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Abstract

Dicke superradiance is a hallmark effect in quantum optics and describes the collectively
enhanced decay of an ensemble of atoms. There, a fully excited ensemble emits light in
the form of a short, so-called superradiant burst due to the build-up of a collective dipole
moment during the decay. In order to observe this effect, the atoms typically have to
be placed in close vicinity to each other. While weakly excited ensembles do not show
such burst dynamics, their decay can still be collectively accelerated, even for a large
separation between the atoms.
In this thesis, we study collective radiative effects in nanofiber-coupled atomic ensembles
that extend over thousands of optical wavelengths. We optically couple up to 1000 atoms
to the guided modes of an optical nanofiber, which mediates long-range dipole-dipole
interactions between the atoms. We engineer the coupling to be unidirectional, realizing a
cascaded quantum system in which the dynamics of each atom is solely determined by
the dynamics of upstream atoms.
We coherently excite the atoms using nanofiber-guided optical pulses, allowing us to
explore the entire parameter regime from weak excitation to full inversion. We find
that coherent forward scattering, which is responsible for superradiance in the weak
excitation regime, plays an important role for the dynamics even close to full inversion. We
observe superradiant burst dynamics, which occurs in our system despite the macroscopic
separation between the atoms and an asymmetric coupling. We find that the peak-
emitted power scales even faster with the number of atoms than in the case of ideal Dicke
superradiance due to a collectively enhanced channeling efficiency into the nanofiber-
guided mode. By analyzing the coherence properties of the superradiant burst, we directly
identify two regimes of burst dynamics: in the first, an initial atomic coherence is induced
by the excitation laser, leading to a subsequent build-up of the total atomic dipole moment.
In the second regime, there is no initial coherence, and the superradiant burst is seeded
by vacuum fluctuations. We introduce a cascaded interaction model and find that it
accurately describes the collective dynamics of our system over the entire parameter
regime explored in this thesis.
Finally, we study the driven dynamics of a nanofiber-coupled ensemble of three-level atoms.
We drive two-photon Rabi oscillations between the two ground states of a Λ system and
observe the associated oscillatory Raman gain and absorption, which can be understood
as a coherent photon exchange between the two drive fields.
Our results shed light on the collective radiation of waveguide-coupled ensembles of
quantum emitters and could, e.g., be useful for the generation of multiphoton Fock states,
which are a valuable resource for quantum technologies.
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Zusammenfassung

Dicke Superradianz ist ein fundamentaler Effekt in der Quantenoptik und beschreibt den
kollektiv beschleunigten Zerfall eines Ensembles von Atomen. Dabei kann ein vollständig
angeregtes Ensemble durch die Ausbildung eines kollektiven Dipolmoments während des
Zerfalls Licht in Form eines kurzen, so genannten superradianten Pulses emittieren. Um
diesen Effekt zu beobachten, müssen sich die Atome in der Regel in unmittelbarer Nähe
zueinander befinden. Schwach angeregte Ensembles zeigen zwar keine solche Puls-Dynamik,
aber ihr Zerfall kann dennoch kollektiv beschleunigt sein, selbst bei einem großen Abstand
zwischen den Atomen.
In dieser Arbeit untersuchen wir kollektive Strahlungseffekte in Nanofaser-gekoppelten
atomaren Ensembles, die sich über Tausende von optischen Wellenlängen erstrecken. Wir
koppeln bis zu 1000 Atome optisch an die geführten Moden einer optischen Nanofaser,
die langreichweitige Dipol-Dipol Wechselwirkungen zwischen den Atomen vermittelt. Wir
realisieren eine unidirektionale Kopplung und damit ein kaskadiertes Quantensystem, in
dem die Dynamik jedes Atoms ausschließlich durch die Dynamik der vorgelagerten Atome
bestimmt wird.
Wir regen die Atome mit nanofasergeführten optischen Pulsen kohärent an, was uns
ermöglicht, den gesamten Parameterbereich von schwacher Anregung bis hin zur voll-
ständigen Inversion zu erforschen. Wir stellen fest, dass die kohärente Vorwärtsstreuung,
die für die Superradianz im Regime der schwachen Anregung verantwortlich ist, auch nahe
voller Inversion eine wichtige Rolle für die Dynamik spielt. Wir beobachten superradiante
Puls-Dynamik, die in unserem System trotz des makroskopischen Abstands zwischen den
Atomen und einer asymmetrischen Kopplung auftritt. Wir stellen fest, dass die emittierte
Spitzenleistung noch schneller mit der Anzahl der Atome skaliert als im Fall der idealen
Dicke Superradianz, was auf eine kollektiv erhöhte Sammeleffizienz der nanofasergeführten
Mode zurückzuführen ist. Die Analyse der Kohärenz-Eigenschaften des superradianten
Pulses erlaubt es uns, zwei Regime der Puls-Dynamik zu identifizieren: Im ersten Regime
induziert der Anregungslaser eine initiale atomare Kohärenz, die anschließend zu einem
Aufbau des totalen atomaren Dipolmoments führt. Im zweiten Regime besteht zunächst
keine Kohärenz, und der superradiante Puls wird durch Vakuumfluktuationen ausgelöst.
Wir entwickeln ein kaskadiertes Wechselwirkungsmodell und zeigen, dass es die kollektive
Dynamik unseres Systems über den gesamten in dieser Arbeit untersuchten Parameter-
bereich akkurat beschreibt.
Schließlich untersuchen wir die getriebene Dynamik eines Nanofaser-gekoppelten Ensem-
bles von Drei-Niveau-Atomen. Wir treiben Zwei-Photonen-Rabi-Oszillationen zwischen
den beiden Grundzuständen eines Λ-Systems und beobachten die damit verbundene os-
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zillatorische Raman-Verstärkung und -Absorption, die als kohärenter Photonentransfer
zwischen den beiden treibenden Feldern verstanden werden kann.
Unsere Erkenntnisse geben Aufschluss über die kollektive Strahlung von wellenleitergekop-
pelten Ensembles von Quantenemittern und könnten z.B. hilfreich für die Erzeugung von
Multiphotonen-Fock-Zuständen sein, welche eine wertvolle Ressource für Quantentech-
nologien darstellen.
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1 Introduction

1.1 Collective light-matter interaction

Understanding the interaction between light and matter is crucial for almost any research
field in the natural sciences. Matter absorbs, reflects, transmits, and emits light, allowing
us to perceive much of the world through our eyes, cameras, spectrometers, and photode-
tectors. This enables us to observe physical, biological and chemical processes in nature.
The study of light-matter interaction on the level of single atoms and single photons has
been a driving force for the research field of quantum optics. In the past sixty years,
technological advances such as the development of lasers have facilitated an ever-increasing
control of individual atoms [1, 2], enabling quantum technological applications in compu-
tation [3, 4], communication [5, 6], sensing [7], and simulation [8].
Once one has understood how a single atom radiates light, one could assume that an
ensemble of N atoms radiates in the same way, but simply N times as much as a single
atom. However, it was already pointed out in 1954 by Dicke that this is not the case [9].
He theoretically predicted that the spontaneous emission of an ensemble of atoms is
collectively altered when the atoms are confined to a volume that is small compared to
the optical wavelength cubed. In this thesis, we will call this regime of tight confinement
the Dicke regime. Depending on the quantum state of the atomic ensemble, the emission
can be either collectively enhanced (superradiant) or inhibited (subradiant). In particular,
Dicke predicted that a fully inverted ensemble would emit a short, intense burst of light.
This so-called superradiant burst dynamics is strikingly different from the exponential
decay dynamics of independently emitting atoms, for which the peak intensity scales
linearly with N . Superradiant burst dynamics can be understood as a build-up of atomic
coherence due to a collective decay of the atomic ensemble [10, 11]. This results in
constructive interference of the fields emitted by the atomic dipoles, which is why the
peak-emitted power scales quadratically with the number of atoms. Superradiant burst
dynamics was first observed in 1973 [12] in an optically pumped warm vapor, and a lot
of experimental and theoretical effort in the following decade went into understanding
different aspects of superradiance [10, 11].
Since then, the experimental control of atomic ensembles has improved tremendously. In
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particular, laser cooling and trapping of neutral atoms enable the precise preparation of
both the motional and electronic atomic state [13]. Dicke superradiance has been observed
in a variety of different atomic systems, from warm vapors [12] to Rydberg atoms [14, 15],
Bose Einstein condensates [16, 17], atoms in high-finesse cavities [18–20], ion traps [21],
and tightly confined dipole traps [22, 23]. In addition, Dicke superradiance has been
observed in systems consisting of artificial atoms, such as color centers in diamond [24],
superconducting qubits [25], quantum dots, molecular aggregates, and crystals [26, 27].
At the same time, subradiance in the Dicke regime has proven to be experimentally
elusive due to the suppressed coupling to light and has only been observed in a few
experiments [21, 23, 28–31].
While most of the research on collective radiative effects in the 20th century has focused
on super- and subradiance in the Dicke regime, the collective radiation of dilute atomic
ensembles has recently gained renewed interest. In 2006, Scully et al. proposed that the
absorption of a single photon can prepare an atomic ensemble in a so-called timed Dicke
state, in which the arrival time of the photon is imprinted as a relative phase factor onto
each atom [32]. The subsequent decay of the atomic ensemble then features so-called
single-photon superradiance [33, 34], i.e., strongly enhanced emission into the forward
direction due to constructive interference of the atomic dipoles. Following the initial
superradiant decay, single-photon subradiance can also occur at later times [35]. In the
last five years, such dynamics has been observed in dilute clouds of cold atoms [36–39],
Rydberg super atoms [40], and waveguide-coupled ensembles [41–47]. Weakly excited
atoms can be described as classical dipole emitters with a linear response [48, 49]. There-
fore, single-photon superradiance is also referred to as superradiance in the linear optics,
or linear response regime [50].
The phenomena of single-photon superradiance and Dicke superradiance of a fully excited
ensemble seem quite different at first sight, and, with very few exceptions [23, 51], most
experimental and theoretical works have studied either one or the other. However, both
phenomena are intimately connected. Their underlying mechanism is the interference of
the fields emitted by the atomic dipoles during their decay, which leads to an enhanced or
inhibited collective decay rate of the ensemble.
With the advent of quantum technologies in the last few decades, new applications based
on the collective radiation of atomic ensembles have been proposed. For example, super-
radiant lasers can be used as an active optical clock, promising record stabilities [52–54].
Moreover, the advances in controlling neutral atoms and, more recently, molecules in
optical lattices [8] and tweezer arrays [55] have sparked new ideas for applications of
collective light-matter interaction. Superradiant emission can be used as a resource for
the generation of complex quantum states of light [56–58], which may prove useful for
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metrology [59, 60]. In particular, ordered atomic arrays with subwavelength spacing hold
great potential for applications. Subradiant states of such atomic arrays lend themselves
to efficient quantum storage of light due to their reduced decay rates [61, 62]. It was
recently demonstrated that a small interatomic spacing leads to strong reflectivity of a
two-dimensional array of atoms, which features subradiant states [63]. Moreover, the
reflectivity can be coherently controlled using a single ancilla qubit [64], constituting a
first step towards constructing quantum coherent metasurfaces [65].
Experiments with laser-cooled atoms or molecules usually rely on macroscopic free-space
setups. While this approach allows for unprecedented experimental control, a lot of
experimental effort in the last decade has been geared towards integrating laser-cooled
atoms with nanophotonic structures, such as nanophotonic resonators and waveguides [66].
Initially, a major motivation for this research was improving on free-space setups in terms
of the atomic coupling strength to a single optical mode, as well as the miniaturization
of the experimental setups [67, 68]. However, it soon became clear that nanophotonics
allows one to realize completely new paradigms of light-matter interaction [66, 69]. In
particular, the ability to couple quantum emitters to waveguides has led to the emerging
field of waveguide quantum electrodynamics (wQED), which we will review in the following
section. Specifically, we will focus on its potential to study and realize novel effects in
collective light-matter interaction.

