost shell. As the closed
shells do not contribute to the angular momentum, both the spin- and the orbital angular momen-
tum, S and L, respectively, are set by the single valence electron. The coupling between S and
L, referred to as spin-orbit coupling, is responsible for the fine structure of the atomic energy
levels. Here the energy depends on the quantum number J=L+S, ranging from J= |L− S| to
J =L + S. Due to the coupling between the total angular momentum J of the electron and the

15



3. NANOFIBER-MEDIATED ATOM-LIGHT INTERACTION

62P3/2
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gF= -0.35 MHz/G

Figure 3.1: Level scheme of the D1 and D2 line of Cesium, including the transition frequencies
between the respective energy levels and the Landé g-factors in units of µB/~ with the Bohr
magneton µB.

nuclear spin I, there is an additional substructure in the energy levels, the hyperfine structure,
where the energy depends on the total angular momentum F=J + I.

The atom used in our experiments is the only stable isotope of Cesium, with an atomic mass
of 133 [47]. It has a nuclear spin of I = 7/2 and an electronic spin S = 1/2. Figure 3.1 shows
the level scheme of atomic Cesium for the D1 and D2 line, including the relevant transition
frequencies. The values of the depicted states are taken from [48,49]. The hyperfine splitting of
the ground state is defined to be exactly of this frequency as it is used for the current definition
of the second. Here the atomic states are denoted in the Russel Saunders notation

n2S+1LJ ,

with the principal quantum number n. The transition frequency of the D1 line corresponds
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3.1. Hyperfine interaction, AC Stark shift and Zeeman shift

to a free space wavelength of λ ≈ 894.6 nm, while the transition frequency of the D2 line
corresponds to λ ≈ 852.3 nm.

From Fig. 3.1 one can see, that the fine structure splitting is large with a wavelength differ-
ence of about 42 nm. The hyperfine splittings, on the other hand, are several orders of magnitude
smaller. The Hamiltonian describing the hyperfine structure reads [47, 50]

Hhfs = AhfsI · J +Bhfs
3(I · J)2 + 3

2I · J− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (3.1)

leading to an energy shift of

∆Ehfs =
1

2
~AhfsG+ ~Bhfs

3
2G(G+ 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
. (3.2)

Here G = F (F + 1)− I(I + 1)−J(J + 1), Ahfs is the magnetic dipole constant and Bhfs is the
electric quadrupole constant. The values of Ahfs and Bhfs for the different states can be found
in [47–49, 51].

3.1.1 Zeeman splitting

The Zeeman effect describes the splitting of a hyperfine level into several sub-components in the
presence of a static magnetic field. It was first observed by Pieter Zeeman in 1896.

Each hyperfine level denoted by F contains 2F + 1 magnetic sublevels, labeled with the
magnetic quantum number mF which is the projection of F onto the quantization axis. It is an
integer number that can take the values −F ≤ mF ≤ F . Without an external magnetic field the
magnetic sublevels are degenerate. Once the atoms are subject to a static magnetic offset field
this degeneracy is broken and the atom-field interaction is described by the Hamiltonian

HB = −µ ·B (3.3)

=
µB

~
gJJ ·B (3.4)

=
µB

~
gFF ·B. (3.5)

Here µ is the magnetic moment, µB is the Bohr magneton and gJ,F are the Landé g-factors for
the respective quantum number J or F . The values of the Landé factors have been measured
and can be found in [47, 52, 53]. Equation 3.4 holds true if the magnetic field induced energy
shift is small compared to the fine structure splitting. Similarly, Eq. 3.5 is valid if the energy
shift caused by the magnetic field is small compared to the hyperfine energy splitting. In this
case, HB can be treated as a perturbation of Hhfs, yielding for the energy shift [54]

∆EB = µB gF mF, (3.6)

if the direction of the magnetic field is taken as the quantization axis. The Landé g-factor gF is
given by [50]

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
, (3.7)
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3. NANOFIBER-MEDIATED ATOM-LIGHT INTERACTION

where

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
2J(J + 1),

(3.8)
with the electronic orbital and spin g-factors gL ≈ 1 and gS ≈ 2, respectively. The value for gF,
given as the energy shift per Gauss and mF level, can be found in Fig. 3.1.

3.1.2 AC Stark shift

The Stark effect, named after Johannes Stark who discovered it in 1914, describes the shift and
splitting of the spectral lines of an atom caused by an electric field. In the case of a static electric
field the interaction is referred to as DC Stark effect, whereas for alternating fields, e.g. optical
fields, the effect is called AC Stark effect. The following derivation of the AC Stark interaction
closely follows [50].

The classical light field considered here is of the form

E =
1

2
E exp

(
−iωt

)
+ c.c., (3.9)

where E = Ee is the electric field envelope, with amplitude E and field vector e. Furthermore
ω is the angular frequency of the electric field and c.c. is the abbreviation for complex conju-
gate. The operator describing the interaction between the light field and the atom in the dipole
approximation is given by [50]

VE = −E · d = −1

2
Ee · d exp

(
−iωt

)
− c.c., (3.10)

with d being the operator for the electric dipole of the atom. Here we only consider light fields
that are far detuned from resonance and result in a small shift of the eigenenergies compared to
the fine structure splitting. The latter results in J being a good quantum number. The energy
shift δEa of the atomic state |a〉 can be calculated by treating VE as a small perturbation. By
applying second order perturbation theory the energy shift reads

δEa = −|E|
2

4~
∑
b

Re
(

| 〈b| e · d |a〉 |2

ωb − ωa − ω − iγba/2
+

| 〈a| e · d |b〉 |2

ωb − ωa + ω + iγba/2

)
, (3.11)

where |a〉 and |b〉 are atomic eigenstates with eigenenergies ~ωa and ~ωb, respectively. The
parameter γba = γa + γb gives the linewidth of the transition with the spontaneous decay rates
γa and γb. The energy shift in Eq. 3.11 can be seen as an expectation value δEa = 〈a|VEE |a〉,
with the operator for the AC Stark interaction [50]

VEE =
|E|2

4

(
(e∗ · d)R+ (e · d) + (e · d)R− (e∗ · d)

)
, (3.12)

and

R± = −1

~
∑
b

Re
(

1

ωb − ωa ∓ ω ∓ iγba/2

)
|b〉 〈b| . (3.13)
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3.1. Hyperfine interaction, AC Stark shift and Zeeman shift

This effective interaction operator VEE accurately describes the level shift as well as level mixing
of degenerate and non-degenerate states and its derivation can be found in [55–58].

In order to obtain the internal eigenstates and eigenenergies of a multilevel atom interacting
with an external light field one has to diagonalize the interaction Hamiltonian

Hint = Hhfs + VEE, (3.14)

with both the hyperfine interaction Hhfs and the AC Stark interaction VEE perturbing the atomic
energy levels. By restricting oneself to a single fine structure state |nJ〉 the AC Stark interaction
operator can be written in terms of the hyperfine structure basis states |nJFmF〉 as

VEE =
∑

FmFF ′m′F

VFmFF ′m′F
|nJFmF〉 〈nJF ′m′F| . (3.15)

The matrix element VFmFF ′m′F
is given by [58]

VFmFF ′m′F
=
|E|2

4

∑
K=0,1,2

q=−K,...,K

αKnJ{e∗ ⊗ e}Kq(−1)J+I+K+q−mF

×
√

(2F + 1)(2F ′ + 1)

(
F K F ′

mF q −m′F

){
F K F ′

J I J

}
. (3.16)

In Eq. 3.16, we established the reduced dynamical polarizability with its real part

αKnJ = (−1)K+J+1
√

2K + 1
∑
n′J ′

(−1)J
′
{

1 K 1
J J ′ J

}
| 〈n′J ′| |d| |nJ〉 |2

× 1

~
Re
(

1

ωn′J ′nJ − ω − iγn′J ′nJ/2
+

(−1)K

ωn′J ′nJ + ω + iγn′J ′nJ/2

)
, (3.17)

as well as the Wigner 3-j symbol in the second to last and the Wigner 6-j symbol in the last
expression. The compound tensor components {e∗ ⊗ e}Kq are defined as

{e∗ ⊗ e}Kq =
∑

µ,µ′=±1

(−1)q+µ
′
eµe
∗
−µ′
√

2K + 1

(
1 K 1
µ −q µ′

)
, (3.18)

including the spherical tensor components eµ of the polarization vector e. With the newly intro-
duced dynamical polarizability, the AC Stark interaction operator can be rewritten as

VEE = −|E|
2

4

(
αsnJ − iαvnJ

(e∗ × e) · J
2J

+ αTnJ
3
(
(e∗ · J)(e · J) + (e · J)(e∗ · J)

)
− 2J2

2J(2J − 1)

)
,

(3.19)
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Figure 3.2: (a) Scalar (αs6,1/2) and (b) vector (αv6,1/2) polarizability of the 62S1/2 ground state
of Cesium, taken from [50], versus wavelength λ . The dashed red line indicates the resonances
at the D1 and D2 line transitions. The green dot-dashed line indicates the tune-out wavelength.

with the conventional dynamical scalar, vector and tensor polarizabilities αsnJ , α
v
nJ and αTnJ ,

respectively. For an atom in the fine structure level |nJ〉 they are given by

αsnJ =
1√

3(2J + 1)
αK=0
nJ

αvnJ = −

√
2J

(J + 1)(2J + 1)
αK=1
nJ

αTnJ = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
αK=2
nJ . (3.20)

If the AC Stark interaction energy is small compared to the hyperfine splitting, then F is a good
quantum number and the interaction operator can be written as [59]

VEE = −|E|
2

4

(
αsnJF − iαvnJF

(e∗ × e) · F
2F

+αTnJF
3
(
(e∗ · F)(e · F) + (e · F)(e∗ · F)

)
− 2F2

2F (2F − 1)

)
. (3.21)

The scalar part of VEE in Eq. 3.21 only depends on |E|2 and leads to a global shift of all sublevels
of a hyperfine level. The vector part only contributes for light fields which are at least partially
elliptically polarized, as the cross product (e∗ × e) is zero for perfectly linear polarization.
Furthermore, it is notable, that the tensor part vanishes for states with J=1/2, which is the case
for, e.g., the ground state of Cesium and other alkali atoms.

The calculated scalar and vector parts of the dynamical polarizability are plotted in Fig. 3.2(a)
and (b), respectively. The values for the transition energies and dipole matrix elements are taken
from [50]. In both plots the resonances at a wavelength λ of 852 nm (D2 line) and 894 nm (D1
line) are visible, since the polarizability is discontinuous at these wavelengths. In between the
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3.2. Optical nanofiber-based two-color dipole trap

two resonances an interesting feature appears at λ =880.25 nm. At this wavelength, referred to
as tune-out wavelength, the scalar part of the polarizability vanishes as the contributions of the
D1 and D2 transition compensate each other. Only the vector part of the polarizability remains
nonzero, with implications that will be discussed later on in this chapter.

3.2 Optical nanofiber-based two-color dipole trap

To trap the atoms close to the nanofiber and, thus, maximizing the coupling to the evanescent
field while keeping the atoms from colliding with the fiber surface, we require an attractive as
well as a repulsive potential acting on the atoms. The attractive potential can be realized employ-
ing a light field that is red-detuned with respect to the atomic resonance. As seen in Eq. 3.21 the
AC Stark shift for a linearly polarized light field interacting with an alkaline atom depends only
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Figure 3.3: Potential U versus (a) radial distance r from the fiber surface at a, (b) azimuthal
angle φ with respect to the x-axis and (c) axial position z along the nanofiber with arbitrary
starting point for r and φ positions at the respective trap potential minimum. The solid lines
in blue and red indicate the potential induced by the blue and red-detuned trapping light fields,
respectively. The solid and dashed black lines indicate the total trapping potential, including van
der Waals interaction, for two different sets of trapping laser powers. The main orientation of
the quasi-linear polarization of the respective trapping light field is orthogonal to the other one.
All parameters are indicated in the text and in Tab. 3.1.
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3. NANOFIBER-MEDIATED ATOM-LIGHT INTERACTION

on the light field intensity as well as the scalar part of the ground state polarizability. Since here
the latter is positive for a wavelength larger than the wavelength at resonance, the atom will see
a trapping potential for a spatially varying light field intensity. The repulsive potential is created
by a blue-detuned light field sent through the fiber, with the scalar polarizability of the ground
state being negative for this wavelength.

In Fig. 3.3(a) the radial dependence of the individual potentials induced by the blue-detuned
(blue curve) and red-detuned (red curve) light fields are plotted for fixed azimuthal and axial
positions. The total potential, which also takes the van der Waals potential into account, is
depicted by the solid black curve. The parameters for the trapping lasers are given in Tab. 3.1.
Since the radial extend of the evanescent field depends on the wavelength, the repulsive potential
generated by the blue-detuned light approaches zero faster than the attractive potential stemming
from the red-detuned light field. This results in a potential well with a depth of about 120 µK
and its minimum is located at about 220 nm distance from the fiber surface. The dashed black
line in Fig. 3.3(a) is the total potential calculated for higher powers of the trapping lasers, with
parameters as given in Tab. 3.1. Here the trap is about 160 µK deep with its minimum about
280 nm away from the fiber surface.

The azimuthal confinement is realized by using quasi-linearly polarized trapping light fields
that show an azimuthally asymmetric intensity distribution (see Fig. 2.3). With both trapping
light fields being quasi-linearly polarized two potential wells will be formed on opposite sides
of the fiber. To maximize the depth of the potential wells the trapping light field’s main polar-
ization axes are set to be orthogonal to each other. The red-detuned light field’s polarization is
aligned along the x-axis, therefore the atoms will be trapped along the x-axis at y = 0 as well.
Figure 3.3(b) shows the azimuthal dependence of the potentials induced by red and blue-detuned
lasers, in red and blue respectively, as well as the total potential in black. The parameters are
the same as in Fig. 3.3(a), the radial position is at the minimum of the radial trap and the axial
position is fixed. The azimuthal angle φ is given with respect to the x-axis. One can see that the
atoms are trapped at φ = 0 and φ = π.

To achieve axial confinement two phase-stable red-detuned trap lasers are counter-propagating
in the nanofiber, creating a standing wave. The atoms are now confined in the anti-nodes of the
standing wave. This is illustrated in Fig. 3.3(c) where the individual potentials are shown in
dependence of the axial position along the nanofiber. The radial and azimuthal position is at the
respective trap minimum.

Light field Wavelength Power Quasi linear
polarization

Config. 1 Red-detuned 1064 nm 2×0.65 mW along x-axis
solid line Blue-detuned 783 nm 7 mW along y-axis
Config. 2 Red-detuned 1064 nm 2×1.25 mW along x-axis
dashed line Blue-detuned 783 nm 17.1 mW along y-axis

Table 3.1: Parameters of trapping light fields used to calculate the curves in Fig. 3.3. These
configurations are used in the experiments described in Ch. 5 and Ch. 6.
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3.3. Fictitious magnetic fields

By combining all three techniques one achieves full 3D confinement of the Cesium atoms,
which yields two 1D optical lattices on opposite sides of the nanofiber. At the precise mini-
mum of the trapping potentials the atoms are only subject to the scalar part of the dynamical
polarizability. The blue-detuned light field has its main polarization axis orthogonal to the plane
in which the atoms are trapped, leading to a perfectly linear polarization at the position of the
trap potential minimum, thus the vector part of the AC Stark shift vanishes. For the counter-
propagating red-detuned light fields the longitudinal polarization components are anti-parallel
and therefore compensate each other. Thus, the two red-detuned trapping light fields have no
contribution to the vector light shift.

3.3 Fictitious magnetic fields

An important feature of the vector part of the AC Stark interaction operator in Eq. 3.21 is, that it
can be treated as a fictitious magnetic field Bfict. The latter is interacting with the atoms as any
conventional magnetic field would and can therefore be simply added to an external magnetic
field [60]. The vector part of the interaction operator can now be rewritten to be of similar form
as the Zeeman Hamiltonian in Eq. 3.5, giving (~=1)

VEE,v = i|E|2αvnJF
(e∗ × e) · F̂

8F

= µBgF F̂ ·Bfict, (3.22)

with

Bfict =
αvnJF

8µBgFF
(E∗ × E) . (3.23)

Here it is assumed that the effect of the fictitious magnetic field is small compared to the hy-
perfine splitting and, thus, F is a good quantum number. Given how the positive frequency
envelope E enters Eq. 3.23, it becomes clear that the fictitious magnetic field is zero for purely
linearly polarized light. Since the evanescent field of the fiber-guided fundamental mode can be
elliptically polarized, as discussed in Ch. 2.2, the atoms can be subject to a fictitious magnetic
field, depending on the position of the atom within the profile of the guided mode.

Figure 3.4 shows the magnitude and orientation of the fictitious magnetic field Bfict in the
vicinity of the nanofiber. Here, the fictitious magnetic field is induced by the blue-detuned light
field with its quasi linear polarization oriented along the y-axis. In Fig. 3.4(a) the x-component
of Bfict is plotted as a contour plot in the x-y-plane. The color indicates the magnitude of Bfict,x
in Gauss. The positive sign of Bfict,x means that the magnetic field vector points in positive
x-direction and opposite for negative sign. For a light field with a wavelength of 783 nm the
magnetic field can reach values of up to 2.86 G/mW at the surface of the nanofiber. Since the
orientation of Bfict follows the ellipticity vector ε= i(E∗× E)/|E|2, the fictitious magnetic field
points in opposite directions on opposite sides of the nanofiber. In Fig. 3.4(b) the y-component
of Bfict is shown for the same settings as in Fig. 3.4(a). Here the magnitude of Bfict,y reaches up
to 0.4 G/mW at the surface of the nanofiber. These fictitious magnetic fields lead to a variety of
effects (see e.g. [32, 46]). Two of those will be discussed in the following sections.

23



3. NANOFIBER-MEDIATED ATOM-LIGHT INTERACTION

Figure 3.4: Contour plot showing (a) x-component and (b) y-component of the fictitious mag-
netic field Bfict, generated by a fiber-guided quasi-linearly polarized light field with its main
polarization as indicated by the blue double arrow in the center. The fictitious magnetic field is
calculated for a light field with a wavelength of 783 nm and a power of 17.1 mW. The colors
indicate the magnitude of the fictitious magnetic field in Gauss. The positive (negative) sign of
Bfict indicates that the field is parallel (anti-parallel) to the (a) x-axis or (b) y-axis. The gray disc
in the center represents the nanofiber.