1.2 Waveguide quantum electrodynamics

The field of wQED describes the interaction between quantum emitters and photons
that propagate in a waveguide [41]. As quantum emitters, most prominently quantum
dots, superconducting qubits, quantum solid-state defects, and neutral atoms have been
used to implement wQED [41, 70–73]. For the waveguide, one can, e.g., use optical
nanofibers, hollow-core fibers, superconducting transmission lines, and photonic crystal
waveguides [41]. Instead of reviewing all aspects and promises of wQED, we will highlight
three main differences compared to free-space setups, which make wQED an intriguing
platform for studying collective light-matter interaction.
First, one can scale the number of emitters without compromising the atom-light coupling
strength. Using a free-space Gaussian laser beam, one has to decrease the beam waist to
increase the atom-light coupling strength. This decreases the Rayleigh length of the beam,
leading to an inhomogeneous broadening of the coupling strengths for extended ensembles
consisting of many atoms. In contrast, waveguided light fields do not diverge, and one
can thus achieve large atom-light coupling, even for samples extending over macroscopic
distances.
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Second, it has been shown that the strong confinement of light in the transverse direction in
a nanophotonic waveguide leads to longitudinal polarization components of the evanescent
field. This effect, in combination with atomic polarization selection rules, can be used
to engineer propagation direction-dependent atom-light coupling. This so-called chiral
light-matter interaction is inherent to many wQED platforms and represents a new degree
of freedom for the control of quantum optics systems [69]. In particular, in this thesis, we
will use the chiral coupling in our experimental system to study the collective radiative
dynamics of a cascaded quantum system [74, 75].
Third, coupling many atoms to a shared optical mode gives rise to dipole-dipole interactions
between the atoms, mediated by the optical mode. For free-space optical modes, the
corresponding interaction strength decays with the distance between the atoms. However,
if the atoms share a common waveguide mode, the interaction becomes, in principle,
infinite-ranged.
Specifically, we experiment with nanofiber-coupled ensembles of neutral atoms in this thesis.
While, there, the coupling strength is relatively low compared to other wQED systems,
the advantage is that thousands of practically indistinguishable atoms can be coupled
to the nanofiber mode. These features make wQED with neutral atoms an intriguing
platform to shed light on the fundamental mechanisms of super- and subradiance and
study new forms of collective light-matter interaction.

1.3 Outline of the thesis

In this thesis, we study collective radiative effects of nanofiber-coupled atomic ensembles.
In particular, we explore how the radiative dynamics changes from weak excitation to
full inversion, for which superradiant burst dynamics occurs. The thesis is organized as
follows.
In chapter 2, we describe the experimental apparatus and the experimental techniques
necessary to create an optical nanofiber-based interface for neutral cesium atoms. We
describe and characterize the optically trapped ensemble of atoms in terms of its optical
depth, the single-atom coupling strength to the guided modes, and the trapping lifetime.
We also describe the optical detection setup and the generation of nanosecond-long optical
pulses with a large extinction ratio.
In chapter 3, we discuss the theoretical modeling of our experiment. We discuss the role
of chiral atom-waveguide coupling and experimental imperfections in the superradiant
emission of a nanofiber-coupled atomic ensemble. We present two new models which
assume unidirectional atom-waveguide coupling and analyze the parameter space in which
the different models are applicable.
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In chapter 4, we describe the coherent excitation of an ensemble of nanofiber-coupled
atoms by short, resonant Rabi pulses. We discuss different effects that limit the fidelity of
the state preparation and infer the achieved excited state probability by measuring the
number of photons that the atoms absorb from the excitation pulse. Then, we turn to the
collective decay dynamics following the excitation pulse. We find that coherent forward
scattering strongly influences the dynamics even beyond the linear response regime.
In chapter 5, we report on the observation of superradiant burst dynamics in a wQED
system. We analyze the scaling of the peak emitted power with the number of atoms and
explore superradiant burst dynamics for a non-zero initial atomic dipole. We measure
the coherence properties of the emitted light and identify two distinct regimes of burst
dynamics. Finally, we briefly discuss first insights into the occurrence of subradiant states
beyond the regime of linear response.
In chapter 6, we drive the atomic ensemble with two laser fields in a Λ configuration,
realizing a three-level system. We observe Autler-Townes splitting in the transmission
spectrum of a nanofiber-guided probe laser field. We then drive the atomic ensemble on a
far-off-resonant two-photon resonance. We observe and analyze an oscillatory Raman gain
of the probe field, which is due to two-photon Rabi oscillations between the two ground
states of the Λ system.
Finally, in chapter 7, we conclude and discuss perspectives for future research.
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2 Optical nanofiber-based interface

The lab book entry of our experiment from November 20/21, 2008, is shown in Fig. 2.1
and represents a major milestone in our field: the first optical trapping and interfacing of
neutral atoms close to a nanofiber [76]. Since then, the experiment has survived a move
from Mainz to Vienna, and in 2019, we moved it from Vienna to Berlin. Importantly, the
nanofiber has never been exchanged in the last 14 years, which showcases its robustness.
It has been the subject of six dissertations and numerous publications, which have each
deepened the understanding and control of our experimental system. Since much of
the experimental apparatus and standard experimental techniques are described in the
dissertations of previous students [77–82], we will only briefly explain the aspects and
techniques that are most relevant to this thesis.
We describe the properties of the evanescent field of the nanofiber-guided mode, which
is used as an optical interface for the atoms. We explain the optical trapping and the
experimental preparation sequence. We then present the optical detection setup and
characterize the ensemble of nanofiber-trapped atoms by measuring the number of atoms
and their coupling strength, as well as their trapping lifetimes. Finally, we describe the
generation of ns-long optical pulses with a large extinction ratio

Figure 2.1: Lab book entry from November, 2008: “Trapped atoms in fiber dipole
trap!!! :-)”. Credits: Dr. Eugen Vetsch.

2.1 Tapered optical fiber

The nanofiber is implemented as the waist of a tapered optical fiber (TOF), with a nominal
length of 5 mm and a nominal diameter of 2rfiber=500 nm, see Fig. 2.2(a). It was produced
in a heat-and-pull process, with a 4 cm-long taper section [76, 83, 84]. Along this taper, the
mode of the standard single-mode fiber is adiabatically transformed into the fundamental
nanofiber-guided HE11 mode. The adiabatic tapering ensures high transmission through
the entire TOF and was measured to be about 97 % [76]. The intensity distribution of the
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Figure 2.2: (a) Sketch of the tapered optical fiber (not to scale). (b) Intensity
of the nanofiber-guided mode in the x-z plane. The light field is quasilinearly
polarization along x, indicated by the red arrow, and propagates in the +y-
direction. The fiber surface is shown as the black dashed line. The intensity
of the evanescent field decays in the radial direction and is larger along the
polarization axis. (c) and (d) Polarization overlaps as a function of the azimuthal
angle, ϕ, at a radial distance of 230 nm for two different quasilinear polarizations,
indicated by the red arrows. The quantization axis is chosen along z.

nanofiber-guided mode in the x-z plane is shown in Fig. 2.2(b) for a light field propagating
in the +y-direction, i.e., into the plane [77]. The light field with a power of 1 nW is
quasilinearly polarized along the x-axis, which breaks the azimuthal symmetry such that
the intensity is stronger along the polarization axis. The intensity decays approximately
exponentially in the radial direction, with a decay constant that is proportional to the
wavevector of the light field. Figures 2.2(c) and (d) illustrate how the polarization of
the evanescent field changes azimuthally at a fixed radial distance of 230 nm from the
nanofiber surface. We plot the overlap with σ+-, σ−-, and π-polarization as the red solid,
blue dotted, and green dashed line, respectively. Note that the quantization axis is chosen
along z. In (c), the laser field is quasilinearly polarized along x [85]. Notably, the light
is almost perfectly σ−-polarized for ϕ = 0 and σ+-polarized for ϕ = π (92 % overlap,
respectively). Due to symmetry reasons, these local polarizations have to flip when the
light field propagates in the other direction. The local polarization thus depends on the
propagation direction of the light field. This effect is also referred to as spin-momentum
locking [69]. In (d), the laser field is quasilinearly polarized along z, and the light is
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Figure 2.3: (a) Schematic of the nanofiber-based trapping setup. The blue-
detuned running wave (760 nm) and red-detuned standing wave (1064 nm) fields
create a dipole trap for the cesium atoms (yellow spheres). We use a resonant,
guided laser field (852 nm) to perform degenerate Raman cooling and measure
the optical depth via transmission spectroscopy. (b) Radial scalar trapping
potential as a function of the distance from the nanofiber surface. The solid black
line depicts the total trapping potential, calculated by summing up the blue
trapping potential (blue dashed line), the red trapping potential (red dotted line),
and the Caisimir-Polder potential (green dash-dotted line). (c) Total trapping
potential in the x-z plane. The cross-section of the nanofiber with a diameter
of 2rfiber=500 nm is indicated as a white circle. (d) Axial cut through the total
trapping potential.

perfectly π-polarized for ϕ = 0, π. In this case, the local polarization is independent of
the propagation direction.

2.2 Nanofiber-based two-color optical dipole trap

In the experiment, we want to optically interface cesium atoms using the evanescent field
of the nanofiber. In order to achieve substantial and uniform atom-light coupling, we
trap the atoms in the close vicinity of the nanofiber surface using a two-color optical
dipole trap, see Fig 2.3(a) [76]. The blue detuned, running wave field has a wavelength
of 760 nm and a power of 20.5 mW. The red-detuned, standing wave trapping field has
a wavelength of 1064 nm and a total power of 2.4 mW. When calculating the trapping
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Figure 2.4: Schematic of the basic experimental sequence. Apart from the probing
sequence and the reference, the sequence is the same for all experiments presented
in this thesis.

potential, we take into account the scalar potentials induced by the two trapping fields as
well as the attractive Casimir-Polder force [86, 87]. In Fig. 2.3(b), we plot these three
components and the total trapping potential as a function of the radial distance from the
fiber surface for an antinode of the red standing wave and z = 0. Since the decay constants
for the two trapping light fields are different, the total potential features a minimum at
a radial distance of about 230 nm from the nanofiber surface, with a potential depth
of about 240 µK. Both trapping light fields are quasilinearly polarized. However, the
blue trapping field is polarized orthogonally to the red trapping field, which strengthens
the confinement in the azimuthal direction. As can be seen in Fig. 2.3(c), two potential
minima are created on opposing sides of the fiber. Finally, the standing wave configuration
of the red-detuned trapping laser field facilitates axial confinement. It creates a periodic
modulation of the trapping potential in the axial direction, with a periodicity of about
500 nm, see Fig. 2.3(d). To summarize, the resulting trapping potential consists of two
diametral arrays of trapping sites.

2.3 Experimental sequence

The basic structure of the experimental sequence used for all experiments presented in
this thesis is schematically depicted in Fig. 2.4. We first trap and cool atoms using a
magneto-optical trap (MOT), which is spatially overlapped with the nanofiber. The atoms
are then further cooled using an optical molasses and probabilistically loaded into the
two-color dipole trap [76]. Since our trap loading operates in the collisional blockade
regime, at most one atom can be loaded into each potential minimum, which limits the
average filling factor to 1/2 [88]. After the loading, the atoms are trapped in two diametric
arrays of trapping sites with random filling. We then apply a magnetic offset field of
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Figure 2.5: Relevant cesium energy levels. The two main transitions are denoted
as D1 (62S1/2 → 62P1/2) and D2 (62S1/2 → 62P3/2). The values are taken from
[89].

about 0.5 G in the +z-direction and perform degenerate Raman cooling (DRC) with a
fiber-guided laser field that is near-resonant with the |6S1/2, F = 4⟩ → |6P3/2, F

′ = 5⟩ D2
line transition, see Fig. 2.5 [90]. It is quasilinearly polarized along x. In this configuration,
only σ−-polarized light cools the atoms, while σ+-polarized light leads to degenerate
Raman heating, where we have chosen the quantization axis along z. The atoms on
one side of the fiber are thus expelled from their traps in about 20 ms, and we are left
with a one-dimensional array of atoms, which are cooled close to their motional ground
state [90]. In addition, DRC optically pumps the atoms to their outermost Zeeman
sublevel, |6S1/2, F = 4,mF = −4⟩. This marks the end of our loading and preparation
sequence. In order to infer the number of trapped atoms, we measure the optical depth of
the nanofiber-trapped ensemble, OD0, in each sequence, see section 2.5. We then proceed
with our probing sequence, which varies depending on the experiment, as detailed in
chapters 4, 5, and 6. After the probing, we again measure the optical depth, OD1, in
order to infer how many atoms were lost during the probing. Finally, we eject the atom
from the trap by switching off the red trapping laser field for 6 ms, measure the detector
background, and repeat the probing sequence without atoms for reference.

2.4 Detection setup

In our experiments, we are interested in both the light transmitted through the fiber
(forward direction) and the backward scattered light. Therefore, we send the probe laser
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Figure 2.6: Schematic of the core elements of the detection setup in both forward
and backward direction. Multi-mode and single-mode fibers are depicted as thick
orange and thin yellow lines, respectively. The light is first spectrally band-pass-
filtered around 852 nm using volume Bragg gratings (VBG) and band-pass filters
(BP). Finally, the light is detected using single-photon counting modules (SPCM)
and a hybrid photodetector (HPD). A local oscillator can be overlapped with
the signal using a fiber-integrated 50:50 beamsplitter (FI).

field through a 10 : 90 beamsplitter before launching it into the nanofiber. This allows us
to collect 90% of the backward-scattered photons. The detection setups in forward and
backward directions are schematically depicted in Fig. 2.6. We typically excite and probe
the atoms with fiber-guided laser pulses that are near-resonant to the D2 transition at a
wavelength of 852 nm. In order to separate the signal from the trapping light fields and
suppress other unwanted background light, the light is first spectrally band-pass-filtered
around 852 nm using a volume Bragg grating in both forward and backward direction1.
An additional band-pass filter at 852 nm in front of each detector increases the spectral
filtering even further2. The background is then dominated by Raman scattering of the
blue trapping laser field with the fiber material. This process also creates photons at
852 nm, which can therefore not be spectrally filtered [91]. The optical power of this
background is about 0.5 pW. In the forward direction, the signal is split up and detected
by two single-photon counting modules3 (SPCM) and one hybrid photodetector4 (HPD)
in counting mode. SPCM 1 is used to measure the transmission spectrum, from which
we infer the optical depth before and after each probing sequence. In principle, all
detectors can be used to measure the transmitted power during the probing sequence.
Depending on the experimental requirements, it is advantageous to use either the SPCMs,

1OptiGrate, RBG-852-94
2Semrock, LL01-852-12.5
3Excelitas Technologies, SPCM-AQRH-14-FC
4Hamamatsu, HPD: R10467U-50, amplifier: C5594-22
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the HPD, or both. The relevant specifications of the two detector types are summarized
in Tab. 2.1. While the SPCMs feature a much larger quantum efficiency, the HPD has
two key advantages. First, the dead time is about 15 times smaller than for the SPCMs,
such that much higher count rates can be detected. Second, the HPD features negligible
afterpulsing probability. This is particularly important in pulsed experiments, where the
power of the atomic fluorescence can be much smaller than the excitation power, such
that afterpulsing can be the limiting factor for the signal-to-noise ratio. Both the dark
counts and the timing jitter of the two detectors are on the same order of magnitude and
do not pose any significant limitation for our experiments.

Parameter SPCM HPD
Quantum efficiency [%] 50 12
Dark counts [Hz] 1000 2000
Timing jitter [ps] 350 130
Dead time [ns] 22 1.5
Afterpulsing probability [%] 0.5 negligible

Table 2.1: Comparison between the two detector types for key specifications.

For the heterodyne measurements in chapter 5, the signal field incident on the HPD
is overlapped with a detuned local oscillator field using a fiber-integrated 90:10 beam
splitter. In the backward direction, the signal is split up using a polarizing beam splitter
(PBS), which can be used to select a particular polarization or in order to balance the
detector counts. The signals at the two output ports of the PBS are then detected with
SPCM 3 and 4.

2.5 Measurement of the optical depth

The optical depth of a medium, OD, is defined via the resonant power transmission
coefficient of a weak probe field, T = exp(−OD). However, for large OD, the on-
resonance transmission is very small and thus hard to measure. Instead, we infer the OD
from transmission spectroscopy [76]. We sweep the frequency of a fiber-guided laser field
over the |6S1/2, F = 4⟩ → |6P3/2, F

′ = 5⟩ D2 line transition and measure the transmitted
power with an SPCM. The laser field is quasilinearly polarized along x, such that it
is almost perfectly σ−-polarized at the position of the atoms. It thus predominantly
drives the cycling transition, |6S1/2, F = 4,mF = −4⟩ → |6P3/2, F

′ = 5,m′
F = −5⟩. We

also record a reference measurement without atoms and a background measurement, in
which the laser is shut off, Fig. 2.7(a). This allows us to convert the photon counts to
a transmission coefficient. We fit the resulting transmission spectrum to a saturated
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Figure 2.7: Measurement of the transmission spectrum in order to infer the
OD. (a) Histogram of the detector counts as the frequency of a probe laser is
scanned across resonance with atoms (red dots) and without atoms (light-red
dots). The detector background is shown as black dots. (b) Using the data in
(a), we compute a transmission spectrum. We fit a saturated Lorentzian profile
and extract the OD, see orange solid line.