3.3.1 State-dependent potentials

As seen in Fig. 3.4 there is no fictitious magnetic field at the center of the trapping potential at
|x| ≈ 540 nm, y = 0 nm. However, there is a large gradient of Bfict,x in azimuthal direction
reaching more than 1000 G/mW/cm. Taking the direction of the local fictitious magnetic field
Bfict as the quantization axis, the vector part of the AC Stark shift is diagonal in the mF-basis
(F̂z |mF〉 = ~mF |mF〉) and depends on the magnetic sublevels mF of each hyperfine level F
as [60]

VEE,v = µBgF mFBfict. (3.24)

In the vicinity of the potential minimum one can assume that the fictitious magnetic field is linear
to the first order in azimuthal direction. Expanding the fictitious field in a Taylor series around
φ=0 and only considering the linear term yields

VEE,v = µBgF mF φ
∂Bfict

∂φ
. (3.25)

In Fig. 3.5 the azimuthal trapping potentials are plotted for different magnetic sublevels, indi-
cated by different colors, in (a) for the 6S1/2 F =3 and in (b) for the 6S1/2 F =4 ground state.
At the azimuthal position of the trapped atoms at φ={0, π} there is no fictitious magnetic field,
hence the magnetic sublevels are degenerate. This degeneracy is lifted for azimuthal positions of
φ 6= {0,±π}, where the atoms are subject to a non-zero fictitious magnetic field. The potential
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Figure 3.5: Azimuthal trapping potential U of the (a) 6S1/2 F =3 and (b) 6S1/2 F =4 ground
state versus the azimuthal angle φ. The colors indicate the different mF sublevels. The red-
detuned and blue-detuned trap lasers have powers of 1.25 mW and 17.1 mW respectively. The
trapping potential is calculated at a radial position of 540 nm from the nanofiber axis.

wells for all sublevels except of mF = 0 are modified as the fictitious magnetic field leads to an
increase or reduction of the energy of each sublevel according to the Landé g-factor.

Figure 3.6(a) shows the influence of an external magnetic field Bext,x = 5 G oriented along
the x-axis on the azimuthal trapping potential of the 6S1/2 F=4 ground-state level. One can see,
that the degeneracy of the ground-state sublevels is lifted. In addition the individual minima of
the azimuthal trapping potentials are shifted along φ, where the magnitude of the shift depends
on the consideredmF sublevel. This can be understood as the total magnetic fieldBx = Bext,x+
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Figure 3.6: (a) Azimuthal trapping potential U of the 6S1/2 F=4 ground-state versus the azi-
muthal angle φ for an external magnetic field Bext = 5 G oriented along the x-axis. The dots
mark the position of the potential minimum. (b) Azimuthal displacement of the trap potential
minimum of each mF sublevel shown in (a). All parameters as in Fig. 3.5. The colors indicate
the different mF sublevels.
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3. NANOFIBER-MEDIATED ATOM-LIGHT INTERACTION

Bfict,x decreases along positive φ and increases along negative φ. The azimuthal displacement
of the trap minimum in dependence of the mF sublevel is illustrated in Fig. 3.6(b).

3.3.2 Spin-motion coupling

In the previous section of this chapter we investigated the influence of the fictitious magnetic
field on the trapping potential in the presence of an external magnetic field oriented parallel to
the fictitious field. As seen in Fig. 3.6 this leads to a displacement of the trap potential minimum
of each mF sublevel. In this section we will investigate the case where the external magnetic
field is oriented orthogonal to the fictitious field.

In this case the magnitude and orientation of the total magnetic field

B = (Bfict, Bext, 0)

vary spatially in the vicinity of the trapped atoms. The y component of the fictitious field is
neglected in the following considerations. This variation of B can cause spin-flips for small
external magnetic fields [60]. For large enough magnetic fields the spin-flip rate decreases with
an increasing external magnetic field. If the latter is large compared to the fictitious magnetic
field, the contribution of the fictitious field is negligible. As the atoms experience the same
magnitude and orientation of magnetic field everywhere the atoms undergo no spin-flips any
longer. The trapping potential experienced by atoms in the respective mF sublevels is shown in
Fig. 3.7. Using the same parameters as in Fig. 3.6, but with Bext,y = 5 G oriented along the
y-axis, the azimuthal trapping potential of the 6S1/2 F =4 ground-state level shows practically
no displacement any more [60]. The external magnetic field just lifts the degeneracy of the
magnetic sublevels, but the trap minima are all very close to φ={0,±π}.

To give a quantitative description of the system one has to derive the Hamiltonian. Since
the scalar part of the potential is not affected by magnetic fields it is sufficient to write down the
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Figure 3.7: Azimuthal trapping potential U of the 6S1/2 F=4 ground-state versus the azimuthal
angle φ for an external magnetic field Bext,y = 5 G oriented along the y-axis. The dots mark
the position of the potential minimum. The colors indicate the different mF sublevels. All
parameters as in Fig. 3.6.
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vector part which reads

VEE,v = µB gF F̂ ·B

= µB gF

(
BextF̂y + φ

∂Bfict

∂φ
F̂x

)
. (3.26)

Here a linear expansion for the x-component of the fictitious magnetic field in azimuthal direc-
tion φ in the vicinity of the scalar potential minimum is used. For a quantization axis along the
external magnetic field, i.e., along the y-axis, the left-hand term in Eq. 3.26 is diagonal in the
|mF〉-basis, defined such that

F̂y |mF〉 = ~mF |mF〉 .

However, the right-hand term is not diagonal and mF is not a good quantum number. The
operator F̂x can be rewritten using the ladder operators F̂±

F̂x =
1

2

(
F̂+ + F̂−

)
, (3.27)

with
F̂± |mF〉 ∝ |mF ± 1〉 . (3.28)

In the vicinity of the center of the azimuthal trapping potential we can neglect the curvature of
the trap along φ, assume a harmonic potential solely along y and use

Bfict ≈ y
∂Bfict

∂y
. (3.29)

The motion of the atom in the trap can be quantized as

ŷ =
y0√

2

(
â+ â†

)
; y0 =

√
~

mωy
, (3.30)

with the annihilation and creation operators a and a†, respectively, as well as the mass m and
the trap frequency ωy. Inserting Eq. 3.27, Eq. 3.29 and Eq. 3.30 into Eq. 3.26 the vector part of
the potential reads

VEE,v = µB gF

(
BextF̂y +

∂Bfict

∂y

y0√
8

(
â+ â†

)(
F̂+ + F̂−

))
. (3.31)

From Eq. 3.31 it becomes clear, that the second term causes spin-flips at the expense of
adding or removing motional excitations in the azimuthal trapping potential. These spin-flips
are enhanced at resonance, when the magnitude of the external magnetic field is such, that the
energy splitting ∆ = µB gFBext between adjacent mF sublevels is equal to the trap frequency
ωy. Then, for the 6S1/2 F = 3 ground state âF̂− lowers the motional state while removing a
spin excitation, effectively moving the atom to a higher energy mF level as gF=3 < 0. The term
â†F̂+ increases the motional state while adding a spin excitation resulting in the occupation of
a lower energy mF level. For the 6S1/2 F = 4 ground state the effects of F̂+ and F̂− on the
eigenenergy are inverted compared to the case of F =3, as gF=4 > 0.
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Figure 3.8: (a) Numerically computed eigenenergies En of the 6S1/2 F =3 ground-state versus
the energy shift ∆ = µB gFBext of the Zeeman levels which is proportional to the external
magnetic field Bext. The eigenenergies as well as the external magnetic field are normalized to
the azimuthal trap frequency ωy. (b) Zoom of the avoided crossings at ∆/ωy = 1. For improved
clarity the fictitious magnetic field gradient was reduced to 0.4 G/µm for this plot instead of the
calculated value of 1.4 G/µm.

In Fig. 3.8 the calculated eigenenergies of the system are plotted versus the magnitude of the
external magnetic field. For this calculation the Hamiltonian

Ĥ = ωyâ
†â+ µB gF

(
BextF̂y +

y0√
2

(
â+ â†

) ∂Bfict

∂y
F̂x

)
has been diagonalized numerically for different values of Bext. The Zeeman effect causes an
initial linear increase of the eigenenergies where the slope depends on the considered mF level.
For ∆ � ωy the unperturbed states of the Hamiltonian can be identified as the individual mF-
states for each vibrational level. The perturbation by the Fx term in Eq. 3.31 causes a set of
avoided crossings around resonance (∆ = ωy) where the eigenenergies would be degenerate
without the Fx coupling. The extent of the resonance depends on the strength of the Fx-coupling
and, e.g., the fictitious field gradient. If Bext,y is ramped adiabatically across the resonance, the
atom will follow one energy branch, and both its spin and vibrational level will be altered.

Taking a closer look at the involved degenerate states |n,mF〉 coupling at resonance one
finds, that at an eigenenergy Eq = (q − F )ωy, with q ≥ 1, they fulfill the condition

|n = q − i,mF = F − i〉 for 0 ≤ i ≤ min(q, 2F ). (3.32)

This is also apparent in Fig. 3.8(a). At resonance only the state |0, 3〉 has an eigenenergy of
Eq = −3ωy. For Eq = −2ωy one finds |0, 2〉 as well as |1, 3〉, for Eq = −ωy there are |0, 1〉,
|1, 2〉 as well as |2, 3〉 and so on. The layout of the avoided crossings is such, that the energy
order of the eigenstates is preserved. This means that, e.g., the eigenstate with the lowest energy
before the resonance will be mapped to the eigenstate with the lowest energy after the resonance.
Assuming, e.g., that the atoms are all in the motional ground state n = 0 initially and evenly
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distributed across allmF-states one can determine, for this special case, how the spin and phonon
distributions will evolve, given that the magnetic field is increased adiabatically:

|n = 0,mF = 3〉 → |0, 3〉
|0, 2〉 → |1, 3〉
|0, 1〉 → |2, 3〉
|0, 0〉 → |3, 3〉
|0,−1〉 → |4, 3〉
|0,−2〉 → |5, 3〉
|0,−3〉 → |6, 3〉 .

(3.33)

This simple model indicates, that the phonon distribution is mapped onto the spin distribution
and vice versa. The atoms that were initially in the lowest energy motional state are in the lowest
energy spin state after adiabatically crossing the resonance. Atoms in F = 4 (F = 3) that are in
the motional ground state initially would be prepared inmF = −4 (mF = 3) after the resonance.
During this mapping they are effectively heated up as higher motional states are now populated.

While this example explains the experimental findings reasonably well it is based on a very
simplified model. It completely neglects higher order terms of the fictitious magnetic field. In
addition it also does not consider the anharmonicity of the azimuthal trapping potential as well
as the radial potential in general. Going into detail is beyond the scope of this thesis as the
dynamics of the spin-motion coupling is still under investigation.
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CHAPTER 4
Experimental setup

The experimental setup was developed by multiple PhD students over the course of several
years. A more detailed description of the whole setup can be found in the corresponding PhD
theses [45, 61–63]. In the first section of this chapter a general overview regarding initial steps
towards trapping of laser-cooled Cesium atoms in optical nanofiber based dipole traps will be
given. This will be followed by a section with details about the optical setup and finally a section
describing the probing of the atoms and the data acquisition.

4.1 Overview

Our experiment utilizes the nanofiber-mediated interaction between an optical field and neutral
Cesium atoms. The nanofiber is produced in a heat and pull process out of a standard optical
fiber1 as described in Ch. 2. After the pulling process it is glued onto an aluminum mount, which
is designed to enable good optical access to the nanofiber. The mount is placed in the center
of a stainless steel vacuum chamber (see Fig. 4.1), which is required to minimize interactions
between Cesium atoms and ambient air molecules. Furthermore, it reduces pollution of the
nanofiber by dust particles. Both ends of the fiber exit the chamber via a Teflon feed-through.
The vertical position of the nanofiber mount can be adjusted by an externally accessible micro-
positioning screw. The Cesium atoms are supplied by dispensers, where they are stored in form
of a stable solid body. By applying a current of between 4 A and 7 A, the dispenser is heated up
and the Cesium atoms are released. The higher the applied current the more Cesium atoms are
released. To avoid coating the nanofiber with Cesium atoms, the dispensers are not in direct line
of sight to the nanofiber.

The vacuum inside the chamber is maintained using an ion getter pump2. A pressure of
2.6× 10−9 mbar is reached, measured using the current of the ion getter pump. The vacuum
chamber features a total of eight viewports for optical access.

1Liekki Passive 6/125
2Varian Starcell 150 Dual
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Figure 4.1: Sketch of the vacuum chamber and surroundings (top view). The unprocessed ends
of the optical nanofiber (blue) enter the vacuum chamber through a Teflon feed-through a and is
glued onto an aluminum mount b with the tapered section in the center of the mount. The latter
can be positioned vertically along the y-axis using a micro-positioning screw c. The Cesium
dispensers are placed inside a vertically extending tube d. The viewports are numbered 1 to 6,
with two additional viewports, one at the top (7) and one at the bottom (8) of the chamber. The
laser beams required to create the MOT enter the chamber through viewports 1 to 4 (green lines)
as well as 7 and 8 (not shown). A camera can be used to observe the atoms and the fiber waist
through viewport 5 using a microscope objective e for magnification. Viewport 6 can be used to
add external light fields illuminating the fiber-coupled atoms. The red ring represents the exter-
nal pair of copper coils above and below the aluminum mount used to create the magnetic field
gradient required to create the MOT. The brown rectangles are coils used to apply homogeneous
magnetic fields along x and z mainly to compensate stray magnetic fields.

In order to transfer the atoms into the fiber-based two-color dipole trap they are confined
and cooled by a magneto optical trap (MOT) [18] first. The MOT is required as the temperature
of the Cesium atoms after being emitted from the dispenser is too high to directly trap them in
the optical dipole trap. To create a MOT a pair of parallel coils in anti-Helmholtz configuration
provide the required quadrupole magnetic field. The necessary three orthogonal pairs of near-
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resonant counter-propagating light fields enter the chamber through the viewports (numbered in
Fig. 4.1).

The atoms are further cooled and eventually loaded into the nanofiber-based dipole trap via
an optical molasses stage. Here the magnetic field is ramped down to zero and switched elec-
tronically to Helmholtz configuration. Additionally the detuning of the laser beams is increased
while simultaneously reducing the power. This magnetic field, in addition to the field gener-
ated by two orthogonally oriented pairs of coils, is used to be able to compensate all external
magnetic fields or apply a homogeneous magnetic field.

A typical nanofiber trap loading sequence consists of 1 s of loading the MOT, with the light
fields at a total power of about 100 mW and red-detuned from resonance by about 10 MHz. This
is followed by about 200 ms of optical molasses stage. Here the detuning of the light fields is
increased to about 60 MHz and the power reduced to about 20 mW in total.

After the atoms are loaded into the nanofiber trap, they are available for further manipula-
tions. The typical lifetime of the atoms inside the trap is between 50 ms and 100 ms.

4.2 Optical setup

In the experiments described in this thesis a multitude of lasers are required, which will be
described in this section. For optical frequency and power modulation as well as switching the
lasers on and off, acousto-optic modulators (AOM) are used.

For the initial MOT-phase of each experimental run a cooling laser (CO) red-detuned from
the D2 line of Cesium at 852 nm wavelength is required, as described in chapter 4.1. The
laser source is a commercial diode laser3 in combination with a tapered amplifier4 providing
about 500 mW optical power. It is frequency locked via a Doppler-free Cesium saturation spec-
troscopy [64] to the F = 4 to F ′ = 5 transition of the D2-line and red-detuned from resonance
by about 10 MHz. Via a fiber port cluster5, which is a device that combines several fiber cou-
plers, wave plates and polarizing beam splitters, the CO is split into six beams. Using optical
fiber patch cables, the CO beams are guided to special out-couplers6 that set the polarization to
circular and increase the beam 1/e2-diameter to about 1.5 cm. The individual light fields are
directed into the vacuum chamber through the viewports.

Due to off-resonant excitations the atoms can be transferred to the F ′ = 4 level instead of
F ′ = 5 by CO, with a high probability to then decay to F = 3. Therefore a light field (RP) that
optically repumps the atoms back to F = 4 is required. The laser is provided by a commercial
laser diode7 and frequency locked, using a polarization spectroscopy [64], to the F = 3 to
F ′ = 4 transition of the D2-line. It is coupled into one port of the fiber port cluster such that it
is out-coupled into two paths alongside the CO.

In order to trap the Cesium atoms in the vicinity of the nanofiber a two color dipole trap is
used. It is realized by using a far red-detuned and a far blue-detuned fiber-coupled light field,

3Sacher Lasertechnik TEC500/P-850-0707-0627
4Sacher Lasertechnik TEC400/S852-0707-0178
5Schäfter & Kirchhoff fiber port cluster 1 to 6 for 852 nm
6Schäfter & Kirchhoff fiber collimator 60FC-Q852-4-M75
7Sacher Lasertechnik Lynx TEC100/L-850-0707-0625

33



4. EXPERIMENTAL SETUP
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Figure 4.2: Sketch of the trap laser beam paths from their respective source to the optical
nanofiber (NF) incoupling. In addition, the following optical components are shown: Berek
compensator (BK), dichroic mirror (DM), volume bragg grating (G), half-wave plate (HW),
polarizer (P), polarizing beam splitter cube (PBC), short pass filter (SP), quarter-wave plate
(QW).

see chapter 3.2. Figure 4.2 shows a sketch of the trap laser setup. The blue-detuned light field
is generated by a diode laser8 at 783 nm wavelength with about 150 mW output power. To
block any resonant amplified spontaneous emission background around the Cesium resonance,
the light is filtered using a short pass filter (SP)9. For setting the polarization of the laser a half-
wave plate (HW1) and a polarizer (P1) are used. To compensate any birefringence introduced
by optical elements in the beam path as well as by the optical fiber a thin birefringent plate, here
referred to as Berek compensator (BK1), is used.