Lorentzian profile and extract the optical depth from the fit, see Figure 2.7(b).

2.6 Trapping lifetime

Without any cooling, the lifetime of the atoms in their trap is about 60 ms, see green dots
in Fig. 2.8. By continuously cooling the atoms with a fiber-guided laser on the D2 line, as
explained above, we can prolong the lifetime to about 1.3 s, see red squares in Fig. 2.8 [90].
However, since we are often interested in the light that the atoms scatter into the nanofiber-
guided mode on the D2 transition, the cooling light constitutes an unwanted background.
To mitigate this background, we can alternatively cool the atoms using a σ−-polarized,
free-space laser field that propagates in the +z-direction. To further reduce signal pollution,
we use a laser that is near-resonant with the |6S1/2, F = 4⟩ → |6P1/2, F

′ = 4⟩ D1-line
transition. This light can then be easily separated from the D2-line signal by a spectral
filter. DRC with the D1 laser is slightly less effective, and we find a lifetime of about
850 ms, see Fig. 2.8.
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Figure 2.8: Lifetime of the trapped atoms without cooling, see green dots, and
for two different realizations of DRC, see blue diamonds and red squares.

2.7 Measurement of the number of atoms

In order to measure the number of trapped atoms, we tune a fiber-guided laser field on
resonance with the cycling transition and measure the power absorbed by the atoms as a
function of the input power, see Fig. 2.9 [76]. By fitting to a saturation model5, we find
that the fully saturated ensemble absorbs a power of Pmax

abs = 72(2) pW. We compare this
to the power radiated by a single, fully saturated atom,

Psat = Γ
2 ℏω ≈ 3.8 pW. (2.1)

and infer the number of trapped atoms in this measurement, N = Pmax
abs /Psat = 19.1(5).

Together with the measured optical depth of OD = 0.68(2), we infer an optical depth per
atom of ODsingle atom = 0.036(3). This is in agreement with a direct measurement of the
optical depth of a single atom, 0.039(1), which we carried out with a very similar trapping
configuration [91].

2.8 Atom-light coupling strength

The atom-light coupling strength in a waveguide system is commonly quantified by the
factors βf and βb, which denote the coupling strengths to the forward- and backward-

5Fitting function: Pabs(Pin) = P max
abs [1 + exp (−bPin)]
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Figure 2.9: Measurement of the absorbed power, Pabs as a function of input
power, Pin. We fit the data with a saturation model (red line) and use the power
absorbed by a fully saturated ensemble to infer the number of trapped atoms,
see black dashed line.

propagating modes, respectively [69],

βf = Γf/Γ, (2.2)

βb = Γb/Γ. (2.3)

Here, Γf and Γb denote the single-atom decay rates into the forward- and backward-
propagating guided modes, respectively, and Γ the total decay rate. We define the forward
direction as the +z-direction, see Fig. 2.3(a), i.e., the direction in which we measure the
optical depth. For βf ≪ 1, the optical depth of an ensemble of N atoms is given by
4βfN [69], see Appendix A.1. Using the measurement of the number of atoms shown in
Fig. 2.9, we infer βf = 0.009(1).
Theoretically, βf and βb are calculated as overlap integrals of the atomic radiation mode
and the guided modes. This overlap integral depends on both the radial and azimuthal
position of the atoms. In Fig. 2.10(a), we show the total coupling strength to the forward-
propagating mode, βf , as a function of the radial distance from the nanofiber surface,
for y = z = 0 nm on a semi-log scale. We assume that the atom is initially prepared in
|6P3/2, F = 5,mF = −5⟩, such that the atomic fluorescence is perfectly σ−-polarized. The
evanescent field decays exponentially with a decay constant of about kf = π/λf , where
λf ≈ 745 nm is the wavelength of the atomic transition in the nanofiber-guided mode.
Therefore, also the coupling strength decreases exponentially.
The dashed black line indicates the position of the trapping minima, which occur at a
radial distance of about 230 nm from the nanofiber surface. There, we expect a coupling
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Figure 2.10: Calculated atom-waveguide coupling strength as a function of the
distance from the nanofiber surface for y = z = 0 nm. We assume a σ−-polarized
atomic emission. (a) Coupling strength to the forward-propagating mode, βf .
(b) Directionality of the atom-waveguide coupling, D. The black dashed lines
indicate the position of the trapping minima.

strength of about βf = 0.021, which is more than twice as large as the measured value of
0.009(1). As described in Ref. [82], the mean distance from the nanofiber surface and the
spread of the corresponding probability distribution increase with the atomic temperature
since our trapping potential is not harmonic. Consequently, the mean coupling strength β̄
decreases as the temperature increases. At the same time, the ratio between the standard
deviation, σβf

, and the mean, β̄, increases. However, most of the experiments described in
this thesis are not carried out in thermal equilibrium, and it is challenging to measure or
simulate the actual distribution of βf values during the probing sequence. Therefore, we
will not attempt to numerically model the thermal distribution of βf -values, but rather fit
it to our experimental observations, see section 3.7.
Since the local polarization of the nanofiber-guide mode depends on the propagation
direction, the coupling strengths βf,b can be asymmetric too. To quantify this asymmetry,
we introduce the directionality, D,

D = βf − βb

βf + βb
. (2.4)

where, D ∈ [−1, 1]. Note that D = 0 corresponds to symmetric coupling, and D = ±1
means that the atoms exclusively couple to the forward- or backward propagating mode,
respectively. In Fig. 2.10(b), we plot the directionality, D, as a function of the distance
from the nanofiber surface for σ−-polarized atomic fluorescence. The directionality varies
only slightly with the distance to the nanofiber surface. At the position of the trapping
minima, D ≈ 0.84. This means that βf is about 12 times larger than βb, which was also
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Figure 2.11: Optical pulse, derived from two cascaded Mach-Zehnder switches.
(a) A fit (orange line) of the measured histogram of detector counts (purple
dots) reveals a rise- and fall time of 454(3) ps and 394(3) ps, respectively. (b)
Extinction ratio as a function of time after the switch-off. The horizontal error
bars correspond to the widths of the time bins.

verified experimentally using our experimental setup [92]. This so-called chiral coupling
enabled, e.g., the realization of optical non-reciprocal devices that are controlled by the
atomic spin [69, 93]. We note that the directionality switches sign when the atoms emit
σ+-polarized light. For π-polarized emission, the coupling is symmetric, i.e., D = 0.

2.9 Generation of nanosecond-long optical pulses

In section 4.1, we coherently excite the atoms with optical pulses that are much shorter
than the 30.5 ns-lifetime of the 6P3/2 state [89]. These optical pulses are cut out from a
continuous wave laser field using two fiber-integrated, commercial Mach-Zehnder interfer-
ometers (MZI) in series6. Both of these devices feature two electrical inputs, which can
be used to tune the relative phase between the two interferometer arms. One input has
a bandwidth on the order of about 1 kHz, while the second one features a much faster
bandwidth on the order of 10 GHz. We apply a bias voltage to the slow input to set
the MZIs to minimal transmission. We calibrate the bias voltages of both MZIs in every
experimental sequence during the MOT loading phase in order to compensate for drifts.
We use the slow input to scan the phase while monitoring the interferometer transmission
with a photodiode. We then fit the resulting sinusoidal curve and set both interferometers
to minimal transmission. In order to create an optical pulse, we then send an electrical

6Jenoptik, AM830, and AM830b
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pulse into the fast input of the MZIs, with an amplitude that corresponds to a π phase
shift. The electrical pulses are generated by an arbitrary waveform generator7. As a result,
the MZIs switch to maximal transmission for the duration of the electrical pulse, and
an optical pulse is created. In Fig. 2.11(a), we show a 4 ns-long optical pulse that was
recorded with the HPD. By fitting both the first and second half of the pulse to a sigmoid
function8, we extract a 10-90 rise- and fall time of 454(3) ps and 394(3) ps, respectively.
We note that these times are upper bounds since the bandwidth of the oscilloscope and
the timing jitter of the hybrid detector are on the same order of magnitude as the rise-
and fall time, such that we are not sure if this measurement is limited by the optical pulse
or by our detection. In (b), we show the measured extinction ratio as a function of time
after switching off the pulse. The extinction ratio rises quickly and surpasses 103 after
about 1.5 ns. After about 8 ns, the extinction ratio is larger than 104, and for even larger
times, we measure a maximum value of 2.5(1.5) × 105.

7Active Technologies, Arb Rider AWG-5062
8Fitting function: S(t) = A/

(
1 + e±k(t−t0)) for falling and rising edge, respectively. The 10-90 rise (and

fall) times are given by τ = 2 ln(9)/k
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3 Theoretical modeling

Before discussing our experimental results in chapters 4 and 5, we first introduce several
theoretical models that will allow us to understand and interpret our measurements. We
are interested in the dynamics of an ensemble of two-level atoms that interact via the
shared nanofiber modes but can also independently decay into free space. In particular,
we will focus on the cases relevant to our experimental implementation: we describe the
optical excitation of the ensemble using nanofiber-guided optical pulses. Moreover, we
will analyze the role of directional atom-waveguide coupling, as described in section 2.8.
This chapter is organized as follows. First, we review linear response theory and an
approach based on a many-body master equation. These two models are extensively
described in the literature and serve as a reference for two new models: we describe two
cascaded interaction models that allow us to approximately describe the dynamics even
for large ensembles of atoms. Finally, we analyze the parameter regimes in which the
different models are applicable.

3.1 Linear response theory

If the power of the excitation pulse is chosen to be so small that the probability to find
each atom in the excited state, pexc, practically vanishes, then the atoms behave like
classical Lorentz oscillators. In this regime of linear optics, the field transmission spectrum
for an ensemble of N atoms is given by the following expression, see Appendix A.3.1 for a
derivation:

tN (∆) =
(

1 − βf Γ
Γ/2 + i∆

)N

, (3.1)

where ∆ denotes the detuning from resonance and Γ the atomic population decay rate.
For a given input field, Ein(t), the time dynamics of the field transmitted through the
ensemble, Ef(t), can then be calculated using the following relation [46],

Ef(t) = F−1 [F [Ein(t)] · tN (∆)] , (3.2)

where F and F−1 denote the Fourier transform and its inverse, respectively. There is a
wealth of collective radiative effects that occur in the weak excitation regime, many of which
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have been experimentally observed [33, 36–40, 63, 94, 95]. In particular, superradiance
(subradiance) has been observed in ensembles of waveguide-coupled atoms, evidenced by
a collectively enhanced (inhibited) decay [42–47]. However, linear response theory only
describes a narrow range of the entire Hilbert space. In this work, we are interested in
the collective radiation of atoms beyond the linear regime, i.e., where the excited state
probability is not negligible anymore.

3.2 Many-body master equation

A more general solution to this problem that goes beyond linear response theory has been
treated many times in literature. Usually, the electromagnetic field is traced out within
the Born-Markov approximation, which leads to a many-body master equation for the
atomic density matrix, ρ̂ [41, 96, 97],

˙̂ρ = − i
ℏ

[
Ĥ, ρ̂

]
+ L [ρ̂] . (3.3)

Here, Ĥ is an effective Hamiltonian, and L describes dissipation. Within the rotating
wave approximation and in a frame rotating at the laser frequency, they read

Ĥ = ℏ∆
N∑

i=1
σ̂†

i σ̂i +
N∑

i=1
ℏΩi(σ̂†

i + σ̂i) +
N∑

i,j=1
ℏJij σ̂

†
i σ̂j (3.4)

L[ρ̂] =
N∑

i,j=1

Γij

2
(
2σ̂iρ̂σ̂

†
j − ρ̂σ̂†

j σ̂i − σ̂†
j σ̂iρ̂

)
, (3.5)

where σ̂i = |g⟩i⟨e|i denotes the atomic lowering operator of the ith atom, with ground
and excited state, |g⟩i and |e⟩i, respectively. The first and second terms in the effective
Hamiltonian describe the free evolution of the atoms and the optical drive, respectively.
The driving strength is quantified by a complex-valued Rabi frequency, Ωi, and the
laser detuning from resonance is denoted ∆. The third term describes the coherent
interaction between different atomic spins, with an amplitude Jij . This term represents a
flip-flop interaction, where one atom emits a photon into the guided mode, which is then
reabsorbed by another atom. This process is equivalent to a dipole-dipole interaction,
which is mediated by the guided mode. The dissipative terms, L[ρ̂], describe the incoherent
atomic decay rates, Γij , which are modified due to the shared radiation mode. In general,
Jij and Γij are proportional to the real and imaginary parts of the Green’s function of the
system, respectively. Since the average interatomic distance in our experiment is larger
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than half the free-space wavelength of the radiation, we neglect any interatomic coupling
via free space [98], and Jij and Γij take a particularly simple form [99],

Jij = − i
2
[
βf Γeikf (zi−zj) − βbΓe−ikf (zi−zj)

]
sign(i− j), (3.6)

Γij =βf Γe−ikf (zi−zj) + βbΓe+ikf (zi−zj) + δijΓ0, (3.7)

where Γ0 denotes the decay rate into free space, such that the total decay rate is given by
the sum Γ = Γ0 + βf Γ + βbΓ. Importantly, since the interaction is mediated by a guided
mode, the interaction strength does not decay with the interatomic distance, i.e., the
dipole-dipole interaction is effectively “infinite-ranged” [43]. However, we note that the
interaction strength eventually does decay, e.g., due to losses in the fiber and retardation
effects. Both of these effects are negligible on the scale of a few mm, over which we trap
our atoms. Once we have solved equation (3.3) for the atomic density matrix, ρ̂(t), we can
calculate the field and power exiting the nanofiber in the forward (backward) direction,
respectively,

Ef = Ein − i
√
βf Γ

N∑
i=1

e−ikf zi⟨σi⟩, (3.8)

Pf = Pin + βf Γ
N∑

i,j=1
eikf (zi−zj)⟨σ̂†

i σ̂j⟩ − i
√
βf ΓPin

N∑
i=1

(
e−ikf zi⟨σ̂i⟩ − c.c.

)
, (3.9)

Eb = −i
√
βbΓ

N∑
i=1

eikf zi⟨σi⟩, (3.10)

Pb = βbΓ
N∑

i,j=1
e−ikf (zi−zj)⟨σ̂†

i σ̂j⟩. (3.11)

Here, Pin denotes the input power of the fiber-guided, forward-propagating driving field
and Ein the corresponding electric field, which we assume to be real-valued. Note that
we have chosen the unit of the power to be photons per second. The unit of the electric
field is chosen such that Pin = |Ein|2. The second term in Eq. (3.9) describes light that
is emitted spontaneously by the atoms, while the third term represents the coherently
scattered light. Since the density matrix ρ̂ has 22N entries, the computational complexity
of solving Eq. (3.3) is exponential in the number of atoms. Therefore, we can only simulate
the dynamics of about ten atoms using a standard desktop computer. However, in our
experiment, we trap up to 1000 atoms, such that solving the many-body master equation
is generally impossible, even for the most advanced supercomputers.
We note that the system is exactly solvable when the atoms feature particle exchange
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Figure 3.1: Ideal Dicke superradiance. Power emitted into the waveguide modes,
Pf and Pb, simulated by solving the many-body master equation for N = 2, 5,
and 10 initially inverted atoms in (a), (b), and (c), respectively. We assume
βf = βb = 0.5 and the Bragg configuration. For this setting, the many body
master equation is equivalent to that of ideal Dicke superradiance. The case of
N independently emitting atoms is shown as a black dotted line for reference.

symmetry since the dynamics is then restricted to the completely symmetric, so-called
Dicke states [9]. Particle-exchange symmetry can be realized by placing the atoms in a
volume that is much smaller than the wavelength of the radiation or by placing the atoms in
a high-finesse cavity [10]. In waveguide QED, particle exchange symmetry can be achieved
for unity symmetric coupling, i.e., βf = βb = 0.5. In addition, an interatomic spacing of
nλf/2 is required, where n is a natural number, and λf is the transition wavelength inside
the nanofiber. In the following, we will call this the Bragg configuration. When these
two requirements are met, the amplitudes Jij vanish and the master equation, Eq. (3.3),
is identical to the master equation of ideal Dicke superradiance, see Appendix A.4 and
Ref. [99]. In particular, when all atoms are initially prepared in the excited state, |e⟩,
ideal Dicke superradiance predicts the emission of short, intense bursts of light [9, 10],
which stems from a spontaneous synchronization of the atomic dipoles during their decay.
However, our experimental platform neither features unity atom-waveguide coupling
nor an atomic spacing commensurate with λf/2. Thus, our system does not feature
particle-exchange symmetry. In the following three subsections, we will first show the
dynamics of the power emitted into the waveguide for the ideal Dicke case and analyze the
effect of directional atom-waveguide coupling. Then we will discuss the role of non-unity
atom-waveguide coupling. Finally, we will analyze the effect of spatial disorder along the
axial direction.
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3.2.1 Dicke superradiant bursts

In Fig. 3.1, we show the power that an initially fully inverted ensemble emits into the
waveguide modes for N = 2, 5, and 10 atoms in (a), (b), and (c), respectively. As a
reference, we show the dynamics of the power for N independently emitting atoms, i.e., an
exponential decay with the rate Γ, as a black dotted line. Here, we choose βf = βb = 0.5,
and atomic positions zk = nλf/2, where n denotes the nth atom. This setting realizes
the ideal Dicke case. Since the system is symmetric with respect to the forward- and
backward-propagating modes, the dynamics of Pf and Pb are exactly the same, see solid
purple and dashed orange lines, respectively.
For two inverted atoms, see panel (a), we already observe non-exponential decay dynamics.
As we increase the atom number further, we observe that the emitted powers first
increase, reach peak values of Pmax

f and Pmax
b , and then decrease. This behavior is the

characteristic feature of superradiant burst dynamics, which can be understood as a
spontaneous synchronization of the atomic dipoles during their decay. Once they have
synchronized, each atom adds constructively to the macroscopic dipole moment of the
ensemble. Since the emitted power is proportional to the square of the dipole moment,
the peak-emitted power increases quadratically with the number of atoms, N [9, 10].