The red-detuned light field is provided by a neodymium-doped yttrium aluminum garnet
(Nd:YAG) crystal laser10 at 1064 nm wavelength with about 600 mW maximum output power.
In order to use the red-detuned light field in a standing wave configuration, it has to be split
into two beams that are counter-propagating through the nanofiber. This is achieved by using
a polarizing beam splitter cube (PBC2), where the power ratio can be adjusted by a half-wave
plate (HW2). Both beam paths use a combination of polarizer (P2 and P3) and half-wave plate
(HW3 and HW4) to adjust the polarization. Furthermore Berek compensators (BK2 and BK3)

8Toptica DL100/02479
9Asahi XIS 0810

10Spectra Excelsior 1064-650/650000
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4.2. Optical setup

are deployed to compensate birefringence. Note that BK3 also affects the other lasers coupled
into the nanofiber.

To probe the atoms trapped around the nanofiber, a light field resonant with the D2 line of
Cesium at 852 nm wavelength, provided by a diode laser11 mounted in Littrow configuration,
is used. The polarization control is done similarly as for the trapping lasers and not shown
in Fig. 4.2. To minimize heating and other perturbations during the probing of the atoms, the
power of the light field is set to a few pW. Due to the strong confinement of the nanofiber guided
light field the evanescent field offers a very high intensity already at low powers. This high
intensities combined with the good coupling between the evanescent field and the atoms lead to
low saturation powers of only a few hundred pW. Therefore such low powers in the pW range
are sufficient for our experiments.

In the experiments presented in the following chapters, three additional light fields are used.
The respective light sources operate at a wavelength of 894 nm12, 852 nm13 and 880 nm14. All
three are provided by laser diodes mounted in Littrow configuration and use the same method to
control the polarization as was described for the other lasers above.

All light fields are coupled into the nanofiber via two fiber couplers. Therefore, the light
fields need to be overlapped, which is done using dichroic mirrors DM1 and DM2. These mir-
rors are specifically designed to reflect a specific wavelength range while transmitting another.
Here DM1 reflects (transmits) light with a wavelength above (below) 800 nm and DM2, as well
as DM3, reflects (transmits) light with a wavelength above (below) 900 nm. After passing the
nanofiber the red-detuned light field is separated from the probing light field by DM2. The blue-
detuned trapping laser generates photons in a wide wavelength range due to Raman scattering in
the optical fiber. Most crucial in this context is the wavelength range around 852 nm. Previous
measurements indicate that one gets 0.04 pW per meter length and nanometer wavelength inter-
val of Raman light at 852 nm wavelength for 1 mW of fiber-guided light at 783 nm. By adding a
volume-Bragg-grating15 the background introduced by this effect is reduced. It has a full width
half maximum spectral selectivity of 0.12 nm and is put right before coupling into the detection
system. With this, it is ensured that only resonant light around 852 nm is directed towards the
detector.

4.2.1 Fabry-Pérot bandpass filter

While using a volume-Bragg-grating as a narrow bandpass filter is sufficient for most experi-
ments conducted with our setup, measurements on the order of single photons require an even
better suppression of background or off-resonant light fields. A Fabry-Pérot cavity is a useful
tool to improve the spectral selectivity, enabling narrow transmission windows with a full width
at half maximum (FWHM) linewidth in the tens of MHz regime. In this experiment the Fabry-
Pérot cavity is added in between the volume-Bragg-grating and the detector. The cavity itself

11Sacher Lasertechnik LION TEC500/P-850-0707-0626
12Thorlabs L904P010
13Spectra Diode Labs SDL-5401
14Eagleyard EYP-RWE-0860
15Optigrate RBG-582-94

35



4. EXPERIMENTAL SETUP

DM1

780nm

FPC
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to detector

852nm from
experiment

PD
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L1 L2

Figure 4.3: Sketch of the Fabry-Pérot bandpass filter setup. The probing light field and the
reference laser at 780 nm wavelength are overlapped at a dichroic mirror (DM1). Both light
fields are coupled into the Fabry-Pérot cavity (FPC) via a lens L1. A second lens (L2) is used
to collimate the light fields after leaving the cavity. At a second dichroic mirror (DM2) both
light fields are separated again. While the reference laser is detected via a photodiode (PD), the
probing light field is transmitted through a longpass (LP) and a bandpass filter (BP) and guided
towards the detector.

consists of two parallel plano-concave mirrors16, with a reflectivity of about 98.5 % each. For a
precise alignment of the distance between the mirrors, one of them is mounted on a translation
stage17. An additional piezo crystal enables one to stabilize the cavity for a constant perfor-
mance of the system. The cavity is actively stabilized to a reference laser with a free space
wavelength of 780 nm, that is coupled into the cavity alongside the probing light field. To this
end, the cavity is locked to the transmission of the reference laser by adjusting the position of
the second mirror. Since the probing light field and the reference laser do not have the same
frequency, the reference laser is coupled into the cavity such, that a multitude of different modes
can be excited. Now, one has to lock to a transmission peak of the reference laser that overlaps
with the transmission peak of the probe light field in the fundamental mode.

A sketch of the bandpass filter setup is shown in Fig. 4.3. The reference light field at 780 nm
wavelength is provided by a diode laser18 that is locked on a Rubidium spectrum. The probing
laser at 852 nm wavelength is guided from the experimental setup to the filter cavity setup via a
standard optical fiber. Not shown in Fig. 4.3 is an optical isolator right after the fiber coupler used
to minimize back-reflections towards the experimental setup. Both light fields are overlapped
using a dichroic mirror19 (DM1) and coupled into the cavity (FPC) via a coupling lens (L1)20.
After passing the cavity, the light fields are are collimated by L2 and then separated by another
dichroic mirror (DM2). The reference laser is detected by a photodiode (PD) that produces
the error signal for stabilizing the cavity. The probing light field passes a longpass21 (LP) and
a bandpass22 (BP) filter to remove any remaining reference laser light, that is reflected off the
second dichroic mirror. After this purification steps the probing laser is forwarded to the detector.

16Lens-Optics PR780–1064nm/0◦, Bk7, Radius -50mm
17Thorlabs NF15AP25/M
18Thorlabs L785P090
19Thorlabs DMSP805
20Thorlabs LA1229-B, f = 175mm
21Asahi XIL0840
22Semrock LL01-582-12.5
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4.2. Optical setup

In its current configuration, the Fabry-Pérot filter cavity offers a full spectral range (FSR)
of 16.4 GHz, a linewidth of (73.50± 0.27) MHz and a finesse of 233 ± 1. With this, the sup-
pression of off-resonant frequencies is about −43 dB and the overall background is reduced by
a factor of 70. These values are achieved at an on-resonance transmission through the cavity of
(76.6± 0.7) %.

4.2.2 Precision analysis and tuning of polarizations on the nanofiber waist

The nanofiber is produced out of a standard optical fiber which offers no inbuilt means to
maintain a given polarization. By carefully mounting the fiber and stabilizing the temperature,
changes of the fiber’s birefringence can be reduced to a minimum. To compensate the unavoid-
able remaining birefringence a Berek compensator is used. Since the nanofiber is birefringent
as well, the polarization can only be precisely adjusted for a small part of the taper region. A
natural choice would be the region where the atoms are trapped.

For alignment of the light field’s polarization at the taper region, the Rayleigh scattering of
a fiber-guided light field, caused by, e.g., inhomogeneities in the silica fiber, is detected via a
CCD camera [62]. The scatterers are assumed to be point like dipole emitters, meaning that
the local polarization is conserved. The scattered light is collected via a system of lenses inside
the vacuum chamber. On the outside of the chamber, a polarizing beam splitter cube ensures
that only the transverse polarization component will be transmitted towards the CCD camera.
Rotating a linear transverse polarization on the fiber waist then results in a sinusoidal variation of
the detected intensity. By maximizing the visibility of the signal, the degree of linear polarization
can be maximized as well. For an initial coarse alignment, it is sufficient to take the scattered
light from the whole taper section into account.

For a more precise polarization adjustment, knowledge of the position of the trapped atoms
along the taper section is necessary. This can be measured by sending a weak resonant light
field through the fiber while the atoms are trapped. The resonant photons that are absorbed and
re-emitted into free space are then detected using a sensitive CCD camera23.

The result is shown in a two-dimensional color plot in Fig. 4.4. In the central plot, the
number of detected photons per pixel is indicated by the color, ranging from blue (small number
of photons) to red (large number of photons). The histograms on the left and bottom show the
total counts for each line of pixels along the horizontal axis and vertical axis, respectively. The
color plot shows the position of the trapped atoms in green and yellow. The red line represents
the position of the MOT cloud and the nanofiber. From this, one can see that the atoms are
trapped near the position where the MOT is formed in the vicinity of the nanofiber. By changing
the settings of the magnetic compensation fields during the early molasses stage, the position as
well as the spread of the trapped atomic ensemble can be influenced. This stems from the shift
of the atomic cloud during the transition from the MOT stage to the molasses stage.

The magnetic compensation fields were adjusted such, that the extent of the atomic ensemble
along the nanofiber is minimized while maintaining a reasonable number of trapped atoms. For
these settings, the Rayleigh scattering measurements were repeated. To this end the polarization
was rotated by a fixed angle and a two-dimensional image was taken with the CCD camera.

23Andor iXION Ultra
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4. EXPERIMENTAL SETUP

Figure 4.4: Flourescence image of the position of the nanofiber-trapped atoms in the vicinity
of the nanofiber waist (center), and counts per pixel added horizontally (left) as well as verti-
cally (bottom). The red contour indicates the position of the MOT and the outline of nanofiber,
measured separately. The solid lines in the diagrams are Gaussian fits to the data.
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Figure 4.5: Photon counts detected by the camera at the position of the nanofiber-trapped atoms
for a rotated linear polarization of a nanofiber-guided light field. Each data point in blue is the
number of counts, normalized to the maximum number of photons, that are scattered from the
nanofiber. Only the region where the atoms are trapped is taken into account. The number of
counts is plotted over the angle of the main axis of the light field’s linear polarization. The angle
is given with respect to an arbitrary initial orientation. The solid line is a sinusoidal fit to the
data points.
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4.2. Optical setup

The photon counts were analyzed for the corresponding section of the taper region where the
atoms are trapped. By repeating this procedure for several angles of the main axis of the light
field’s linear polarization in the transverse plane, the visibility can be determined. An example
of the outcome of such a measurement is shown in Fig. 4.5. Here, the counts, normalized to
the maximum number of counts, are plotted versus the angle of the principal axis of the linear
polarization of the examined light field relative to an arbitrary initial orientation. Each data
point is the number of detected photons that are emitted from the nanofiber normalized to the
maximum number of photons observed. As mentioned above, only the region of the nanofiber
where the atoms are trapped is taken into account. With an estimated visibility

max counts−min counts
max counts + min counts

of about 80 % and a sinusoidal distribution of the normalized counts, as indicated by the fit (solid
line), the quality of the polarization adjustment is very good. The main limitation is probably
a residual uncompensated birefringence stemming from the movement of the nanofiber and the
solid angle of the camera.

4.2.3 Optical phase locked loop

Phase-coherent lasers are important tools for coherent quantum optic experiments. One of these
experiments, that relies on electromagnetically induced transparency, will be presented in Ch. 5.
In this experiment, the coherence time between the two optical fields that are required for EIT
is a crucial parameter. To be able to maintain a fixed phase relation during the experiments, an
optical phase locked loop is used. Ideally, it highly suppresses the phase noise and is able to
handle large frequency fluctuations as well as compensating drifts, ensuring long-term stability.
As the typical bandwidth of free running laser diodes is several MHz, a fast feedback loop with
a bandwidth in the MHz range is necessary. To enable such fast control, the phase detector has
to provide a fast response to fluctuations and a steep slope of the error signal. In addition, an
equally fast actuator is required.

Both light fields used here are resonant with the D2 line of Cesium and operate in a master-
slave configuration. The optical setup is sketched in Fig. 4.6. The master laser (Spectra) is
locked to a Cesium polarization spectroscopy (PS). The polarization spectroscopy of the slave
laser (Sacher Lion) is not used while the phase locked loop is in operation. Via the half-wave
plate (HW3) in front of the polarization beam splitter cube (PBC3) the power of the light field
forwarded into the spectroscopy branch can be set. The AOM in double-pass configuration
changes the frequency of the light field before it enters the spectroscopy. This allows more
flexibility when it comes to choosing the optimal locking point. The main part of the master laser
power passes another AOM and is coupled into a commercial optical fiber (both not shown in
Fig. 4.6) that is connected to the main part of the experimental setup. The second AOM provides
the possibility to scan the master laser frequency. The AOM in the slave laser beam path allows
scanning of the slave laser frequency. To keep a stable phase relation between both lasers even
after passing their respective AOM, the latter get their driving radio frequency field from two
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Figure 4.6: Sketch of the optical setup of the two phase locked lasers. Here the abbreviations
have the following meaning: half-wave plate (HW), quarter-wave plate (QW), polarization spec-
troscopy (PS), polarization beam splitter cube (PBC), acousto optical modulator (AOM) and fast
photodiode (PD).

sources that are phase-stable against each other. Here a direct digital synthesizer (DDS)24 is used
that can generate phase-stable sinusoidal signals with a frequency of up to 250 MHz. Similar to
the master laser, the main part of the slave laser light field is coupled into an optical fiber that is
connected to the experimental setup.

Samples of both light fields are overlapped and mode matched using a 50/50 beam split-
ter cube and then detected via a fast photodiode25. Since the lasers are coupling the two ground
states to the same excited state, respectively, they are detuned by the ground state hyperfine split-
ting of 9.192 GHz. With the superimposed light fields on the detector, one observes a beat note
at the difference frequency between the two light fields. The fast photodiode has a bandwidth of
over 10 GHz, enabling it to detect this beat signal. The non-interfering parts of the light fields
are detected as a DC signal. In Fig. 4.7 a schematic of the processing of the beat signal after
detection is shown. The signal from the fast photodiode is amplified using a 34 dB ultra low
noise amplifier26. It is a bandpass amplifier with a frequency range from 8 GHz to 10 GHz. A
second amplifier27 directly following after the low noise amplifier, adds another 12 dB. The DC
part of the signal is not of any use for the phase lock and can be removed using a DC-block. The

24Analog Devices AD9958
25EOT ET-4000 GaAs PIN detector
26Microsemi AUL-8010
27Minicircuits ZX60-14012L
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Figure 4.7: Schematic of the photodiode signal processing. The signal is amplified and the
non-oscillating parts are removed using a DC-Block. Afterwards it is frequency mixed with
the output of a local oscillator (LO). To remove the sum frequency after the mixer the signal
passes a low pass filter (LPF). The signal can be monitored by using a spectrum analyzer (SA)
connected to a directional coupler (DC). After two additional amplification stages the phase
is compared to a second local oscillator by a phase frequency detector (PFD). The output of
the phase detector is divided into three paths covering differenz frequency ranges. The low
frequency path is connected to the piezo element attached to the laser grating. The other paths
manipulate the laser diode injection current.

remaining AC-signal is now mixed with the signal of a stable quartz oscillator28 at 9.216 GHz.
It is stabilized to an external 10 MHz reference signal. To mix both signals a, double balanced
frequency mixer29 is used. It only passes on the sum and the differential frequency, suppressing
the input frequencies as well as higher harmonics. This step is required as most phase frequency
detectors are only able to handle frequencies up to the MHz range.

A high rejection low pass filter30 blocks the unused sum frequency signal. By connecting
a spectrum analyzer to the 10 % output of the directional coupler the signal can be monitored.
After further amplifying the signal with two amplifiers adding 20 dB each, the level of the signal
is about 5 dBm. It is then fed into the phase frequency detector31. A RF signal generator32 is
used as the local oscillator for the detector and, in addition, provides the 10 MHz reference for

28Kuhne KU LO 92 PLL
29Minicircuits ZMX-10G
30Minicircuits VLFX-500
31Hittite HMC439QS16G
32Agilent N9310A
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4. EXPERIMENTAL SETUP

the previously mentioned quartz oscillator. The phase frequency detector outputs a voltage that
is proportional to the phase difference between the two input signals.

The output voltage is divided into three control voltages via frequency filters. The low
frequency (< 100 Hz) control voltage is forwarded to the piezo actuator that controls the tilt of
the slave laser’s grating. By changing the angle of the grating the length of the cavity changes,
thus influencing the frequency at which the laser diode operates. The medium frequency (<
100 kHz) control voltage manipulates the injection current of the laser diode by utilizing the
DC-coupled modulation input of the laser controller33. The bandwidth of this mode of control
is limited by the inherent electronic bandwidth of the laser controller. These two modes of
frequency control mainly serve to stabilize the laser to keep it within the range of the phase
frequency detector. The high frequency (< 10 MHz) part of the control voltage is most important
to achieve the required loop bandwidth and reduce the phase noise. The control voltage directly
modulates the injection current via a Bias-T34, that has a bandwidth of 100 MHz. This phase
lock system reduces the residual phase error of the laser system down to 0.04 rad2 between
100 Hz and 7.5 MHz, resulting in an average phase deviation of about 200 mrad.

4.3 Detection and data acquisition

This section describes the path from detecting the probing light field to collecting and processing
the acquired data.

The main method to acquire information regarding the properties of the fiber-coupled atoms
in this experiment is transmission spectroscopy. Here, the frequency of the probing laser is
scanned over the F = 4 to F ′= 5 transition of the D2-line. The power of the probing light field
is on the order of a few pW, which equals to several million photons per second. To be able to
precisely detect such relatively low photon numbers this experiment relies on a single photon
counting module (SPCM). For each detected photon the SPCM generates a TTL pulse which is
collected by a field programmable gated array (FPGA). The FPGA counts and sums up the TTL
pulses that arrive in a specific time window, here referred to as bin size, of typically 10 µs.

The resulting histogram is read out via a LabView program that is also used to display and
process the acquired data. An example for the obtained histogram is shown in Fig. 4.8. The
background at about 2 counts per bin is caused by the remaining Raman scattering of the blue-
detuned trap laser. Starting at bin 50, bin 750 and bin 2500 the probing light field is switched on
for 5 ms (500 bins) and scanned ±50 MHz around the frequency of the in-trap F = 4 to F ′= 5
transition using an AOM. At resonance, the probing light field is completely absorbed by the
atoms.

The observed transmission spectrum is shifted and broadened compared to a spectrum taken
with free-space atoms in the MOT. The broadening is caused by the Zeeman sublevels as well
as the tensor part of the AC Stark interaction, while the shift is mainly caused by the scalar
part of the AC Stark interaction. By fitting the transmission spectrum T (∆), using a saturated

33Sacher MLD-1000
34Sacher BT25-V2
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Figure 4.8: Example for a raw transmission spectrum. There are three probing laser pulses
starting at bin 50 in green, bin 750 in red and bin 2500 in orange, respectively. Each bin has
a duration of 10 µs. The light field is scanned ±50 MHz around the in-trap F = 4 to F ′ = 5
transition. Before the last pulse, all atoms were released from the trap.

Lorentzian line profile [29]

T (∆) = exp

(
−OD

Γ2

Γ2 + ∆2

)
, (4.1)

the optical density (OD) can be directly extracted. Here Γ is the natural linewidth of the Cesium
D2 transition for the nanofiber-trapped atoms and ∆ is the detuning of the light field from the
frequency of the in-trap F = 4 to F ′ = 5 transition of the D2 line. The OD depends on the
number of trapped atoms, but also on the coupling strength between atoms and light field. This
coupling is governed by the distance between atom and fiber as well as selection rules for the
driven transition. This has to be taken into consideration when trying to infer an absolute number
of trapped atoms from the optical density. For relative comparison between measurements with
the same set of parameters this method is adequate, since the OD is still proportional to the
number of atoms [45].

The first pulse on the left in Fig. 4.8, indicated by the green area, is taken right after the
atoms are loaded into the fiber trap. It is used to measure the initial number of trapped atoms.
This is necessary as there can be quite substantial fluctuations of the number of detected atoms
for each experimental run. From the second pulse, indicated by the red area, one can infer the
number of atoms left after preparation and manipulation of the trapped atoms. It determines the
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4. EXPERIMENTAL SETUP

outcome of the experiment. For the last pulse on the right, indicated by the orange area, the fiber
based dipole trap was switched off, releasing all the trapped atoms. It is taken as a reference to
incorporate power fluctuations of the probing laser due to, e.g., noise on the control voltage of
the AOM. From these three peaks the ratio of the fitted OD of peak 2 and peak 1 is calculated.
This ratio is the value used to quantify the outcome of the experiment.

The error bars that can be seen in the plots in Ch. 5 and Ch. 6 are calculated starting with the
counting error of the SPCM. Assuming a Poisson distribution the error reads

error =

√
counts

number of averages
. (4.2)

These errors are employed as weights for the fit of the transmission spectrum, using the Lorentzian
line profile in Eq. 4.1. Utilizing these weights, the fit determines the significance of each data
point when calculating the OD. The uncertainties of each individual fit give the error bars de-
picted in the plots. For the plots where the ratio is shown, the error bars are calculated using
error propagation with the errors of pulse 1 and pulse 2.
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CHAPTER 5
Slow-down and storage of fiber-guided

light pulses

This chapter describes the path towards storing a weak classical light pulse in an ensemble of
nanofiber-trapped Cesium atoms. The ability to store classical light pulses in so called optical
memories is crucial for realizing all optical signal processing schemes. These memories are
an intermediate step towards quantum memories, which are required for quantum information
processing [65]. Quantum memories are, e.g., key elements of quantum repeaters [7], necessary
for long distance quantum communication [9, 10]. The capacity to store optical light pulses has
been shown, e.g., for rare-earth-doped crystals [66] as well as ultracold atoms in a free-space
optical lattice [22] with storage times of about one minute. Regarding optical network-based ap-
plications fiber-integrated optical memories are preferable [67–69]. An experimental approach
storing light pulses in a thermal Cesium vapor confined inside a hollow-core photonic-crystal
fiber demonstrated storage times of about 30 ns with an efficiency of about 27 % [68]. In an-
other recent work it was demonstrated that photonic entanglement can be preserved during stor-
age and retrieval in a cryogenically cooled erbium-doped fiber [69]. Storing nanofiber-guided
light pulses done in a similar approach as will be described in this chapter, but without trapped
atoms, has also been recently reported [70]. However, in their approach, only the probing light
field was fiber-guided, all other light fields were free space.

The system presented in chapter 4 has the capability to significantly improve the perfor-
mance of fiber-integrated quantum memories by suppressing decoherence mechanisms, such as
movement of the atoms or coupling to the solid-state environment. This experiment relies on
electromagnetically induced transparency (EIT), which will be further introduced in the follow-
ing section. By carefully choosing specific parameters for the EIT scheme, the group velocity
of a light pulse propagating through the atomic medium can be reduced to several ten meters
per second. This can then be extended to storing and retrieving a classical light pulse. The first
experimental realization of the latter in our system suffered from a number of limitations, which
will be discussed in the final section of this chapter, together with some thoughts on possible
improvements. The results presented in this chapter have been published in [31].
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5. SLOW-DOWN AND STORAGE OF FIBER-GUIDED LIGHT PULSES

5.1 Electromagnetically induced transparency

When the frequency of a light field matches that of an atomic resonance, this resonant light
field suffers high absorption. This effect can be avoided by using electromagnetically induced
transparency (EIT). It is a well known effect [14] that can be understood as a destructive quantum
interference of different possible transition paths between three distinct atomic energy states |1〉,
|2〉 and |3〉. While the transition between |1〉 and |2〉 is forbidden, both are individually coupled
to |3〉 via a probe and a control light field, respectively. In this system, the coupling to the
excited state |3〉 is the only means of absorption. The strong control field with Rabi frequency
Ωc coherently couples states |2〉 to |3〉, effectively depumping |2〉. Similarly, the weak probe
light field with Ωp coherently couples state |1〉 to state |3〉.

One possible transition path for atoms initially in |1〉 is directly via the probe laser (|1〉 →
|3〉) the other one is indirectly via the probe laser and control laser (|1〉 → |3〉 → |2〉 → |3〉).
Here, the probability amplitude of the indirect path is equal to the probability amplitude of the
direct path. As it is of opposite sign, this is leading to destructive interference. For a three-level
atom there are several possible coupling schemes, of which the so called Λ-scheme, depicted in
Fig. 5.1, is used in the experiment presented in this chapter.

One can gain a more detailed understanding of EIT when further examining the closely
related physics of coherent population trapping (CPT) and the phenomenon of dark states. In
CPT the atoms get transferred into a dark state where they are completely decoupled from the
involved light fields. Considering the Λ-scheme from Fig. 5.1, the control field will optically
pump atoms from |2〉 to |1〉 via |3〉. Likewise, the probe light field will optically pump atoms
from |1〉 to |2〉 via |3〉. The total Hamiltonian of the system reads [14]

H = H0 +Hint, (5.1)

|1〉

|2〉

|3〉

Ωp

Ωc

Figure 5.1: Basic scheme, referred to as Λ-scheme, suitable for EIT in a three or more level
system. The transition between states |1〉 and |2〉 is dipole forbidden. Both states couple indi-
vidually to |3〉 via light fields with a Rabi frequency Ωp and Ωc, respectively.
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5.1. Electromagnetically induced transparency

with the bare atomic Hamiltonian

H0 = ~
3∑
i=1

ωi |i〉 〈i| , (5.2)

and the atom-light interaction Hamiltonian

Hint = −~
2

 0 0 Ωpe
iωpt

0 0 Ωce
iωct

Ωpe
−iωpt Ωce

−iωct 0

 . (5.3)

Here ωi is the atomic state frequency, Ωp =d13Ep/~ as well as Ωc =d23Ec/~ are the Rabi fre-
quencies of the respective light fields with the transition dipole moment d and the electric field
amplitude E. The detuning of the probe and control light field frequencies ωp and ωc, respec-
tively, from the atomic transition ωij is given by δp and δc. The eigenstates of this Hamiltonian
are referred to as the dressed states of the system described by H . They are a superposition of
the bare atomic eigenstates. Transforming H to a rotating frame with respect to the probe light
field frequency ωp and use the rotating wave approximation, neglecting fast oscillating terms,
the eigenstates read for δp = δc = 0

|0〉 =
1√

Ω2
c + Ω2

p

(
Ωc |1〉 − Ωp |2〉

)
(5.4)

|−〉 =
1√
2

 1√
Ω2

c + Ω2
p

(
Ωp |1〉+ Ωc |2〉

)
− |3〉

 (5.5)

|+〉 =
1√
2

 1√
Ω2

c + Ω2
p

(
Ωp |1〉+ Ωc |2〉

)
+ |3〉

 . (5.6)

From the equations above it is obvious that state |0〉 is a dark state, since it does not contain
and couple to the excited state |3〉. The missing excitation path leads to an increasing number of
atoms being coherently trapped in |0〉.

The main difference in the description of CPT and EIT is the ratio of the involved light fields
Rabi frequencies. For CPT, they are of the same order of magnitude, while for EIT the control
light field is much stronger than the probe light field. Considering Ωp � Ωc in Eq. 5.4 to Eq. 5.6
results in

|0〉 ≈ |1〉 (5.7)

|−〉 ≈ 1√
2

(|2〉 − |3〉) (5.8)

|+〉 ≈ 1√
2

(|2〉+ |3〉) . (5.9)

In this situation, the dark state |0〉 coincides with the atomic ground state |1〉, effectively decou-
pling it from the probe laser.
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5. SLOW-DOWN AND STORAGE OF FIBER-GUIDED LIGHT PULSES

For a quantitative description of EIT, simulating the outcome of an experimental realization,
a model including additional damping terms has to be used. The master equation in the Lindblad
form is used to determine the time evolution of the atomic level’s population and coherences.
The atomic ensemble can be described using the density matrix ρij , where the diagonal elements
(i= j) gives the population and the off-diagonal elements (i 6= j) the coherences of the system.
These coherences ρij can be used to write down the polarization density

Pat = Ndij ρij , (5.10)

induced in the atomic medium by the applied light fields driving a transition from |i〉 to |j〉.
Here, N is the number of atoms and dij the dipole matrix element. Another way to express the
polarization density is by using the electric susceptibility, that describes the linear response of
the medium to near-resonant light with electric field E

Pat = ε0 χe E, (5.11)

with the free space electric permittivity ε0. Combining Eq. 5.10 and Eq. 5.11, one obtains for
the susceptibility

χe =
Ndijρij
ε0E

=
Nd2

ijρij

~ε0Ω
, (5.12)

with the Rabi frequency Ω = dijE/~. As the ρij are complex valued the susceptibility consists
of a real and an imaginary part, with the real part being linked to the refractive index n and the
imaginary part to the absorption A.

To calculate the dynamics of the density matrix, one has to solve the master equation in
Lindblad form

ρ̇ij(t) = − i
~

[
Ĥ, ρij(t)

]
+ L (ρij(t)) (5.13)

for the three-level system with the Hamiltonian H=H0 +Hint. The dephasing and decoherence
mechanisms of the system are taken into account using damping terms included in L(ρij(t))
reading [14]

L (ρij(t)) =
γ21

2
(2σ12ρσ21 − σ22ρ− ρσ22) +

γ31

2
(2σ13ρσ31 − σ33ρ− ρσ33) +

+
γ32

2
(2σ23ρσ32 − σ33ρ− ρσ33) , (5.14)

with σij = |i〉 〈j|. The γij are the coherence decay rates where γ31 and γ32 consist of the total
spontaneous emission rate of state |3〉 and include dephasing. For γ21, only dephasing is taken
into account. With this, one obtains for the off-diagonal elements of ρ̇ in Eq. 5.13

ρ̇21 = iρ21

(γ21

2i
+ ω1 − ω2

)
+ iρ31

Ωc

2
eiωct − iρ23

Ωp

2
e−iωpt (5.15)

ρ̇31 = iρ31

(γ31

2i
+ ω1 − ω3

)
+ iρ21

Ωc

2
e−iωct + i(ρ11−ρ33)

Ωp

2
e−iωpt (5.16)

ρ̇32 = iρ32

(γ32

2i
+ ω2 − ω3

)
+ iρ12

Ωp

2
e−iωpt + i(ρ22−ρ33)

Ωc

2
e−iωct. (5.17)
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5.1. Electromagnetically induced transparency

For the purpose of this work, only the atom’s optical response to the probe field is of further
interest. Therefore, only the solution of ρ31 will be considered regarding the susceptibility.
As a starting condition, it is assumed that all atoms start in state |1〉 resulting in ρ11 = 1 and
ρ22 =ρ33=0. Expressing ρ31 in the rotating frame (ρ̃31 =ρ31 e

iωt) and including the two-photon
detuning ∆ = δp − δc, with the probe and control light field detuning δp and δc respectively,
Eq. 5.16 and Eq. 5.15 simplify to

˙̃ρ21 = iρ̃21

(
∆− γ21

2i

)
+ iρ̃31

Ωc

2
(5.18)

˙̃ρ31 = iρ̃31

(
δp +

γ31

2i

)
+ iρ̃21

Ωc

2
+ i

Ωp

2
. (5.19)

This simplification includes the additional important assumption that we are in the weak probing
limit where Ωp � Ωc. From the equations above, one can obtain the steady state solution of
Eq. 5.19

ρ̃31 =
Ωp (2∆− iγ21)

|Ωc|2 + (γ31 + 2iδp)(γ21 + 2i∆)
. (5.20)

By combining Eq. 5.12 with Eq. 5.20, one obtains for the linear susceptibility

χe =
Nd2

ij

ε0~
(2∆ + iγ21)

|Ωc|2 + (γ31 + 2iδp)(γ21 + 2i∆)
. (5.21)
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Figure 5.2: (a) Imaginary part of the susceptibility χe versus the probe light field’s detuning
δp. The solid line shows the absorption of a probe light field in the EIT regime, the dashed line
shows the absorption in a two-level system, i.e., without the coupling laser. (b) Real part of
the susceptibility χe versus the probe light field’s detuning. The solid line shows the refractive
index of the medium in the EIT regime, the dashed line shows the refractive index in a two-level
system. In both graphs ∆=δp and γ21 =0.
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Figure 5.3: (a) Imaginary part of the susceptibility χe and (b) real part of the susceptibility χe
versus the probe light field’s detuning for three different control light field powers Pc. Parameters
are the same as in Fig. 5.2 and Pc is given with respect to an arbitrary initial control field power.

Separating the term on the right into its real and imaginary parts, one obtains the dispersion
and the absorption of the atomic medium. In Fig. 5.2, the imaginary part and the real part are
plotted versus the probe light field’s detuning for a resonant control light field. From the solid
line in Fig. 5.2(a), one can directly see the narrow dip in the absorption around resonance where
the probe light field does not couple to the atomic ensemble anymore. Figure 5.2(b) shows the
refractive index n of the medium „seen“ by the probe light field. The solid line shows a very
steep variation of the refractive index, with implications that will be discussed later on in this
chapter. A parameter that can be easily changed is the control light field power Pc ∝

√
Ωc. As

evident from Fig. 5.3(a), a reduced Pc leads to a narrower EIT window in the probe light field’s
absorption spectrum. Figure 5.3(b) indicates that the reduction of Pc increases the steepness of
the variation of the refractive index with the probe field detuning.

Experimental observation of EIT with a nanofiber-trapped atomic ensemble

A schematic of the experimental system is shown in Fig. 5.4(a). The running-wave trapping
light field with a free-space wavelength of 783 nm has a power of 7 mW, the standing-wave
trapping light field at 1064 nm wavelength has a power of 0.65 mW per beam. The trapping
potential consists of two diametric linear arrays of trapping sites along the nanofiber, located
at a distance of about 225 nm from the fiber surface. Each trapping site contains at most one
atom and offers sub-wavelength confinement in all three spatial dimensions [71]. These trap
properties are highly advantageous because collisional broadening of atomic transitions is absent
and motional dephasing is strongly suppressed.

The experiments demonstrated in this chapter are realized using the Cesium hyperfine lev-
els shown in Fig. 5.4(c). The quantization axis is chosen to be along the applied homogeneous
magnetic field Boff indicated in Fig. 5.4(a) and (b). The Λ-scheme that is utilized for this im-
plementation of EIT is formed with the two Zeeman ground states |1〉= |F =3,mF =+3〉 and
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5.1. Electromagnetically induced transparency
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6P3/2, F' = 4

6S1/2, F = 4

6S1/2, F = 3

mF = 3 mF = 4

Figure 5.4: (a) Schematic of the experimental setup including the nanofiber (NF), the trapping,
probe, and control laser fields, as well as the single-photon counting module (SPCM). The atoms
are displayed as yellow discs. The polarization of the probe field above and below the nanofiber
is indicated by the dashed circular arrows. The trapping light fields are coupled in and filtered
out using dichroic mirrors (DM). A polarization filter (PF) in front of the SPCM separates the
control laser from the probe light field. A homogeneous magnetic field Boff is applied along the
y-axis as indicated. (b) Cross-sectional view of the nanofiber, illustrating the orientations of the
principal axes of quasi-linear polarizations of the nanofiber-guided fields. (c) Relevant Zeeman
sublevels of the trapped Cesium atoms. The states |1〉, |3〉, and |2〉 form the Λ-system used in
the experiments. The transitions driven by the probe (σ+) and the control (π) laser fields are also
indicated. This is only realized for atoms on one side of the fiber. On the other side of the fiber
the probe light field is σ− polarized. δp is the detuning of the probe field frequency from the |1〉
to |3〉 transition. The quantization axis is chosen along the direction of the magnetic field.

|2〉 = |F =4,mF =+4〉, as well as the Zeeman excited state |3〉 = |F ′=4,mF ′=+4〉 on the
D2 Line. The probe field which couples the states |1〉 and |3〉 as well as the control field which
couples the states |2〉 and |3〉 are launched into the nanofiber. They are co-propagating and are
both quasi-linearly polarized in the nanofiber. The alignment of their principal polarization axes
is as shown in Fig. 5.4(b). Two measures are taken to prevent the control light field to influence
the detection of the probe light field. The first one is using a Glan-Thompson prism, that only
transmits a specific linear polarization, aligned such that the control light field is maximally sup-
pressed. The second is using a Fabry-Pérot filter cavity that acts as a very narrow bandpass filter,
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5. SLOW-DOWN AND STORAGE OF FIBER-GUIDED LIGHT PULSES

see Ch. 4.2.1.
To drive the transitions as specified above, one can take advantage of the particular polariza-

tion properties of the nanofiber-guided light fields that are described in more detail in Ch. 2.2.1.
At the position of the atoms, the control laser field is π-polarized. At the same time, the probe
light field is almost perfectly σ+-polarized above and σ−-polarized below the nanofiber, as seen
in Fig. 5.4(a). The Zeeman shifts induced by Boff ensure that the probe light field almost exclu-
sively couples to the atoms above the nanofiber [45, 46]. The control light field is always kept
resonant with the |2〉 → |3〉 transition. The probe light field of frequency ωp is phase-locked to
the control light field, see Ch. 4.2.3, and detuned by δp = ωp−ω31 from the |1〉 → |3〉 transition
at frequency ω31.