3.2.2 Asymmetric atom-waveguide coupling strength

As described in section 2.8, the atom-waveguide coupling strength in our experiment can
be asymmetric, i.e., βf ̸= βb. In order to quantify this asymmetry, we introduced the
directionality, D,

D = βf − βb

βf + βb
. (3.12)

In particular, when driving the atoms on the |6S1/2, F = 4,mF = −4⟩ →
|6P3/2, F = 5,mF = −5⟩ cycling transition, the emitted light is σ−-polarized. In our
experiment, the coupling strength to the forward-propagating mode is then about 12 times
larger than the coupling strength to the backward-propagating mode, i.e., D = 0.84, see
section 2.8.
In order to illustrate the effect of directional atom-waveguide coupling, we solve the
many-body master equation for 10 initially inverted atoms for different directionalities, D,
while keeping the total coupling strength constant, βf + βb = 1. As before, we assume
that the atoms are arranged in the Bragg configuration. We plot the resulting dynamics
of the forward-emitted power, Pf , in Fig. 3.2(a). Note that we divide the power, Pf , by
βf to better compare the different configurations. While the peak-emitted power is largest
in the case of symmetric coupling, i.e., D = 0, we initially observe very similar burst
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Figure 3.2: (a) Effect of the directionality of atom-waveguide coupling, D, on the
emission dynamics. We solve the many-body master equation for 10 atoms that
are fully inverted at time t = 0 ns. We assume that the atoms are arranged in
the Bragg configuration. We fix the total coupling strength to βf + βb = 1 and
show the predictions for the power emitted into the forward direction, Pf , for
different directionalities, D. Note that we divide the power Pf by the respective
coupling strength to the forward-propagating mode, βf . Panel (b) shows the
same data as (a) on a semi-log scale to highlight the dynamics at large t.

dynamics for all directionalities.
However, for times larger than about 20 ns, the dynamics in the case of directional coupling
is qualitatively very different from the ideal Dicke case. To highlight these differences, we
plot the data shown in panel (a) on a semi-log scale in panel (b). For symmetric coupling
(D = 0), the power converges to an exponential decay after some time. The corresponding
decay constant is given by NΓ, which is the decay constant expected for the symmetric
Dicke state in the single-excitation manifold [33]. The decay at longer times is thus much
faster than that of independently emitting atoms (see dotted black line). In contrast, for
directional coupling (D > 0), we observe non-exponential decay dynamics. In particular,
we observe several minima of the power, Pf , which indicate that the ensemble populates
subradiant states, i.e., decay is momentarily inhibited.
While it is an intriguing research direction to study the origin of this effect, we will only
shortly revisit the subradiant dynamics in section 5.6. Instead, the main focus of this
thesis will lie on the early superradiant dynamics. Importantly, the dynamics for the
maximally achievable directionality in our experiment, D = 0.84, is almost the same as
the dynamics for unidirectional coupling, D = 1. This will motivate our assumption of
unidirectional coupling later on, see sections 3.3 and 3.4.
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Figure 3.3: Influence of imperfect atom-waveguide coupling on the superradi-
ant burst dynamics. We show the powers, Pf , that an ensemble of N = 10
initially inverted atoms emit into the nanofiber-guided modes for three different
atom-waveguide coupling strengths, β = βf + βb. We again assume the Bragg
configuration and show the predictions for both symmetric (D = 0) and unidirec-
tional D = 1 coupling. Superradiant burst dynamics disappears as β decreases,
independently of the directionality. Note that Pf is rescaled by the factor β/βf .

3.2.3 Imperfect atom-waveguide coupling strength

In our experiment, the atom-waveguide coupling strength is far from unity,
β = βf + βb ≈ 0.01, meaning that a single atom emits about 1 % of its light into the
nanofiber-guided modes, while 99 % of the light is emitted into independent free-space
modes, see section 2.8.
In Figs. 3.3, we plot the dynamics of the forward-emitted power, Pf , for N = 10 initially
inverted atoms for different β. We plot the dynamics for both symmetric D = 0 and
unidirectional (D = 1) coupling, see dash-dotted purple and solid orange lines, respectively.
As before, we assume the Bragg configuration. Note that we scale Pf by the factor β/βf .
In other words, we multiply Pf for symmetric coupling by two to better compare the
dynamics with the case of unidirectional coupling.
For β = 0.4 in panel (b), we observe that the superradiant burst is slightly less pronounced
compared to the case of unity coupling in (c). As we decrease β to the value expected in
our experiment, β = 0.01 in (a), the dynamics almost coincides with that of an ensemble of
independently decaying atoms, see dotted black line. This suggests that the superradiant
burst dynamics is inhibited by the decay into free space, independent of the directionality.
This can be understood as a consequence of competition between decay into the guided
modes and the independent decay into free-space modes. Superradiant burst dynamics
for a fully inverted ensemble occurs because the initial vacuum fluctuation that triggers
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Figure 3.4: Effect of spatial disorder on the emission dynamics for different
directionalities, D. We simulate the dynamics of Pf/β for 10 initially fully
inverted atoms and β = 1. We show the dynamics for the Bragg configuration and
random atomic positions as the blue solid and dashed orange lines, respectively.
Notably, the dynamics is unaffected by the spatial disorder for unidirectional
coupling, see panel (c).

the emission process is amplified as the atoms decay [10]. This leads to a build-up of
coherence, i.e., the atomic dipoles synchronize their phases. Any decay into the free
space modes dephases the atomic dipoles, such that the superradiant burst dynamics is
quenched.
Importantly, superradiant dynamics can always be recovered by increasing the atom
number. An analytic expression for the minimal atom number at which burst dynamics
occurs has recently been derived for fully inverted, waveguide-coupled ensembles [99]. For
the Bragg configuration, one obtains

NBragg = 1 + 1
β
. (3.13)

For the Bragg configuration, this threshold is thus independent of the directionality.
Intuitively, one can understand the expression in Eq. (3.13) as the number of atoms for
which, initially, the atomic ensemble emits at a rate into the waveguide that exceeds
the independent decay rate of a single atom, βΓN > Γ. However, while nanofiber-based
optical lattices with Bragg spacing have been experimentally realized [100, 101], they are
challenging to implement. In the following, we will analyze the dynamics in the presence
of spatial disorder in the axial direction.

3.2.4 Spatial disorder

In our experiment, we probabilistically load an optical lattice with a maximal filling
fraction of 0.5, see section 2.3. Since our lattice spacing, d ≈ 500 nm, is incommensurate
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with the in-fiber resonant optical wavelength, λf =745 nm, we can assume that the spacing
is effectively random. Indeed, one can show that the phases of eikf zn are homogeneously
sampled, where zn denotes the z-position of the nth atom [81, 91]. Therefore, we model
the spatial disorder along the axial direction in our experiment by averaging the simulation
results over 10 randomly chosen configurations of atomic positions, zi. In Figs. 3.4, we
plot the dynamics of the forward-emitted power, Pf , divided by β, for 10 initially inverted
atoms for both the Bragg configuration and random atomic positions. In panel (a), we
choose symmetric coupling, D = 0, and observe that the superradiant burst for random
atomic positions is less pronounced than for the Bragg configuration. For random spacing,
coherence can either be built up with respect to the forward- or backward-propagating
mode, meaning that the atomic dipoles feature phases that are given by the corresponding
propagation phases. The latter are eikf zi and e−ikf zi for the forward and backward-
propagating modes, respectively, and are generally not the same. Therefore, decay into
the backward-propagating mode dephases the coherence that is built up with respect to
the forward-propagating mode and vice versa. This leads to quenching of the superradiant
burst.
In panel (c), we show the same simulation for unidirectional coupling, i.e., D = 0. There,
the dynamics is completely independent of the axial atomic positions since there is no
dephasing due to decay into the backward-propagating mode. We thus conclude that
spatial disorder does not affect superradiant burst dynamics for unidirectional coupling.
In panel (b), we choose the directionality expected in our experiment, D = 0.84. While
we observe a slight quenching of the superradiant burst for random atomic positions, the
effect is much less than for symmetric coupling, see (a).
One can also find an analytical expression for the threshold beyond which superradiant
bursts occur for random atomic positions [99],

NRandom(D) = β(β + 1)
β2

f + β2
b

= 2(β + 1)
β(1 +D2) , (3.14)

NRandom(D = 1) = 1 + 1
β

= NBragg, (3.15)

NRandom(D = 0) = 2
(

1 + 1
β

)
= 2NBragg. (3.16)

In contrast to the case of Bragg spacing, the threshold for random atomic positions does
depend on the directionality of the atom-waveguide coupling strength, D. In particular,
the threshold for unidirectional coupling is the same as for the Bragg configuration. For
symmetric coupling, the threshold is exactly twice as large. For random atomic positions,
one can thus reduce the threshold atom number by up to a factor of two by engineering an
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Figure 3.5: Schematic representation of the cascaded interaction model. Each
atom, with index k, is driven by a light field with amplitude αk, which only
depends on the dynamics of upstream atoms. Each atom is described by a
single-atom density operator, ρ̂k. Finally, we compute the output power Pf .

asymmetric atom-waveguide coupling. For β = 0.01 and symmetric coupling, we obtain,
NRandom(D = 0) = 202 and NBragg(D=1) = 101. For the directionality in our experiment,
the expected threshold is NRandom(D = 0.84) = 118.
In order to reach the regime of superradiant burst dynamics, we thus still have to invert
hundreds of atoms for a unidirectional coupling strength of βf = 0.01. Solving the full
master equation for such large ensembles is prohibitive, see section 3.2.

3.3 Coherent state approximation

In the following two sections, we will describe two new models to describe the collective
radiative dynamics of ensembles of two-level atoms that are unidirectionally coupled to
a waveguided mode. We will use the asymmetry of the atom-light coupling strength
and describe the light field classically to simplify our calculations and greatly reduce the
computational complexity of our modeling. Since we can prepare the atoms in a state
in which their coupling to the forward propagating mode is about 12 times larger than
the coupling to the backward-propagating mode [92], we assume unidirectional coupling
in the following, i.e., βb = 0. The system then constitutes a cascaded quantum system,
in which the dynamics of each atom is only determined by the dynamics of upstream
atoms [74, 75]. Such a cascaded interaction is schematically depicted in Fig. 3.5. Each
atom, with index k, is described by a single-atom density matrix, ρ̂k, and is exposed to
a light field αk. Our first task is to simulate the atomic response of the first atom to
the input field, α1. Then, we compute the light field after the first atom, α2, which then
drives the second atom, and so on. This way, we can propagate the light field through the
ensemble to finally compute the output power, Pf , which we measure in our experiment.
As a first approximation, we assume that each atom is solely driven by the coherent part

of the light field scattered by the previous atom, with amplitude αc
k. In the following, we

will call this approach “coherent state approximation” (CSA). Note that, for resonant
excitation, we can choose αc

k ∈ R ∀ k without loss of generality. For the first atom,
the time-dependent driving field is given the excitation laser, α1 =

√
P1. For all other
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atoms, we determine the field αc
k+1, and the corresponding power, Pk+1, via the following

input-output equations [102]:

αc
k+1 = αc

k − i
√
βf Γρ̂eg

k , (3.17)

Pk+1 = Pk + βf Γρ̂ee
k + 2

√
βf Γ Im

(
α∗

kρ̂
eg
k

)
(3.18)

= |αc
k+1|2 + βf Γ

(
ρ̂ee

k − |ρ̂eg
k |2

)
, (3.19)

where Im(. . .) denotes the imaginary part and ∗ denotes complex conjugation. In order to
solve these input-output equations, we have to know the dynamics of the density matrix
of atom k. Therefore, we solve the single-atom Lindblad master equation for each atom
k [103, 104]

˙̂ρk = − i
ℏ

[
Ĥk, ρ̂k

]
+ L [ρ̂k] . (3.20)

Here, Ĥk is a semi-classical Hamiltonian assuming that the kth atom is resonantly driven
by a time-dependent coherent light field with Rabi frequency Ωk =

√
4βf Γαk, and L is

the Lindblad superoperator describing spontaneous emission with decay rate Γ,

Ĥk = ℏΩk

2
(
σ̂†

k + σ̂k

)
, (3.21)

L[ρ̂k] = Γ
[
σ̂kρ̂σ̂

†
k − 1

2
(
σ̂†

kσ̂kρ̂k + ρ̂kσ̂
†
kσ̂k

)]
. (3.22)

In chapter 4, we will see that, surprisingly, the CSA describes the dynamics of the power
of the light exiting the nanofiber, Pf , over a relatively wide range of parameters in our
experiment. Importantly, however, the assumption of a coherent drive is not justified for
an ensemble close to full inversion. Indeed, from Eq. (3.19), it is clear that Pk+1 ̸= |αc

k+1|2,
i.e., that the field is not in a coherent state. Then, the atoms are also driven by the
incoherent light that other atoms emit into the nanofiber mode, which is not captured
by the CSA. In particular, in the singular case of a perfectly inverted ensemble, the
CSA prediction coincides with the prediction for independently emitting atoms, i.e., an
exponential decay.

3.4 Mixed coherent state approximation

In this section, we present a modification of the CSA that allows us to phenomenologically
model how the atoms are driven by the incoherent part of the light. In the CSA, we restrict
the field to the rotating frame of the excitation laser field, i.e., αc

k ∈ R ∀ k. This means
that the atoms are only driven by light fields that are either in phase or π out of phase
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with the excitation laser field. However, spontaneously emitted photons do not feature
any fixed phase relationship to the excitation laser field. To emulate this incoherent light,
we describe the light field impinging on the kth atom as a mixture of coherent states with
amplitude αc

k + eiϕαinc
k , and homogeneously sample the phase ϕ over [0, 2π). The density

matrix of this mixture of coherent states is then given by

ρMCS = 1
2π

∫ 2π

0
dϕ |αc

k + eiϕαinc
k ⟩ ⟨αc

k + eiϕαinc
k | , (3.23)

where |α⟩ represents a coherent state with a time-dependent amplitude of α ∈ C. In
the following, we will call this approach “mixed coherent state approximation” (MCSA).
Importantly, the newly introduced, incoherent amplitude, αinc

k , is chosen such that the
total power is given by eq. (3.19),

αinc
k =

√
Pk − |αc

k|2. (3.24)

We can visualize the mixed coherent state by plotting, e.g., its Husimi Q representation,
which is defined as [104]

Q(α) = 1
π

⟨α|ρMCA|α⟩ . (3.25)

It represents a quasiprobability distribution in phase space and can, e.g., be used to
graphically illustrate the properties of a light field. While it is normalized,

∫
Q(α)dα = 1,

and non-negative, it is not a proper probability distribution since the coherent states
{|α⟩} are not orthogonal. In Fig. 3.6, we plot the Q function for three example mixed
coherent states. In (a), the incoherent amplitude is zero, such that the mixed coherent
state is equivalent to a pure coherent state with a real-valued amplitude. In (c), the
coherent amplitude is zero, such that the Husimi Q representation becomes symmetric
with respect to the origin. This means that there is no preferred phase, as expected for a
fully incoherent light field. In (b), we show a mixed coherent state with equal coherent and
incoherent amplitudes. There, the center of the circle (i.e., the expectation value of the
field) is given by the coherent amplitude, αc, while the radius of the circle is determined
by the incoherent amplitude, αinc. We can compute the expectation value for the field
and power when the light field is in the mixed coherent state:

αMCS = 1
2π

∫ 2π

0
dϕ(αc + eiϕαinc) = αc, (3.26)

PMCS = 1
2π

∫ 2π

0
dϕ|αc + eiϕαinc|2 = |αc|2 + |αinc|2. (3.27)
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Figure 3.6: Husimi Q representation of mixed coherent states with different
coherent and incoherent amplitudes. Re(. . .) and Im(. . .) denote the real and
imaginary parts, respectively.

Note that, while each pure state in the mixture is coherent, the mixed coherent state loses
an important property of a coherent state, i.e., PMCS ̸= |αMCS|2.
As in the CSA, we can now solve the single-atom Lindblad master equation and the

input-output equation, this time with a drive field in the mixed coherent state. Specifically,
this means that we solve the master equation for the kth atom by assuming a coherent
drive field with an amplitude αk = αc

k + eiϕαinc
k . We thus obtain solutions for the atomic

density matrix, ρϕ
k(t), for each phase ϕ. Similarly, by applying the input-output formalism

in Eqs. (3.17)-(3.19), we find ϕ-dependent output fields and powers, αϕ
k+1 and P ϕ

k+1.
Finally, we compute the expectation values for the field and power by tracing over the
phase ϕ,

Pk+1 = 1
2π

∫ 2ϕ

0
dϕP ϕ

k+1 (3.28)

αk+1 = 1
2π

∫ 2ϕ

0
dϕαϕ

k+1. (3.29)

We note that, numerically, the integral over ϕ is approximated as a sum over a certain
number of ϕ-values. Intuitively, one could suspect that the sampling has to be finer
for a larger incoherent amplitude, αinc, since the radius of the circle in the Husimi Q
representation is proportional to αinc. However, we numerically found that the simulation
results converge for about 4 ϕ-values, even for large ensembles with up to 104 atoms. For
all MCSA simulations presented in this thesis, we sample over 20 ϕ-values.
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3.5 Comparison of the different approaches

3.5.1 Benchmarking using the many-body master equation

On a standard desktop computer, the many-body master equation can only be solved
for about 10 atoms in a reasonable amount of time. We compare the different models by
simulating time traces of the power that an ensemble of N = 10 atoms emits into the
forward propagating mode. In order to observe dynamics with collective features for only
10 atoms, we increase the coupling strength to βf = 0.4. Again, we neglect the coupling
to the backward-propagating mode, i.e., we assume that βb = 0. Moreover, we neglect the
excitation dynamics and start our simulations with all atoms in state |ψ0⟩,

|ψ0⟩ = cos
(
A

2

)
|g⟩ − i sin

(
A

2

)
|e⟩ . (3.30)

Since linear response theory is only applicable for an incident excitation pulse, we don’t
include it in our comparison in this section. Here, A denotes the pulse area for excitation
pulses much shorter than the excited state lifetime. Note that we have chosen the rotating
frame of a nanofiber-guided excitation laser field. This means that, in the lab frame,
each atom is excited with a phase exp(ikfzn), where kf denotes the wave vector of the
nanofiber-guided mode and the zn the axial atomic position. We chose this particular
subclass of states because we will use fiber-guided excitation pulses to prepare the ensemble
in the desired states later on, which will imprint exactly this phase pattern onto the
atomic ensemble. In Fig. 3.7, we show the time traces simulated by solving the many-body
master equation (ME) as solid red lines. The outcomes of adopting the coherent state
approximation and the mixed coherent state approximation are shown as orange dashed
and blue dotted lines, respectively. As a reference, we also show the dynamics of an
ensemble of independent atoms as a solid black line.
In Fig. 3.7(a)-(d), we choose pulse areas of A = {0.1π, 0.5π, 0.8π, π}, respectively. In
(a), the pulse area of A = 0.1π corresponds to an excited state probability of only
sin2(0.1π/2) ≈ 0.02 and all three models predict the same dynamics for the power, Pf .
Notably, the decay dynamics is quite different from the case of independent emission. In
particular, the decay constant is collectively enhanced, i.e., superradiant. For A = 0.5π in
(b), each atom is prepared in an equal superposition of ground and excited state, and,
again, all three models predict almost the same dynamics. We now start to see a deviation
from an exponential decay. In (c), we increase the excited state probability from 0.5 to 0.9
and start to observe differences in the model predictions. The CSA prediction deviates
substantially already for short times and does not fully capture the initial increase in
power predicted by the ME and MCSA approach. In (d), we plot the case of full inversion,
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Figure 3.7: Simulated power emitted into the forward direction by N = 10 chirally
coupled atoms with βf = 0.4 for different theoretical models and different initial
states, |ψ0⟩. ME: Solution of the many-body master equation. CSA: Simulation
assuming the coherent state approximation. MCSA: Simulation assuming the
mixed coherent state approximation. The pulse areas are A = {0.1π, 0.5π, 0.8π, π}
in (a)-(d), respectively. The exponentially decaying power for an ensemble of
independently emitting atoms is shown as solid black lines for reference.