To show that this setup exhibits the expected behavior, the probe light field’s transmission
through the nanofiber under EIT conditions is measured. After loading atoms into the nanofiber-
based trap in their F = 3 hyperfine ground state, the magnetic offset field is slowly increased
from 0 G to 26 G. Through the process of adiabatic magnetization, most of the atoms are pre-
pared in the state |1〉 (see Ch. 3.3.2). Then, the probe and the control fields are switched on
and the detuning δp is scanned over 60 MHz within 500µs. The transmission spectrum T (δp) is
determined by measuring the transmitted power with and without atoms using a single photon
counting module (SPCM) with a bin size of 1µs. Figure 5.5(a) shows the resulting transmission
spectrum for a control power of Pc = 26 pW, the probe power is Pp = 2.9 pW. One observes a
narrow EIT transmission window with a full width at half maximum (FWHM) of about 300 kHz
and a maximum transmission of about 70 % at resonance. One can model the probe transmission
as

T (δp) =
∣∣h(δp)

∣∣2 , (5.22)

with the transfer function [14]

h(δp) = exp
(
i η χe(δp)/2

)
, (5.23)

where χe is the susceptibility from Eq. 5.21. Here the quantity η is the resonant optical depth in
the absence of a control field. The obtained fit function, shown as an orange line in Fig. 5.5(a),
agrees well with the data. Fixing γ31 = 2π 6.4 MHz based on independent measurements [46],
one obtains γ21 = 2π(49 ± 18) kHz, Ω c = 2π(2.4 ± 0.1) MHz and η = 5.9 ± 0.2 as results
from the fit procedure. Given the high absorption per atom of 3.8 % [72], the measured optical
depth corresponds to the contribution of only 160 atoms in the state |1〉.

The value of γ21 matches the expectations based on previously done microwave spectroscopy
on the ground state manifold [46] and is promising for light storage. Moreover, it is about one
order of magnitude smaller than the measured width of the EIT window. The minimal achiev-
able width of the transmission window is on the order of γ21/

√
η [14]. This is experimentally

confirmed in Fig. 5.5(b), where the control power is set to Pc = 0.33 pW. For this measurement
T (δp) is determined for each detuning individually by recording the transmitted power of the
probe light field during 10µs. The power of the probe field, Pp = 1.7 pW, is now comparable
to the control field power. Therefore it is necessary to wait about 55µs after the probe and the
control field have been switched on, until the atomic ensemble is pumped into the dark state [73].
A longer waiting time leads to no further change of the transmission spectrum. With this setup,
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Figure 5.5: Transmission spectrum of the nanofiber-guided probe field under EIT conditions.
(a) Transmission window featuring a width considerably smaller than the natural line width on
an optically dense background. The control power here is Pc = 26 pW and the probe power is
Pp ≈ 2.9 pW. The orange line is a fit to the data based on Eq. (5.22). The spectrum is averaged
over 300 measurements. (b) For a smaller Pc of 0.33 pW, the observed transmission window is
about 10 times narrower. The orange line is the result of a Lorentzian fit, which was used since
the transfer function in Eq. (5.22) is only valid for Pp � Pc. Here, Pp = 1.7 pW. Each data
point is an average over 60 measurements.

it is possible to measure a transmission window with a Lorentzian FWHM of only 26 kHz and a
transmission of about 60 %.

5.2 Slow light

The observed narrow EIT window implies a steep modulation of the refractive index n of the
atomic medium around δp = 0, as also seen in Fig. 5.2(b). It results in a significant reduction of
the group velocity vg of the probe pulse since it scales as [14]

vg =
dωp

dkp
=

c

n+ ωp

(
dn
dωp

) . (5.24)

This reduction of the group velocity of a resonant light field with only negligible losses is re-
ferred to as slow light [74]. In addition to the overall reduced group velocity, an optical pulse
launched into the medium becomes spatially compressed in propagation direction [75] as long
as the pulse is inside the medium. This effect is caused by the difference in propagation speed
inside and outside the medium. Due to this compression, some part of the pulse’s electromag-
netic energy is stored as an excitation in the atoms, that travels in the medium alongside the
pulse.
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Figure 5.6: (a) Time traces of probe pulses transmitted through the atom–nanofiber system
under EIT conditions. The solid lines are Gaussian fits to the data. Each point is the result of the
average over 5 pulses per atomic ensemble and over 800 experimental runs. The bin size is 1µs.
The error bars are as in Fig. 5.5. (b) Pulse delay, (c) pulse duration, and (d) pulse transmission
as a function of the control light field power Pc. The orange lines are the results of a global fit
of the data sets in (b)–(d). The error bars here are the standard errors of the Gaussian fits.
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5.3. Storage of weak coherent pulses

For the scope of this work, studying the propagation of a resonant probe pulse through the
nanofiber under EIT conditions is of great interest. To this end, a probe pulse with Gaussian
temporal profile and a FWHM of τ = 9.4µs is launched into the nanofiber. The pulse contains
on average about 30 photons, corresponding to a peak power of 0.7 pW. The duration of the
pulse was chosen such, that it spectrally fits into the EIT window, while still having a good signal
to nose ratio. The recorded transmitted probe pulse is then compared to a reference pulse taken
in the absence of trapped atoms. This is repeated five times with each ensemble of atoms and for
800 experimental runs, yielding a total of 4000 averages. The results are shown in Fig. 5.6(a) for
a selection of control field powers Pc. Here, the data points show the number of detected probe
photons per time bin of 1µs. The solid lines are Gaussian fits to the experimental data. From
this figure, it is already visible that the pulses are delayed with respect to the reference pulse.

This measurement is then repeated for several different values of Pc. For each power, the
delay, duration (FWHM) and transmission of the probe pulse are inferred using a Gaussian fit,
see Fig. 5.6(b), (c) and (d), respectively. One can observe that for decreasing Pc the delay of
the pulse increases. At the same time, the transmitted power is reduced and the pulse FWHM
increases. This behavior fully matches the expectations for this system. The spectral width
of the EIT window is reduced with decreasing Pc. The associated steeper modulation of the
refractive index leads to smaller group velocities, made visible by the increased delay. At the
same time, an increasing part of the pulse spectrum is outside of the EIT window. This leads to
both, absorption and distortion, of the transmitted probe pulse.

One can simulate the experiment using the transfer function h(δp) in Eq. (5.23). Here the
optical depth η, a common scaling factor for all control field Rabi frequencies Ωc, and γ21 are
left as adjustable parameters. Fitting the outcome of the simulation to the experimental data
yields the orange solid lines in Fig. 5.6(b)–(d). The agreement with the data is very good for
γ21 = 2π(20± 2) kHz, Ωc = 2π(353± 26) kHz at Pc = 1 pW and η = 6.0±0.7. The value for
γ21 is consistent with the analysis in Fig. 5.5(a) and the value for Ωc is close to the prediction of
about 290 kHz considering Pc = 1 pW. Given these parameters, one can expect that even longer
delays can be observed by lowering Pc while simultaneously increasing the pulse duration. This
is confirmed by launching pulses of duration τ = 93µs into the medium with Pc = 0.33 pW. In
this case, one finds a delay of (22± 1) µs at a transmission of (13.6± 0.5) %. Given the length
of the atomic sample of about 1 mm, this corresponds to a group velocity of only about 50 m/s.

5.3 Storage of weak coherent pulses

The slow light technique can be readily extended to storage and on-demand retrieval of light
pulses. In order to stop the pulse, the control power is reduced to zero while the light propagates
through the medium. Once the control field is switched off, the electromagnetic field energy is
completely converted into a spin-wave excitation within the atomic ensemble. The retrieval of
the light pulse is triggered by switching the control field back on. To circumvent the increased
pulse absorption that occurs when the width of the EIT window decreases with reduced Pc, it is
necessary to ramp down Pc adiabatically [11]. The capability of this system for storage and on-
demand retrieval is experimentally verified for a probe light pulse with a FWHM of τ = 0.2µs
that contains 0.8 photons on average and is launched into the nanofiber. This short pulse allows a
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Figure 5.7: Storage of light in a nanofiber-trapped ensemble of cold atoms. A pulse of duration
τ = 0.2µs is launched into the nanofiber and stopped inside the atomic medium by reducing
the control laser power Pc to zero. After 1µs, Pc is increased to its initial value, and the pulse
is retrieved and recorded by the SPCM. Here, Boff = 15 G, the bin size is 100 ns, and the data
is averaged over 55 pulses per atomic ensemble and over 1600 experimental runs (2400 for
reference).

reasonable signal to noise ratio. The control power Pc is ramped down linearly within 1µs, while
the probe pulse propagates through the atomic ensemble. After a holding time of another 1µs,
Pc is ramped up again to its initial value. The stored pulse is then released from the medium and
detected with the SPCM. This procedure is repeated 55 times with each atomic ensemble and for
1600 experimental runs, giving a total of 88 000 averages. The resulting time trace is shown in
Fig. 5.7. The reference pulse is recorded in a similar manner by repeating the same experiment
without trapped atoms. From the figure it can be seen, that the light pulse is indeed retrieved
with about 2µs delay with respect to the reference pulse. The small leakage, indicated by the
small green peak on the left, is caused by imperfect polarizations and a limited optical density.
The measured combined storage and retrieval efficiency of this memory is (3.0± 0.4) %.

5.4 Limitations and possible improvements

Under ideal conditions, and in particular in the absence of decoherence, the maximum attainable
storage and retrieval efficiency depends only on the optical depth η [76]. In order to identify
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5.4. Limitations and possible improvements

the limiting factors for the efficiency for our settings, the experiment is simulated according
to [76]. This model assumes that the probe pulse is a quantum field described by E with optical
polarization P that is mapped onto a spin-wave excitation described by S upon entering the
medium. After leaving the medium, S is transferred back to the outgoing optical mode E .
This model allows one to calculate the full time trace of the pulse which is partially directly
transmitted, and partially stored and retrieved. To this end, the equations of motion for this
system need to be solved [76]

∂tE(z, t) = ig
√
NP (z, t)− c∂zE(z, t) (5.25)

∂tP (z, t) = − (γ + iδ)P (z, t) + ig
√
NE(z, t) + iΩcS(z, t) (5.26)

∂tS(z, t) = iΩcP − γsS(z, t). (5.27)

Here N is the atom number, c the speed of light, z the coordinate along the fiber axis, g the
atom-photon coupling, δ the detuning from the excited state, γ the polarization decay rate and
γs the spin-wave decay rate. In addition to the measured value of η, the parameter γs = γ21 =
2π 20 kHz is taken as inferred from the data in Fig. 5.6, and γ = γ31 = 2π 6.4 MHz as before.
The simulation result is shown in Fig. 5.8(a) (solid green line). It accurately reproduces the
measured time trace of the probe pulse for Ωc(t = 0) = 2π 2.24 MHz. Given the value of
Pc(t = 0) used, however, the calculation results in Ωc ≈ 2π 0.6 MHz. The discrepancy between
these two values is not yet fully understood and might be caused by a drift of the experimental
conditions after the calibration of the power of the control field inside the nanofiber. Given the
very good agreement between the measured and the simulated time traces, however, it is still
feasible to use the simulation to identify the mechanisms that decrease the memory efficiency.

The simulations show, that this reduction is due to contributions from ground-state decoher-
ence, insufficient control power, and a non-optimal control field ramp. The lack of control field
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Figure 5.8: (a) Simulation of the experiment (solid line) fitted to the experimental data (green
data points) from Fig. 5.7. (b) Calculated attainable storage and retrieval efficiency in depen-
dence of the number of nanofiber-trapped atoms. The solid red line marks the optical density
achieved during this experiment. The green area marks the range of optical densities that are
within the reach of the current experimental setup.
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Figure 5.9: Examples for EIT on the clock transition.

power and the non-optimal ramp were caused by assumptions we made at that time, that turned
out to be inaccurate. The control field power can be directly increased. To optimize the control
field ramp, an arbitrary function generator can be added to be able to generate more involved con-
trol field ramps. Concerning decoherence, it has been shown that the magnetic field-insensitive
mF = 0 hyperfine ground state exhibits coherence times on the order of a millisecond in this
experimental setup [77]. To transfer atoms to this Zeeman state they can be optically pumped
using a laser resonant on the D1-line of Cesium, polarized perpendicular to the plane where the
atoms are trapped [45]. Two possible realizations of EIT incorporating the clock transition are
shown in Fig. 5.9.

Additional cooling of the trapped atoms, e.g., based on microwave sideband-cooling, as well
as techniques to cancel the trap-induced differential light shifts of the ground states can bring
further improvements. To increase the maximally achievable efficiency, the number of trapped
atoms needs to be raised. Figure 5.8(b) shows the dependency of the efficiency on the optical
density. At an optical density of η = 2.4, as it was during this experiment, the optimal efficiency
is 13 %. For optical densities that are within the reach of this experiment (green area in the
figure) an efficiency of up to 70 % is expected. The optical depth of the atomic ensemble could
be increased by, e.g., loading more atoms into the trap via a larger spatial overlap of the initial
cold atom cloud and the nanofiber.

In order to operate an optical memory in the quantum regime, low noise operation is an
essential requirement. The waveguide-geometry in combination with the large optical depth
per atom in this nanofiber-based system allows one to work with only a couple hundred atoms.
This is a low number when compared to typical free-space experiments, that require orders
of magnitude more atoms. This smaller number of atoms reduces read-out noise that would
originate from imperfect atomic state preparation. In the work presented in this chapter, classical
light pulses containing less than one photon on average were stored and retrieved. This indicates
that the noise characteristics of the presented optical memory should also allow one to store
quantum information and entanglement.
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CHAPTER 6
Microwave manipulation of nanofiber

trapped atoms

For atoms confined in optical microtraps, elliptical polarization components of the required trap-
ping light fields give rise to Zeeman state-dependent energy shifts [78]. This effect is equivalent
to the interaction of a fictitious magnetic field with the trapped atoms. A spatially varying ellip-
ticity of the light field introduces a gradient of the light induced fictitious magnetic field along
the direction of atomic motion. The spatial variation of the light field’s ellipticity is an inherent
feature of optical microtraps due to the strong confinement of the trapping light fields [79,80]. So
far, this is usually considered to be detrimental, as it potentially leads to dephasing, reduced effi-
ciencies in optical pumping or additional heating [81]. This chapter focuses on investigating and
exploiting the effects that come with the existence of these state-dependent trapping potentials
in our system. To this end, we use the coupling between the external degree of freedom, in form
of the motional state, and the internal degree of freedom, in form of the hyperfine level and the
respective Zeeman state. It is described in more detail in chapter 3.3. First, this coupling will be
utilized to get a very good estimate for the azimuthal temperature of the nanofiber-trapped atoms
using microwave spectroscopy. This will be followed by introducing two methods to manipulate
the state-dependence of the trapping potential. Equipped with the tools demonstrated so far, a
cooling scheme based on microwave sideband cooling can be realized. All results presented in
this work have been published in [32].

6.1 Microwave spectroscopy as a probe for nanofiber-trapped
atoms

The experimental setup used for the measurements presented in this chapter is schematically
shown in Fig. 6.1. The running-wave field with a free-space wavelength of 783 nm has a
power of 17.1 mW, the standing-wave field at 1064 nm wavelength has a power of 1.25 mW
per beam. The trapping potential consists of two diametric linear arrays of individual trapping
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Figure 6.1: Schematic of the experimental setup including the nanofiber (NF), the light fields
and the single-photon counting module (SPCM). OP and RP indicate external light fields for op-
tical pumping (OP) and repumping (RP). The microwave (MW) can be used to drive transitions
between the ground state manifolds.

sites along the nanofiber, located at a distance of about 290 nm from the nanofiber surface. By
applying a microwave field at a frequency close to the hyperfine splitting between the F = 3
and F = 4 ground state manifolds, one can drive transitions from a state |g〉 = |F,mF, n〉 to
|e〉= |F ′,m′F, n′〉. Here, mF is the projection of the total angular momentum F onto the quan-
tization axis, n the respective quantum number for the vibrational state, and the prime index
indicates the final state of the microwave transition. The transition strength depends on the
effective Rabi-frequency Ωn,n′ given by

~Ωn,n′ = 〈F ′,m′F, n′| V̂MW |F,mF, n〉 . (6.1)

The microwave coupling Hamiltonian V̂MW = V̂AF exp(ikx̂) can be described by the atom-field
interaction Hamiltonian V̂AF ∝ ~ΩR/2 with the bare coupling Rabi frequency ΩR. With this
Eq. 6.1 becomes

~Ωn,n′ = 〈F ′,m′F| V̂AF |F,mF〉 〈n′| exp(ikx̂) |n〉 = ~ΩR Cn,n′ . (6.2)

The factor
Cn,n′=〈n′| exp(ikx̂) |n〉 ≈ 〈n′|n〉 (6.3)

in Eq. 6.2 is the Franck-Condon factor [82]. As the momentum transfer k is small for microwave
photons, with a wavelength λMW several orders of magnitude larger than the spatial extend of
|n〉, it is neglected here. To be able to analytically calculate the Cn,n′ , the trapping potential in
azimuthal direction is approximated by a 1-dimensional harmonic oscillator. For the trapping
potential, as well as for the harmonic oscillator, the vibrational levels n′ 6= n are orthogonal,
hence Cn,n′ = δn,n′ for transitions between two identical potentials. In our system, the trap-
ping potentials of the individual Zeeman levels are displaced due to the fictitious magnetic field
caused by the blue-detuned running wave trap laser. As a result, the overlap between the wave
functions for |n′〉 and |n〉 is not necessarily zero for n′ 6= n. For a 1-dimensional harmonic
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Figure 6.2: Frank-Condon factors
∣∣Cn,n′∣∣ versus displacement ∆y normalized to characteristic

oscillator length y0 for (a) n = 0 → n = {0, 1, 2} {blue, green, orange}, (b) n = 1 → n =
{0, 1, 2} {orange, blue, green} and (c) n = 2→ n = {1, 2, 3} {orange, blue, green} transitions.

oscillator, the eigenfunctions |n〉 in the spatial representation are given by

ψn(y)=
Hn(y/y0)√
2nn!
√
πy0

exp

(
− y2

2y2
0

)
, with y0 =

√
~

mωy
. (6.4)

This equation includes the azimuthal trap frequency ωy, atom mass m, characteristic oscillator
length y0 and Hermite polynomials Hn. The Franck-Condon factor for a harmonic potential
then becomes [83, 84], for n′ ≥ n,

Cn,n′=(−1)∆n exp

(
−|η|

2

2

)√
n!

n′!
η2(iη∗)∆nL∆n

n . (6.5)

Here, ∆n = n′ − n, the L(m)
p are associated Laguerre polynomials, and η is an effective Lamb-

Dicke parameter,

η=
∆y√
2y0

, (6.6)

with the displacement ∆y between the individual trap potentials. Plotting the calculated Frank-
Condon factors Cn,n′ versus the displacement ∆y, one sees that their evolution depends on the
initial vibrational level. Figure 6.2 shows this for three examples starting at n = {0, 1, 2} in
(a),(b) and (c), respectively, for different ∆n = n′ − n. The displacement is normalized to
the characteristic oscillator length y0. The blue lines represent the Frank-Condon factors for
∆n = 0, green lines indicate the ∆n = +1 transitions and orange lines show the Cn,n′ for
∆n = +2 in (a) and ∆n = −1 in (b) as well as (c). These graphs clearly indicate, that
for higher initial vibrational levels the Frank-Condon factors for the carrier transition decrease
faster, while the maximum of the sideband occurs already for lower displacements. From this,
it becomes clear that ensembles with higher temperatures, and therefore increased population
in higher vibrational states, also have an increased number of different Frank-Condon factors
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6. MICROWAVE MANIPULATION OF NANOFIBER TRAPPED ATOMS

for the same displacement. Thus, there will be an inhomogeneous broadening of the Rabi fre-
quency when driving microwave transitions. Another observation from Fig. 6.2 is, that the
Frank-Condon factor becomes zero for specific combinations of displacement and vibrational
level. For example, looking at Fig. 6.2(b) and ∆y/y0 = 2, the Frank-Condon factor is zero for
n = 1→ n′ = 2, while other Cn,n′ are still of finite value.

Since the Cn,n′ for n 6= n′ are, however, mostly not zero for displaced trapping potentials,
one can drive microwave transitions not only on the carrier transition (n = n′), but also on
a transition ending at a higher or lower vibrational level n′. Thus, scanning the frequency of a
microwave pulse around a specific transition between Zeeman levels of the two ground states and
inferring the number of transferred atomsNe, one can observe sidebands emerging for detunings
higher and lower than the carrier frequency. The effects regarding the Frank-Condon factors
mentioned above lead to unequal contributions of different vibrational states to the microwave
spectrum. The frequency spacing between the sidebands and the carrier corresponds to the
energy spacing between the adjacent vibrational levels, which is proportional to the azimuthal
trap frequency ωy. For an ideal harmonic oscillator in a thermal state the amplitude An±1 of the
sidebands for the transition n → n ± 1 can be used to estimate the temperature of the atomic
ensemble. Assuming that the width of the sidebands is a lot smaller than the trap frequency and
the microwave transition is not saturated, the sideband amplitude is proportional to the mean
number of motional excitations 〈n〉 [85]

〈n〉
〈n〉+ 1

=
An−1

An+1
. (6.7)

Rearranging Eq. 6.7 one finds, that 〈n〉 is given by

〈n〉 =
An−1

An+1 −An−1
. (6.8)

The temperature T can be calculated assuming a Bose-Einstein distribution

〈n〉 =

(
exp

(
~ωy
kBT

)
− 1

)−1

, (6.9)

with the Boltzmann constant kB. This simple calculation gives very good results for low 〈n〉.
Reliable estimations for higher 〈n〉 get increasingly difficult as the Amplitudes of the sidebands
An±1 converge. The colder the atomic ensemble, the more atoms are in the motional ground
state, where no n→ n− 1 transition exists and therefore An−1 → 0.

To be able to infer more information from microwave spectra and slightly improve the pre-
cision of ensemble temperature measurements, a more involved model can be adopted. Here,
we chose an optical Bloch equation model. Its set of equations can be derived from the master
equation in Lindblad form

ρ̇(t) = − i
~

[
Ĥ, ρ(t)

]
+ L(ρ(t)) (6.10)

and give the time evolution of the density operator ρ(t) for the simulated system with the Hamil-
tonian Ĥ . The function L(ρ(t)) contains the dipole decoherence rate γd, other decoherence
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6.1. Microwave spectroscopy as a probe for nanofiber-trapped atoms

mechanisms, i.e. decay between the levels |g〉 and |e〉, are neglected here. To keep computa-
tional demands low, we assume the system to be composed of several independent two level
atoms, with the ground and excited state being in a specific vibrational state of a 1-dimensional
harmonic oscillator |n〉 and |n′〉 respectively. The two states |g, n〉 and |e, n′〉 are coupled by a
microwave field which is described by VAF. The Hamiltonian expressed in the rotating frame of
the microwave frequency is then given by

Ĥ = H0 + VAF =

(
nωy

Ωn,n′
2

Ωn,n′
2 n′ωy − δ

)
, (6.11)

with δ being the detuning of the microwave with respect to the bare transition frequency. Insert-
ing Eq. 6.11 in Eq. 6.10, the individual equations for ρ̇(t) read (~ = 1)

ρ̇ee(t) = i
∑
n,n′

[
Ωn,n′

2
(ρeg(t)− ρge(t))

]
, (6.12)

ρ̇gg(t) = −i
∑
n,n′

[
Ωn,n′

2
(ρeg(t)− ρge(t))

]
, (6.13)

ρ̇ge(t) = −
∑
n,n′

[(
γd − i((n′ − n)ωφ + δ)

)
ρge(t)− i

Ωn,n′

2
(ρee(t)− ρgg(t))

]
, (6.14)

ρ̇eg(t) = −
∑
n,n′

[(
γd + i((n′ − n)ωφ − δ)

)
ρeg(t) + i

Ωn,n′

2
(ρee(t)− ρgg(t))

]
. (6.15)

Here, ρij denotes the matrix elements of the density operator ρ. The sum over n, n′ ensures that
all possible combinations of vibrational states in |g〉 and |e〉 respectively are taken into account.

In order to obtain the total number of atoms Ne in the excited state, the respective den-
sity matrix element ρee has to be referenced to the initial thermal population with the thermal
occupation probability pn(T ) given by

pn(T ) =
1

Z
exp(−n~ωy

kBT
), with Z = (1− exp(− ~ωy

kBT
))−1 (6.16)

being the partition function. Via this thermal occupation probabilities, the ensemble temperature
enters the fit model.

All in all, the free parameters for the fit are the ensemble temperature T , trap frequency ωφ,
bare Rabi frequency ΩR, displacement ∆y and dipole decoherence rate γd.

Until now, the trapping potential was considered to be a harmonic potential. This assump-
tion is justified for small 〈n〉 (low temperature). For larger 〈n〉 the potentials deviate, as the har-
monic potential gradient keeps increasing while the real trapping potential is finite in depth. The
motional wave-functions obtained for both potentials are shown in Fig. 6.3(a) and (b), where (a)
shows the approximated harmonic potential and (b) the anharmonic trapping potential, each with
a selection of eigenfunctions ψn(y), vertically separated by their eigenenergies. The depicted
potentials are cuts along the y-axis at a x position corresponding to the radial trap minimum.
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Figure 6.3: (a) Harmonic and (b) anharmonic trap potential (black) including eigenfunctions
ψn(y) for n = {0, 6, 12, 18, 24} in {blue, orange, green, red, purple}. (c) Energy for a 1-
dimensional harmonic (blue) and a 1-dimensional anharmonic (orange) trap potential. The solid
orange line is a fit to the orange data points using En=(αn+ βn2)ωy. (d) Simulated spectrum
for harmonic potential (blue) and anharmonic potential (orange), for a microwave pulse length
of 80µs; other parameters as indicated in the text.

In Fig. 6.3(c), the respective eigenenergies of the nth vibrational state for the harmonic po-
tential and the dipole trap potential are plotted. One can see that the energy levels of the trapping
potential’s bound states start to deviate from those of a harmonic potential for higher vibrational
levels. Using a polynomial of order two to model the energy,En=(αn+βn2)ωy, the calculated
anharmonicity of the trap can be taken into account. Fitting this model to the numerically calcu-
lated energies (solid line in Fig. 6.3(a)) gives for the fit parameters α=1.013 and β=−0.0123.
In Fig. 6.3(d) a simulated spectrum for the pure harmonic potential (blue curve) is compared to
a spectrum including the anharmonicity (orange curve), for fit parameters taken from previous
experimental realizations (T =20 µK, ωy=70 kHz, ΩR=10 kHz, ∆y/y0 =0.56, γd=10.7 kHz
and a microwave pulse length dt = 80 µs). In the figure one can see the carrier transition at
resonance and the first and second order sidebands detuned by ±ωy for the harmonic potential.
The anharmonicity affects the spectrum as it leads to a broadening of the sidebands. Since the
spacing between vibrational states is not equidistant for an anharmonic potential, the resonance
frequency of a given ∆n 6= 0 transition depends on the initial vibrational state. As the spectrum
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6.2. Manipulating the state-dependence of the trapping potential

is composed of the sum of all transitions, which have now slightly different frequencies, the
sidebands are broadened. Comparing the spectra for a harmonic and an anharmonic potential,
one notices that the spacing between the sidebands and the carrier is reduced for the anharmonic
potential, especially when considering higher order sidebands. This change of the apparent trap
frequency is a result of the reduced energy difference between the vibrational levels in an anhar-
monic potential. For increasing ensemble temperatures, the assumption of a harmonic trapping
potential becomes less accurate as the occupation probability for higher vibrational levels in-
creases.

6.2 Manipulating the state-dependence of the trapping potential

As discussed in the previous section, the visibility of the sidebands in the microwave spectra
relies on the displacement between the trap potential minima of different Zeeman states and,
thus, on the overlap between the wave-functions of unequal vibrational levels.

The displacement can be quantitatively obtained by approximating the full nanofiber trap-
ping potential as a 1-dimensional harmonic oscillator. Calculating the total trapping potential
UT including the azimuthal harmonic potential UH and the fictitious magnetic field Bf, but ex-
cluding external offset fields, gives

UT = UH + µBf =
1

2
mω2

y φ
2R2 + µB gF(FxBfx + FyBfy). (6.17)

Here, R is the radial distance from the nanofiber axis, gF the Landé factor for the fine-structure
level F and µB the Bohr magneton. Neglecting the contributions of Bfy(� Bfx) and assuming
that Fx |F,m〉 = mF |F,m〉 is a good quantum number without an offset magnetic field, this
simplifies to

UT =
1

2
mω2

y φ
2R2 + µB gF FxBf

=
1

2
mω2

y φ
2R2 + µB gF mFBf.

(6.18)

Introducing y = Rφ, for small angles φ, one gets

UT =
1

2
mω2

y y
2 + µB gF mFBf. (6.19)

To get the minimum of the potential, its derivative is set to zero

∂UT

∂y
= mω2

y y + µB gF mF
∂Bf

∂y
= 0, (6.20)

yielding for the displacement, relative to the unperturbed harmonic potential,

∆y = −µB gF mF bf

mω2
y

, with bf =
∂Bf

∂y
. (6.21)

As evident from Eq. 6.21, the displacement of the azimuthal trap potentials depends, among
others, on the considered Zeeman state and the gradient of the fictitious magnetic field. To
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6. MICROWAVE MANIPULATION OF NANOFIBER TRAPPED ATOMS

observe this experimentally, microwave spectra are used and analyzed. They are taken by using
a square microwave pulse at a given frequency to transfer atoms in a specific Zeeman state from
F = 4 to F = 3. The pulse duration is chosen to maximize the transfer efficiency on the carrier
transition. The remaining atoms in F = 4 are removed by applying a push-out laser beam. The
frequency of the microwave is scanned in equidistant steps. For each microwave frequency, the
number of transferred atoms is estimated by measuring the absorption of a weak fiber-coupled
light field resonant with the D2-line cycling transition F = 4 to F ′ = 5.

Since every residual fictitious magnetic field at the position of the atoms has the potential
to spoil the quality of the spectra, careful adjustments are indispensable. Those residual ficti-
tious field can, e.g., lead to the atoms on both sides being exposed to different total magnetic
fields [46], causing a broadening or splitting in the microwave spectrum. Most critical in this
context is the alignment of the trap laser polarizations as well as the power balance of the laser
in standing wave configuration. In the optimal case, the fully quasi-linear polarizations of the
trapping lasers are orthogonal and the powers of the two counter-propagating and co-polarized
lasers generating the standing wave are equal. These parameters were optimized to achieve the
minimal width of the peaks in the microwave spectra.

The experimental observation of the effect of the respective Zeeman state on the displace-
ment, for a microwave detuning given with respect to the indicated |F =3,mF〉 to |F =4,mF〉
transition, as depicted in Fig 6.4(a), is shown in Fig. 6.4(b). The atom number Ne is normal-
ized to the amplitude of the carrier. To be able to observe sidebands, an offset magnetic field
Bo = 1.56 G was applied at an angle of 66.5◦. For more details on the magnetic offset field see
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Figure 6.4: (a) Reduced level scheme for the ground-state manifold of Cs, the colored arrows
indicate the driven microwave transition corresponding to the data points on the right. (b) mea-
sured microwave spectra for different π transitions starting atmF = 0 (blue),mF = −1 (orange),
mF = −2 (green) and mF = −3 (black). The microwave detuning is given with respect to the
carrier transition, Ne is normalized to the carrier amplitude. For better visibility, a vertical offset
of 0.5 was added between the spectra. The fit (solid lines) is a sum of three Gaussian functions.
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6.2. Manipulating the state-dependence of the trapping potential

the paragraph below. FormF =0, the microwave spectrum only shows one local maximum at the
carrier transition. For mF 6= 0, two additional peaks appear, i.e., sidebands for n → n ± 1. The
sideband on the left with negative microwave detuning corresponds to the n→ n− 1 transition.
For higher mF, the sidebands get more pronounced. This behavior corresponds to what was ex-
pected from Eq. 6.21 for small displacements ∆y. For each microwave spectrum a fit consisting
of the sum of three Gaussian functions (solid lines in Fig. 6.4(a)) can be used to estimate the
amplitude A±1 of the sidebands, as well as their spectral shift with respect to the carrier.

In the following paragraphs, two possibilities to control the displacement, e.g. by manipu-
lating the gradient of the fictitious magnetic field, will be discussed.

6.2.1 External magnetic field

The state dependence of the trapping potentials is caused by the gradient bf of the x-component
of the fictitious magnetic field Bf in azimuthal direction φ. A large homogeneous offset field B0

along an axis orthogonal to the fictitious magnetic field can suppress the effective gradient be of
the total magnetic field. A first estimation of the influence of the offset field in the x-y-plane can
be given by looking at the total magnetic offset field BT

BT =

(
B0 cos(ϑ) +Bf
B0 sin(ϑ)

)
⇒ BT =

√
(B0 cos(ϑ) +Bf)2 + (B0 sin(ϑ))2, (6.22)

with the angle ϑ between the x-axis and the vector of the offset magnetic field, see Fig. 6.5(a).
Rearranging terms and using the Taylor series for

√
1 + x for small x, translating to B0 � Bf

in this context, yields

BT ≈ B0 +Bf cos(ϑ) +
B2

f
2B0

. (6.23)

With this, the effective azimuthal gradient be becomes

be =
∂BT

∂φ
∝ bf cos(ϑ). (6.24)

Figure 6.5(b) shows microwave spectra for three settings for the angle ϑ of the magnetic
offset field BT. The microwave detuning is given with respect to the |F =4,mF =−4〉 to
|F =3,mF =−3〉 transition. The atom number Ne is normalized to the amplitude of the carrier.
For a magnetic field along the y-axis (ϑ=90◦), the displacement of the azimuthal trap potential
minimum vanishes. In this case, the wave functions of the vibrational states are orthogonal and
the Franck-Condon factors are zero for ∆n 6= 0 transitions. This is confirmed by the blue data
points in Fig. 6.5(b), where only one local maximum is visible, indicating the carrier transition
with ∆n= 0. For ϑ= 73◦, the effective gradient increases and with it the displacement of the
trap minima. This results in two additional local maxima in the microwave spectrum emerging
for the orange data points in Fig. 6.5(b), representing sidebands. The sideband on the right with
positive microwave detuning corresponds to the n → n − 1 transition. By decreasing ϑ to 66◦

(green data points in Fig. 6.5(b)), the displacement and consequently the height of the sidebands
increases further. The solid lines in Fig. 6.5(b) are fits to the data points, where each fit consists
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Figure 6.5: (a) Sketch of the offset magnetic field orientation. (b) measured microwave spectra
for different angles of the offset magnetic field, ϑ = 90◦ (blue), ϑ = 73◦ (orange) and ϑ = 66◦

(green). The microwave detuning is given with respect to the carrier transition |F =4,mF =−4〉
to |F =3,mF =−3〉, Ne is normalized to the carrier amplitude. For better visibility, a vertical
offset of 0.5 was added between the spectra. The fit (solid lines) is a sum of three Gaussian
functions.

of the sum of three Gaussian functions. As in the previous paragraph the fits can be used to infer
the amplitude A± and the spectral shifts of the sidebands.

Due to technical limitations in the current experimental setup, smaller angles than 66◦ can
not be achieved while keeping the same total magnetic field. All further experiments were
carried out at an offset magnetic field angle of 66◦, giving the largest experimentally achievable
displacement at sufficient offset field strength.

The tuning of the trap laser polarizations had to be redone for every field angle. To this end,
microwave spectra were taken for different settings of the trapping light fields polarizations and
power balances of the light field in standing wave configuration. The parameters were optimized
to achieve narrow peaks in the microwave spectra.

6.2.2 Additional light field

Another possibility to manipulate the displacement is using a fiber-coupled light field operating
at the tune-out wavelength of about 880 nm. As the scalar component of the Stark shift vanishes
for the ground state at this wavelength, the trap is, to the first order, not influenced by this
additional light field. Similarly to the trapping light at 783 nm wavelength, it features a fictitious
magnetic field. Contrary to the trapping light field, the tune-out light field has an opposite sign of
αv (see chapter 3.1). By applying the tune-out light field, co-propagating with the trap laser and
with the same quasi linear polarization inside the nanofiber, a partial compensation of the trap
laser induced fictitious magnetic field is achievable. As the magnitude of the fictitious magnetic
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6.2. Manipulating the state-dependence of the trapping potential

Figure 6.6: Contour plot of the x-component of the effective fictitious magnetic field Bf in the
transverse plane around the nanofiber, induced by the trapping light field and the tune-out light
field. The center of the nanofiber is at x = y = 0. The power of the tune-out light field is (a)
0 mW, (b) 0.35 mW and (c) 0.6 mW, respectively. The extent of the trap potential at 35 µK is
indicated by the gray area. In the white area, the residual fictitious magnetic field is reduced
to |Bf| < 0.025 G. The following equipotential lines are at |Bf|={0.1 G, 0.2 G, 0.3 G, 0.4 G,
0.5 G, 0.75 G and 1 G}.

field scales with the light field power, this can be used to tune the compensation. In Fig 6.6,
the calculated x-component of the effective fictitious magnetic field Bf due to the trap laser
and the tune-out light field in the transverse plane is shown for different powers of the tune-out
light field. For comparison, the fictitious magnetic field induced solely by the trapping light
field is shown in Fig. 6.6(a). Since the radial extent of the individual fictitious fields differ, the
compensation to a residual fictitious field smaller than 0.025 G is limited to a specific region,
indicated by the white area in the contour plots. Atoms with a temperature of up to 35 µK are
confined to a region depicted by the gray area. The fictitious field is well compensated within
the range of movement of the atoms for a tune-out power of 0.35 mW. A higher power leads
to an overcompensation, where one can create an increasingly narrow corridor where Bf ≈ 0.
Thus, this additional light field allows one to tailor the gradient of the fictitious magnetic field in
the vicinity of the nanofiber-trapped atoms.

Figure 6.7(a) shows the calculated x-component of the effective fictitious magnetic field in
azimuthal direction φ. The atoms are trapped at φ = {0, π}. The green curve represents the
situation without a tune-out light field. For 0.2 mW tune-out power (orange line), the effective
fictitious field is expected to be reduced and for 0.35 mW (blue line) it is almost completely
suppressed. The calculated tune-out light field power for the used trap configuration required to
fully compensate the effect of the trap laser is calculated to be about 0.36 mW.

In Fig. 6.7(b), microwave spectra for different applied tune-out laser powers are shown. The
microwave detuning is given with respect to the |F =4,mF =−4〉 to |F =3,mF =−3〉 transi-
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Figure 6.7: (a) x-component of the residual fictitious magnetic field Bf in dependence of the
azimuthal position φ. The colors indicate the power of the tune-out light field corresponding to
the data on the right. (b) measured spectra for different tune-out light field powers, Pto = 0 mW
(green), Pto = 0.2 mW (orange) and Pto = 0.35 mW (blue). The microwave detuning is given
with respect to the carrier transition |F =4,mF =−4〉 to |F =3,mF =−3〉, Ne is normalized to
the carrier amplitude. For better visibility, a vertical offset of 0.5 was added between the spectra.
The fit (solid lines) is a sum of three Gaussian functions.

tion. The atom number Ne is normalized to the amplitude of the carrier. The green data points
show the microwave spectrum without tune-out laser. Here, one can observe three distinct local
maxima which are the carrier transition and one sideband on each side of the carrier. All three
peaks are almost equal in height. Applying 0.2 mW of tune-out laser power (orange data points
in Fig. 6.7(b)) reduces the height of the sidebands compared to the carrier. For this tune-out laser
power, the fictitious magnetic field in the vicinity of the trapped atoms is already significantly
reduced. For a tune-out laser power of 0.35 mW (microwave spectrum with blue data points),
there is only one local maximum visible, being the carrier transition. For this tune-out power,
the fictitious field at the position of the atoms is almost completely compensated.

In all three figures Fig. 6.4 to Fig. 6.7, the fit underestimates the frequency spacing between
the sidebands with values between 60 kHz and 65 kHz. The calculated trap frequency is about
ωy=70 kHz. This discrepancy can be explained by the anharmonicity of the trapping potential,
see chapter 6.1. The temperature of the atomic ensemble can be estimated via the ratio of the
amplitude of the sidebandsAn±1, see Eq. 6.8. In the cases presented so far the relevant sidebands
have almost equal amplitude, meaning that 〈n〉 � 1.
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Figure 6.8: (a) Single cooling cycle with the microwave coupling (MW), a light field (OP)
on the D1 line for optical pumping and a light field (RP) on the D2 line to repump atoms in
|F =4,mF =−3〉. (b-d) Measured spectra (b) without cooling, (c) with 200 cooling cycles
and (d) with 200 cooling cycles plus 30 additional cycles without RP. Solid lines are fits to
the optical Bloch equation model (Eq. 6.15), the microwave detuning is with respect to the
|F = 4,mF = −4〉 → |F = 3,mF = −3〉 transition. The atom number Ne is normalized to the
amplitude of the carrier.

6.3 Microwave sideband cooling

One possibility to reduce the temperature of the atomic ensemble is to implement microwave
sideband cooling. This is achievable for the azimuthal degree of freedom where sidebands,
corresponding to the atomic motion in the azimuthal trapping potential, can be resolved in the
microwave spectra. A single cooling cycle is sketched in Fig. 6.8(a), with the atoms initially
in |F = 4,mF = −4〉. It starts with a 20 µs long microwave pulse (MW) on the n → n − 1
sideband with bare Rabi frequency around 2π × 40 kHz. The atoms are then optically pumped
back to the initial state using a σ−-polarized external light-field resonant on the F =3→ F ′=4
transition of the D1 line at 894 nm wavelength, labeled OP. During the optical pumping, the
atoms have a finite probability of about 10 % to spontaneously decay into |F = 4,mF = −3〉.
Those atoms are re-integrated into the cooling cycle with a σ−-polarized external repumping
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ωy (kHz) ΩR (kHz) γd (kHz)
no cooling 70± 1.2 11± 0.7 6± 1

200 cycles 71± 1 11± 1 10± 1.6

200+30 cycles 71± 1.4 12± 0.5 8.6± 1.3

Table 6.1: Parameters of the cooling model obtained from the fit to the experimental data in
Fig. 6.8

.

field, labeled RP, resonant on the F = 4 → F ′ = 4 transition of the D2 line. Both OP and RP
are on for 10 µs. To pump all atoms out of F = 3, OP is left on for additional 10 µs. If both
lasers are perfectly σ−-polarized, all microwave transferred atoms should end up in the state
|F = 4,mF = −4〉, which is a dark state for the involved light fields.

The data points in Fig. 6.8(b) and (c) show microwave spectra with and without 200 cooling
cycles, respectively. The spectra are normalized to the height of the carrier. The cooling results
in a relative reduction of An−1, as expected. The model for fitting introduced in chapter 6.1
reproduces well the shape of the spectra, both without and with cooling. The obtained values
for ωy, ΩR and γd agree well with expectations, and within the error they are the same for both
data sets, see Tab. 6.1. Regarding the obtained data points with cooling, the fitted displacement
∆q/y0 = 0.56±0.06 is in perfect agreement with the calculated value of 0.56. Here ∆q = ∆y−
∆y′ denotes the displacement between the two microwave coupled states, which are displaced by
∆y and ∆y′ respectively. Without cooling, the fit gives ∆q/y0 = 0.34± 0.02. This discrepancy
is attributed to the fact that hotter atoms are on average further away from the fiber [29], where
the potential along φ is less confining. Equation 6.21 indicates that ∆y scales with 1/R, while
y0 scales with R, hence ∆q/y0 ∝ 1/R2. Finally, the fit allows one to extract a mean excitation
number of 〈n〉 = 10 ± 2 before, and 〈n〉 = 1.4 ± 0.3 after cooling, corresponding to an initial
and final temperature of around 35 µK and 6 µK, respectively.

In order to explain why lower temperatures could not be reached, the background heat-
ing rate in the system was measured by introducing a variable waiting time after the last cool-
ing cycle. Figure 6.9(a) shows the acquired 〈n〉 versus the waiting time. The heating rate of
0.34± 0.06 quanta/ms is inferred from the linear fit (solid line), and compares well to previous
estimates of 0.24 quanta/ms [45]. Since the cooling cycle supposedly removes one phonon per
40 µs this heating rate should not be a substantial limitation regarding the minimal temperature
that can be reached. Similarly the finite efficiency of the microwave pulse between 60 % and
70 % is not expected to be a significant constraint to the cooling efficiency. The main limitation,
however, is identified to be excessive photon scattering during optical pumping and repump-
ing. For technical reasons, the co-propagating OP and RP beams are at an angle of about 30◦

with respect to the offset magnetic field. This circumstance sets an upper limit on the degree of
σ− polarization that can be reached at the position of the atoms. As a consequence, the state
|F =4,mF =4〉 is not the desired dark state. This hypothesis can be confirmed by adding 30
cooling cycles where the RP light is off. With this, a mean excitation number of 〈n〉 = 0.3±0.1
was obtained translating to a temperature of about 2 µK, which is close to the motional ground
state, see Fig. 6.8(d). This reduction in temperature comes at the expense of loosing about 30 %
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Figure 6.9: (a) Mean excitation number 〈n〉 over waiting time after the last cooling cycle.
The solid line is a linear fit to the data points. The error bars are the uncertainties of the fit.
(b) Measured Rabi oscillations for no cooling (orange) and 200 cooling cycles (green) on the
|F = 4,mF = −4〉 → |F = 4,mF = −3〉 carrier transition. The solid lines are fits to the
optical Bloch equation model.

of the atoms to other mF states, where they can not contribute to the cooling cycle. However,
assuming a thermal distribution, the absolute number of atoms in |F =4,mF =4〉 that are in the
motional ground state has increased.

Another indication of successful cooling are microwave driven Rabi oscillations between the
states |F =3,mF =−3〉 and |F =4,mF =−4〉. They were recorded by applying a microwave
pulse of variable duration on the carrier transition once without cooling and once after 200
cooling cycles. Figure 6.9(b) shows the transferred population as a function of pulse duration.
Without cooling (orange data points), the Rabi oscillations are heavily damped because all the
motional states involved have different Frank-Condon factors and, therefore, their own effective
Rabi frequency. After 200 cooling cycles (green data points), the mean phonon number is re-
duced and only few motional states contribute, thus, the Rabi oscillations are less damped. The
solid lines are fits to the optical Bloch equations model, that yield the same temperatures as the
fits of the microwave spectra in Fig. 6.8(b) and (c).

The presented cooling technique allows one to reach azimuthal temperatures close to the
motional ground state and can be a helpful tool for several applications, when extended to all
three motional degrees of freedom. Those applications include experiments with atoms in optical
microtraps as well as studies of self-organization [86, 87] and lateral light forces [88–91] for
atoms close to waveguides. Furthermore it has the potential to provide well-defined starting
conditions for loading atoms into surface-induced potentials [92] or for investigating collapse
and revival dynamics in nanofiber-based traps [93].
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CHAPTER 7
Summary

In this thesis, two effects stemming from the interaction between nanofiber-guided light fields
and nanofiber-trapped atoms were investigated experimentally.

In the beginning, I briefly introduced optical nanofibers. In this context, I explained the
production of the tapered optical fibers and gave a short overview on deriving the fiber-guided
modes as well as the polarization properties in the evanescent field surrounding the nanofiber.
In this section, I focused on the existence of a longitudinal polarization component that leads
to almost fully circular polarization for a quasi-linearly polarized fiber-coupled light field. The
orientation of the circular polarization is inverted on opposite sides of the fiber. These polariza-
tion properties have been used in the past to, e.g., side-selectively prepare the atoms in a specific
Zeeman state [46], or demonstrate asymmetric scattering of photons, that were spontaneously
emitted by the nanofiber-trapped atoms, into counter-propagating nanofiber-guided modes [94].

The following chapter covered the atom-light interaction of neutral Cesium atoms with the
evanescent field of a nanofiber-coupled light field. Here, I briefly discussed the AC Stark shift
and how we utilize it to trap the Cesium atoms in a nanofiber-based two-color dipole trap. Fur-
thermore, I described how the combination of the effects of the vector part of the AC Stark shift
and the polarization properties of the evanescent field lead to the emergence of fictitious mag-
netic fields, that act on the atoms the same way as real magnetic offset fields. If the fictitious
magnetic field is combined with an external offset field that is oriented along the fictitious field,
the azimuthal trapping potential minimum is spatially shifted, where the magnitude of the shift
depends on the occupied Zeeman substate.

In the third chapter, I explained the main parts of the experimental setup used for the mea-
surements presented in this thesis. I briefly described the vacuum setup as well as the optical
setup. In this section, I gave more detailed information about a Fabry-Pérot bandpass filter we
used to separate two light fields that are only about 9 GHz apart. Furthermore, I explained our
method to precisely analyze and tune the polarization of the fiber-guided field in the nanofiber
waist, which is based on detecting Rayleigh scattering via a sensitive CCD camera. After a
section about an optical phase locked loop, required for our experiments regarding electromag-
netically induced transparency (EIT), I introduced our detection and data acquisition system.
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7. SUMMARY

In the first chapter regarding the experiments conducted in the course of my PhD, I describe
the path towards storing a fiber-guided light pulse in an ensemble of cold atoms. This experiment
relies on EIT to gain access to the steep variation of the refractive index occurring at resonance.
This variation can be utilized to decrease the group velocity of a light pulse propagating through
the atomic ensemble and ultimately stop the light pulse within the medium. In this experiment
we demonstrated an EIT window with a width in the kHz range, while maintaining a high trans-
mission. Using this narrow EIT window, we were able to reduce the group velocity of a Gaussian
shaped light pulse down to about 50 m/s. Finally, we achieved storage of a light pulse for 2 µs
with a combined storage and retrieval efficiency of about 3 %.

In the last chapter, I described the second major experiment that is part of my work as a
PhD student. This experiment aimed at exploring the effect of fictitious magnetic field induced
state-dependent potentials on the nanofiber-trapped atoms. The state-dependent potentials lead
to a Zeeman state and hyperfine level dependent spatial shift of the azimuthal trapping potential.
Due to this spatial shift, the Franck-Condon factors for microwave transitions between the two
ground states are nonzero, even for unequal phonon levels of the initial and final state. This gives
rise to sidebands in a microwave spectrum, that are shifted from the central carrier frequency by
the azimuthal trap frequency. The relative amplitude of the red- and the blue-detuned sidebands
can be used to infer the temperature of the atomic ensemble. I presented three possibilities to
tune the state dependency by preparing the atoms in specific Zeeman states, changing the angle
of the external magnetic offset field and applying an additional fiber-guided light field at the
tune-out wavelength. By driving microwave transitions on the sideband that removes phonons
from the system, in combination with subsequent optical repumping, the temperature of the
ensemble can be reduced. We were able to demonstrate in our system that this method can
be used to reduce the mean excitation number from about 〈n〉 = 10 to about 〈n〉 = 1.4 after
200 consecutive cooling cycles. The main limitation of the cooling efficiency was found to be
excessive photon scattering during optical repumping. By adapting the cooling cycle to take this
into account we were able to reach a mean excitation number of 〈n〉 = 0.3, corresponding to
about 80 % of the atoms in the motional ground state of the azimuthal trapping potential.

Outlook

At the current state, there are two paths that can be followed with this setup regarding the pre-
sented experiments. One would be continuing with storage of photons in the nanofiber trapped
ensemble of cold atoms, the other one would be to further investigate the spin-motion coupling
present in this system.

An open research topic for the first path, apart from the already mentioned improvements
of the storage and retrieval efficiencies, as well as adapting the experiment to store quantum
information and entanglement, would be nonlinear optics with single photons. Due to the usu-
ally very weak nonlinear susceptibilities of materials, one typically requires high intensities to
observe the interaction of two light fields. The scheme described in [95] is based on the use of
EIT and slow light to observe the interaction of two weak light pulses, even down to the single
photon level. The atomic levels involved are shown in Fig. 7.1(a). A weak light field Ω1 and a
strong control field Ω2 couple the states |A1〉 and |A2〉, respectively, to the excited state |A3〉
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Figure 7.1: (a) Weak light field Ω1 and strong control field Ω2 couple |A1〉 and |A2〉 to |A3〉. A
second weak light field Ω3 is detuned from the |A2〉 to |A4〉 transition and used to manipulate
the refractive index experienced by Ω1. (b) Λ-scheme with a weak light field Ω3 and a control
field Ω4 used to reduce the group velocity of Ω3 to maximize the interaction time with Ω1.

in a typical Λ-scheme. As also shown in this thesis, the light field Ω1 will be transmitted with
low losses and a reduced group velocity. By adding a second weak light field Ω3 that is detuned
from resonance with the transition |A2〉 to |A4〉, the induced Stark shift of |A2〉 influences the
the refractive index that is experienced by the light field Ω1. This behavior leads to cross-phase
modulation [75, 96]. To maximize the interaction time, the group velocity of the light field Ω3

has to be reduced by having it interact with a second strong light field Ω4 in a Λ-scheme consist-
ing of a different set of levels as shown in Fig. 7.1(b). Implementing this, it should be possible
for the light field Ω1 to undergo a nonlinear phase shift that can be controlled by the light field
Ω3. A possible use of cross-phase modulation mediated by EIT is described in [97, 98] where
its potential for realizing a controlled NOT gate for all-optical quantum computing is examined.
The presented scheme can also be utilized for all-optical switching [99].

The spin-motion coupling model, briefly discussed in Ch. 3.3.2, still needs experimental
verification and has to be extended to, e.g., include the radial degree of freedom. At this stage,
we assume this coupling to be responsible for the preparation of the majority of the trapped
atoms in the outermost Zeeman substate after ramping up a homogeneous external magnetic field
along y. To be able to confirm our model, we need to infer the initial Zeeman state distribution
without an external magnetic field applied. Since it is not possible to spectrally discern the
Zeeman substates without a sufficiently high external magnetic field we have to „switch off“ the
spin motion coupling while increasing the magnetic field. One possibility to do so is to switch
on the external magnetic field non-adiabatically, i.e., faster than the timescale of the spin-flips.
Another possibility, indicated by first simulations, might be to apply an external magnetic field
parallel to the fictitious magnetic field first and then one perpendicular to it.

Apart from elucidating the origin of the extraordinary „self“ state preparation we observe,
spin-motion coupling can also be used as an alternative cooling scheme. It utilizes the proposed
exchange between the motional state and the spin state of the trapped atoms. Adiabatically
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7. SUMMARY

increasing the external magnetic field presumably leads to the already mentioned preparation of
the atoms in the lowest energy Zeeman substate at the expense of increasing the phonon number.
Decreasing the external magnetic field adiabatically leads to the opposite effect. If the atoms are
prepared in a low-energy internal state, passing the resonance leads to higher energetic Zeeman
sublevels being populated while the phonon number decreases. Implementing this in a cooling
cycle, the basic model presented in this thesis hints that the trapped atoms can be cooled down
to the motional ground state, with only one light field for optical pumping and without driving
microwave transitions.
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[8] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. “event-ready-detectors” bell
experiment via entanglement swapping. Phys. Rev. Lett., 71:4287–4290, Dec 1993.

[9] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin. Quantum
repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83:33–80, Mar
2011.

[10] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum communication
with atomic ensembles and linear optics. Nature, 414(6862):413–418, Nov 2001.

[11] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced
transparency. Phys. Rev. Lett., 84:5094–5097, May 2000.

[12] M. Fleischhauer, S.F. Yelin, and M.D. Lukin. How to trap photons? storing single-photon
quantum states in collective atomic excitations1. Optics Communications, 179(1–6):395 –
410, 2000.

79



BIBLIOGRAPHY

[13] M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state polaritons.
Phys. Rev. A, 65:022314, Jan 2002.

[14] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. Electromagnetically
induced transparency: Optics in coherent media. Rev. Mod. Phys., 77:633–673, Jul 2005.

[15] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin.
Electromagnetically induced transparency with tunable single-photon pulses. Nature,
438(7069):837–841, Dec 2005.

[16] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and
A. Kuzmich. Storage and retrieval of single photons transmitted between remote quan-
tum memories. Nature, 438(7069):833–836, Dec 2005.

[17] Han Zhang, Xian-Min Jin, Jian Yang, Han-Ning Dai, Sheng-Jun Yang, Tian-Ming Zhao,
Jun Rui, Yu He, Xiao Jiang, Fan Yang, Ge-Sheng Pan, Zhen-Sheng Yuan, Youjin Deng,
Zeng-Bing Chen, Xiao-Hui Bao, Shuai Chen, Bo Zhao, and Jian-Wei Pan. Preparation and
storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous
parametric downconversion. Nat Photon, 5(10):628–632, Oct 2011.

[18] Harold J. Metcalf and Peter van der Straten. Laser Cooling and Trapping. Springer-Verlag,
1999.

[19] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger,
and W. Ketterle. Optical confinement of a bose-einstein condensate. Phys. Rev. Lett.,
80:2027–2030, Mar 1998.

[20] S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas. All-optical production of a
degenerate fermi gas. Phys. Rev. Lett., 88:120405, Mar 2002.

[21] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nat. Phys., 1(1):23–30, Oct
2005.

[22] Y. O. Dudin, L. Li, and A. Kuzmich. Light storage on the time scale of a minute. Phys.
Rev. A, 87:031801, Mar 2013.

[23] Hidetoshi Katori, Masao Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov. Ultra-
stable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett.,
91:173005, Oct 2003.

[24] Nicolas Schlosser, Georges Reymond, Igor Protsenko, and Philippe Grangier. Sub-
poissonian loading of single atoms in a microscopic dipole trap. Nature, 411(6841):1024–
1027, Jun 2001.

[25] Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet,
C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier. Diffraction-limited
optics for single-atom manipulation. Phys. Rev. A, 75:013406, Jan 2007.

80



Bibliography

[26] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and
A. Browaeys. Entanglement of two individual neutral atoms using rydberg blockade. Phys.
Rev. Lett., 104:010502, Jan 2010.

[27] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman. Deterministic
entanglement of two neutral atoms via rydberg blockade. Phys. Rev. A, 82:030306, Sep
2010.

[28] A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal.
Entangling two transportable neutral atoms via local spin exchange. Nature, 527:208,
2015.

[29] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel. Opti-
cal interface created by laser-cooled atoms trapped in the evanescent field surrounding an
optical nanofiber. Phys. Rev. Lett., 104:203603, May 2010.

[30] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P.
Stern, and H. J. Kimble. Demonstration of a state-insensitive, compensated nanofiber trap.
Phys. Rev. Lett., 109(3):033603, 2012.

[31] C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel. Storage of
fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica, 2(4):353–356,
Apr 2015.

[32] B. Albrecht, Y. Meng, C. Clausen, A. Dareau, P. Schneeweiss, and A. Rauschenbeutel.
Fictitious magnetic-field gradients in optical microtraps as an experimental tool for inter-
rogating and manipulating cold atoms. Phys. Rev. A, 94:061401, Dec 2016.

[33] Florian Warken. Ultradünne Glasfasern als Werkzeug zur Kopplung von Licht und Materie.
PhD thesis, Rheinische Friedrich-Wilhemls-Universtität Bonn, 2007.

[34] A. Thimothy Birks and Youwei W. Li. The shape of fiber tapers. Journal of Lightwave
Technology, 10(4):432–438, 1992.

[35] Ariane Stiebeiner. Nanofiber-based spectroscopy of organic molecules. PhD thesis, Jo-
hannes Gutenberg-Universität Mainz, 2013.

[36] R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner,
U. Wiedemann, D. Meschede, and A. Rauschenbeutel. Optical nanofibers and spec-
troscopy. Applied Physics B, 105(1):3–15, 2011.

[37] J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos,
L. A. Orozco, and S. L. Rolston. Ultrahigh transmission optical nanofibers. AIP Advances,
4(6):–, 2014.

[38] Florian Warken, Arno Rauschenbeutel, and Thomas Bartholomäus. Fiber pulling profits
from precise positioning. Photonics Spectra, 42(3), 2008.

81



BIBLIOGRAPHY

[39] A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel. Design and optimization of
broadband tapered optical fibers with a nanofiber waist. Optics Express, 18(22):22677–
22685, 2010.

[40] Christian Wuttke. Thermal excitations of optical nanofibers measured with a fiber-
integrated Fabry-Pérot cavity. PhD thesis, Johannes Gutenberg Universität Mainz, 2013.

[41] A. W. Snyder and J. D. Love. Optical Waveguide Theory. Chapman and Hall, New York,
1983.

[42] Amnon Yariv. Optical Electronics in Modern Communications. Oxford University Press,
Inc., New York, 5th edition, 1997.

[43] John David Jackson. Classical Electrodynamics. John Wiley & Sons, Inc, 3rd edition,
1999.

[44] Fam Le Kien, V. I. Balykin, and K. Hakuta. Angular momentum of light in an optical
nanofiber. Phys. Rev. A, 73:053823, May 2006.

[45] R. Mitsch. Interaction and manipulation of nanofiber-trapped atoms with spin–orbit cou-
pled light. PhD thesis, Technische Universität Wien, 2014.

[46] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel. Exploiting the
local polarization of strongly confined light for sub-micrometer-resolution internal state
preparation and manipulation of cold atoms. Phys. Rev. A, 89:063829, Jun 2014.

[47] E. Arimondo, M. Inguscio, and P. Violino. Experimental determinations of the hyperfine
structure in the alkali atoms. Rev. Mod. Phys., 49:31–75, Jan 1977.

[48] Robert J. Rafac and Carol E. Tanner. Measurement of the 133Cs6p2P1/2 state hyperfine
structure. Phys. Rev. A, 56:1027–1030, Jul 1997.

[49] Carol E. Tanner and Carl Wieman. Precision measurement of the hyperfine structure of the
133Cs 6P3/2 state. Phys. Rev. A, 38:1616–1617, Aug 1988.

[50] Fam Le Kien, Philipp Schneeweiss, and Arno Rauschenbeutel. Dynamical polarizability of
atoms in arbitrary light fields: general theory and application to cesium. EPJ D, 67(5):92,
2013.

[51] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch. Absolute optical frequency mea-
surement of the cesium d1 line with a mode-locked laser. Phys. Rev. Lett., 82:3568–3571,
May 1999.

[52] Peter J. Mohr and Barry N. Taylor. Codata recommended values of the fundamental phys-
ical constants: 1998. Rev. Mod. Phys., 72:351–495, Apr 2000.

[53] Daniel A. Steck. Cesium d line data. available online at http://steck.us/alkalidata (revision
2.1.4, 23 December 2010). accessed 20 October 2016.

82



Bibliography

[54] Alan Corney. Atomic and Laser Spectroscopy. Oxford University Press, 1997.

[55] Robert W. Schmieder. Matrix elements of the quadratic stark effect on atoms with hyperfine
structure. American Journal of Physics, 40(2):297–311, 1972.

[56] Abbas Khadjavi, Allen Lurio, and W. Happer. Stark effect in the excited states of rb, cs,
cd, and hg. Phys. Rev., 167:128–135, Mar 1968.

[57] N. L. Manakov, V. D. Ovisiannikov, and L. P. Rapoport. Atom in a laser field. Physics
Reports, 141(6):320–433, 03 1986.

[58] P. Rosenbusch, S. Ghezali, V. A. Dzuba, V. V. Flambaum, K. Beloy, and A. Derevianko.
ac stark shift of the cs microwave atomic clock transitions. Phys. Rev. A, 79:013404, Jan
2009.

[59] Ivan H. Deutsch and Poul S. Jessen. Quantum control and measurement of atomic spins
in polarization spectroscopy. Optics Communications, 283(5):681 – 694, 2010. Quo vadis
Quantum Optics?

[60] Fam Le Kien, P. Schneeweiss, and A. Rauschenbeutel. State-dependent potentials in a
nanofiber-based two-color trap for cold atoms. Phys. Rev. A, 88:033840, Sep 2013.

[61] G. Sague. Cold atom physics using ultra-thin optical fibres. PhD thesis, Friedrich-
Wilhelms-Universität Bonn, 2008.

[62] E. Vetsch. Optical Interface Based on a Nanofiber Atom-Trap. PhD thesis, Johannes
Gutenberg-Universität Mainz, 2010.

[63] D. Reitz. Coherent manipulation of nanofiber-trapped atoms. PhD thesis, Johannes Guten-
berg Universität Mainz, to be published.

[64] Wolfgang Demtröder. Laserspektroskopie 2. Springer Spektrum, 6th edition, 2013.

[65] Alexander I. Lvovsky, Barry C. Sanders, and Wolfgang Tittel. Optical quantum memory.
Nat Photon, 3(12):706–714, Dec 2009.

[66] Georg Heinze, Christian Hubrich, and Thomas Halfmann. Stopped light and image storage
by electromagnetically induced transparency up to the regime of one minute. Phys. Rev.
Lett., 111:033601, Jul 2013.

[67] M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and
M. D. Lukin. Efficient all-optical switching using slow light within a hollow fiber. Phys.
Rev. Lett., 102:203902, May 2009.

[68] M. R. Sprague, P. S. Michelberger, Champion T. F. M., England D. G., Nunn J., Jin X.-M.,
Kolthammer W. S., Abdolvand A., Russell P. St. J., and Walmsley I. A. Broadband single-
photon-level memory in a hollow-core photonic crystal fibre. Nat Photon, 8(4):287–291,
Apr 2014. Letter.

83



BIBLIOGRAPHY

[69] Erhan Saglamyurek, Jeongwan Jin, Varun B. Verma, Matthew D. Shaw, Francesco Marsili,
Sae Woo Nam, Daniel Oblak, and Wolfgang Tittel. Quantum storage of entangled telecom-
wavelength photons in an erbium-doped optical fibre. Nat Photon, 9(2):83–87, Feb 2015.
Letter.

[70] B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat. Demonstration of a memory
for tightly guided light in an optical nanofiber. Phys. Rev. Lett., 114:180503, May 2015.

[71] E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel.
Nanofiber-based optical trapping of cold neutral atoms. IEEE Journal of Selected Topics
in Quantum Electronics, 18(6):1763–1770, Nov 2012.

[72] Fam Le Kien and A. Rauschenbeutel. Propagation of nanofiber-guided light through an
array of atoms. Phys. Rev. A, 90:063816, Dec 2014.

[73] E. Arimondo. Coherent population trapping in laser spectroscopy. Progress in Optics,
35:257 – 354, 1996.

[74] A. Kasapi, Maneesh Jain, G. Y. Yin, and S. E. Harris. Electromagnetically induced trans-
parency: Propagation dynamics. Phys. Rev. Lett., 74:2447–2450, Mar 1995.

[75] S. E. Harris and Lene Vestergaard Hau. Nonlinear optics at low light levels. Phys. Rev.
Lett., 82:4611–4614, Jun 1999.

[76] Alexey V. Gorshkov, Axel André, Mikhail D. Lukin, and Anders S. Sørensen. Photon stor-
age in Λ-type optically dense atomic media. ii. free-space model. Phys. Rev. A, 76:033805,
Sep 2007.

[77] D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, and A. Rauschenbeutel. Coherence prop-
erties of nanofiber-trapped cesium atoms. Phys. Rev. Lett., 110:243603, Jun 2013.

[78] Claude Cohen-Tannoudji and Jacques Dupont-Roc. Experimental study of zeeman light
shifts in weak magnetic fields. Phys. Rev. A, 5:968–984, Feb 1972.

[79] Konstantin Y. Bliokh and Franco Nori. Transverse and longitudinal angular momenta of
light. Phys. Rep., 592:1–38, 2015.

[80] Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Philipp Schneeweiss, Jürgen Volz, Arno
Rauschenbeutel, Hannes Pichler, and Peter Zolleritsch. Chiral quantum optics. to be pub-
lished, 2016.

[81] A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a single atom in an optical tweezer
to its quantum ground state. Phys. Rev. X, 2(4):041014, 2012.

[82] Leonid Förster, Michał Karski, Jai Min Choi, Andreas Steffen, Wolfgang Alt, Dieter
Meschede, Artur Widera, Enrique Montano, Jae Hoon Lee, Worawarong Rakreungdet,
and Poul S. Jessen. Microwave control of atomic motion in optical lattices. Phys. Rev.
Lett., 103(23):233001, 2009.

84



Bibliography

[83] D. J. Wineland and Wayne M. Itano. Laser cooling of atoms. Phys. Rev. A, 20:1521–1540,
Oct 1979.

[84] K. E. Cahill and R. J. Glauber. Ordered expansions in boson amplitude operators. Phys.
Rev., 177:1857–1881, Jan 1969.

[85] D. J. Wineland, Wayne M. Itano, J. C. Bergquist, and Randall G. Hulet. Laser-cooling
limits and single-ion spectroscopy. Phys. Rev. A, 36:2220–2232, Sep 1987.

[86] D. E. Chang, J. I. Cirac, and H. J. Kimble. Self-organization of atoms along a nanophotonic
waveguide. Phys. Rev. Lett., 110:113606, Mar 2013.

[87] Tobias Grießer and Helmut Ritsch. Light-induced crystallization of cold atoms in a 1d
optical trap. Phys. Rev. Lett., 111:055702, Aug 2013.

[88] Stefan Scheel, Stefan Yoshi Buhmann, Christoph Clausen, and Philipp Schneeweiss. Di-
rectional spontaneous emission and lateral casimir-polder force on an atom close to a
nanofiber. Phys. Rev. A, 92:043819, Oct 2015.

[89] Francisco J. Rodriguez-Fortuno, Nader Engheta, Alejandro Martinez, and Anatoly V. Zay-
ats. Lateral forces on circularly polarizable particles near a surface. Nat. Commun., 6:8799,
Nov 2015.

[90] Sergey Sukhov, Veerachart Kajorndejnukul, Roxana Rezvani Naraghi, and Aristide Doga-
riu. Dynamic consequences of optical spin–orbit interaction. Nat. Photon., 9(12):809–812,
2015.

[91] Farid Kalhor, Thomas Thundat, and Zubin Jacob. Universal spin-momentum locked optical
forces. Appl. Phys. Lett., 108(6), 2016.

[92] D E Chang, K Sinha, J M Taylor, and H J Kimble. Trapping atoms using nanoscale quan-
tum vacuum forces. Nat. Commun., 5:4343, jul 2014.

[93] Fam Le Kien, K. Hakuta, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel. Quantum
dynamics of an atom orbiting around an optical nanofiber. Phys. Rev. A, 87:063607, Jun
2013.

[94] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel. Quantum state-
controlled directional spontaneous emission of photons into a nanophotonic waveguide.
Nat. Commun., page 5:5713, 2014.
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