i.e., A = π. As expected, the CSA approach now completely fails and its prediction
coincides with the dynamics of an ensemble of independently emitting atoms (see solid
black line). However, the MCSA model prediction is still in close agreement with the ME
solution. In particular, the superradiant burst dynamics, i.e., an initial increase of the
emitted power, is well captured. We numerically checked that the threshold atom number
predicted by the MCSA is exactly the same as the analytical expression in Eq. (3.15).
For later times, t, the dynamics predicted by the MCSA deviates much more from the

many-body master equations. In Fig. 3.8, we plot the MCSA and ME prediction for Pf for
10 initially inverted (A = π) atoms, with a unidirectional coupling of βf = 0.4. Note that
this is the same setting as in Fig. 3.7(d). Here, we plot the dynamics on a semi-log scale
to highlight that the differences between MCSA and ME grow with time. For t > 30 ns,
the ME predicts that the decay rate of Pf oscillates between values that are slightly
faster and slower than Γ, indicating that the ensemble evolves through several subradiant
states. This dynamics is not captured by the MCSA prediction, which converges to an
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Figure 3.8: Decay dynamics of Pf for 10 initially inverted atoms and a unidi-
rectional coupling of βf = 0.4. Note the semi-log scale. We show the ME and
MCSA predictions as solid red and blue dotted lines, respectively. As a reference,
we also plot Pf for an independently emitting ensemble as a solid black line.

exponential decay for large t. In order to improve on the predictions for later times,
one could simulate the system using the so-called cumulant expansion [105, 106]. This
approach is based on neglecting atom-atom correlations beyond a certain order m, such
that the computational complexity of the calculations is reduced from exponential to Nm.
For atomic arrays in free space, it was recently shown that the predictions by a cumulant
expansion to third order closely match the ME predictions for 10 atoms, even for later
times [107]. However, simulating the dynamics of ensembles consisting of thousands of
atoms is still very challenging for a computational complexity that scales as N3. Since
we are mainly interested in the early superradiant dynamics and the MCSA model’s
computational complexity scales only linearly with N , we will not further discuss the
cumulant expansion in this thesis.

3.5.2 Benchmarking using the mixed coherent state approximation

While we are not able to benchmark our approximative models against the ME for larger
atom numbers, the close match between MCSA and ME for 10 atoms motivates the
following analysis, in which we compare all other models to the MCSA. We now choose a
coupling strength that is realistic for our experiment, βf = 0.01, and compute the predicted
output power, Pf , for the different models explained above. We now also simulate the
pulsed excitation with a pulse width of Tpulse = 4 ns and perform a 2D-scan of the pulse
area, A, and the number of atoms, N . In order to quantify how close the different model
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Figure 3.9: Different regimes of collective dynamics. Here, we assume a 4 ns-long,
nanofiber-guided excitation pulse, βf = 0.01, and βb = 0. We compare the
predictions of the different theoretical models for the power emitted into the
forward direction to the MCSA prediction.

predictions are to the MCSA prediction, we introduce the relative deviation δ(A):

δ(A) =
∫∞

0 dt|PA
f (t) − PMCSA

f (t)|∫∞
0 dtPMCSA

f (t)
. (3.31)

Here, PA
f (t) denotes the prediction for Pf (t) using model A. We then define four different

regimes, which we plot as colored areas in Fig. 3.9. They are defined as follows:

• Independent emission (dark red): δ(Independent emission) < 0.1,

• Linear response (light blue): δ(Linear response) < 0.1,

• Burst dynamics (light red): The MCSA prediction for the peak power emitted into
the forward direction occurs at a time t > 0 ns. ,

• MCSA necessary (dark blue): δ(CSA) > 0.1,

• White regions: δ(CSA) < 0.1, but δ(Linear response) > 0.1 and
δ(Independent emission) > 0.1, and no burst dynamics occurs.

The probability that a scattered photon is reabsorbed by another atom is small in an
optically thin medium. Then, the interatomic interaction can practically be neglected, and
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the decay into the waveguide is that of independently emitting atoms. Indeed, independent
emission correctly describes the dynamics of ensembles comprising less than about 40
atoms, which corresponds to an optical depth of about 1.6, see Figure 3.9. On the other
hand, linear response theory correctly describes the dynamics of even larger ensembles with
up to 1000 atoms, as long as the pulse area is smaller than about 0.25π, which corresponds
to an excited state probability of about 0.15. The breakdown of linear response theory for
larger pulse areas is expected since one assumes a negligible excited state probability in
linear response theory.
Only for almost fully inverted ensembles (A1 ≈ π), MCSA and CSA differ by more
than 10 %. Notably, this regime (labeled “MCSA necessary” in Fig. 3.9) occurs over a
quite narrow range of pulse areas, A1, which gets even narrower for a larger number of
atoms. However, burst dynamics occurs over a much wider range of pulse areas. This
means that even the CSA correctly predicts burst dynamics, albeit for ensembles that
are not fully inverted. The difference between these two regimes will be further analyzed
in section 5.5, where we present an experiment that allows us to directly identify the
regimes of superradiant burst dynamics and the underlying physical mechanisms. The
characteristic threshold atom number beyond which the superradiant burst appears is
precited to be 114 atoms for our parameters, see Fig. 3.9. Finally, there is a small
parameter space, in which MCSA is necessary, but no burst dynamics occurs. This can be
understood from the fact that the CSA predicts independent emission for fully inverted
ensembles, regardless of the number of atoms. Therefore, as soon as the atoms do not
emit independently, CSA breaks down for pulse areas of about π, despite the fact that
the number of atoms is still below the characteristic threshold for the superradiant burst.
We note that, while we assumed a perfectly homogeneous coupling strength in the above
analysis, the coupling strengths feature some inhomogeneous broadening in the actual
experiment. This shifts the threshold for the superradiance burst to larger atom numbers
and narrows the regime, in which MCSA and CSA differ even more.

3.6 Emission into the backward direction

Although we assume unidirectional atom-waveguide coupling in the CSA and MCSA
model, in the actual experiment, the coupling to the backward-propagating mode, βb,
is not zero. However, we excite the atoms via the forward-propagating mode, and the
collective dynamics is dominated by forward-propagating photons. We can thus assume
that any phase pattern that forms along the atomic ensemble is determined by the
propagation phase of the forward-propagating mode. Since the spacing between the atoms
is incommensurate with the in-fiber transition wavelength, and the optical lattice in our
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Figure 3.10: Dynamics of the power emitted into the backward-propagating mode,
Pb. We again assume unidirectional coupling with βf = 0.4. We simulate the
dynamics of 10 initially fully inverted atoms for different settings. (a) The atoms
are spaced by half the in-fiber wavelength, λf . (b) The atoms are randomly spaced.
For random spacing, incoherent summation of the populations is sufficient to
model Pb. We assume an atom-waveguide coupling strength of β = βf + βb = 0.4.
We assume a directional coupling as in our experiment, i.e., D = 0.84. We
compare the ME prediction with the MCSA prediction, see solid red and blue
dashed lines, respectively. As a reference, we show the case of independently
emitting atoms as a black dashed line.

experiment is randomly filled, we can treat the emission into the backward direction as if it
was incoherent. Therefore, we calculate the power emitted into the backward direction, Pb,
by incoherently summing up the time-dependent emission rates of the individual atoms:

Pb = βbΓ
N∑

i=1
ρee

i (3.32)

To test the validity of this assumption, we again solve the many-body master equation
for 10 atoms. This time, we set the ratio between forward and backward coupling to
βf/βb ≈ 12, as in the experiment. The total atom-waveguide coupling, is chosen as in
Fig. 3.7, i.e., β = βf + βb = 0.4. In Fig. 3.10, we show the calculation of Pb using the ME
(solid red line), as well as the incoherent sum of the atomic populations predicted by the
MCSA, i.e., Eq. (3.32) (dashed blue line). In (a), we assume the Bragg configuration. In
(b), we average over 20 randomly chosen configurations of atomic positions to simulate
the probabilistic loading of trapping sites in our experiment. While there is a difference
between the exact calculation of Pb and incoherent summation for an ensemble in Bragg
configuration, the two results almost coincide for the irregular spacing that occurs in our
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Figure 3.11: Approximative probability distribution for the coupling strength,
βf . We assume a Gaussian distribution that is truncated at βf = 0 and βf = 1.
The mean and standard deviation of the truncated Gaussian are indicated by
the red vertical line and the black double arrow, respectively.

experiment. This comparison justifies our approximative calculation of Pb. Note that
while the dynamics in the backward direction does not feature a superradiant burst for
random spacing, it still differs from independent emission, see black dash-dotted line for
reference.

3.7 Fluctuations of the coupling strength

As discussed in section 2.8, the coupling strength of the atoms to the nanofiber-guided
mode depends on their radial distances from the fiber surface as well as their azimuthal
positions. Due to the thermal motion of the atoms in their trapping potential, the coupling
strengths fluctuate. In order to model this effect, we assume a probability distribution of
βf values, p(βf ). In the CSA and MCSA models, we then draw a random βf from p(βf )
for each atom and propagate the field through the ensemble, as described in section 3.3
and 3.4. We assume that the coupling strength for each atom stays constant during a
single excitation- and emission process. This is justified due to the large difference between
the timescales of the decay dynamics (about 30 ns) and the motional period of the atoms
in their trapping potential (about 10 µs). We draw 100 such random βf -configurations
from p(βf ), and average the resulting time traces of Pf , ρk

eg, and ρk
ee for each atom, k.

Most of the experiments described in this thesis are not carried out in thermal equilibrium,
and it is challenging to measure or simulate the actual distribution of βf values during the
probing sequence. Instead, we model temperature-induced fluctuations of the coupling
strength by approximating the probability distribution of βf values as a Gaussian see
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Fig. 3.11. Since βf ∈ [0, 1], we truncate the Gaussian distribution both at βf = 0 and
βf = 1 to avoid unphysical values of the coupling strength. We then use the mean of
the distribution, β̄f , and the standard deviation, σβf

, as fit parameters to match our
theoretical predictions to the experimental data. For the data shown in chapter 4, we
find the best agreement of model and data for a mean and standard deviation of the
truncated distribution of β̄f = 0.0108 and σβf

= 0.0065, respectively. For the data
shown in chapter 5, we find the best fit for slightly different parameters, i.e., β̄f = 0.0112
and σβf

= 0.0065. Notably, these two parameters are the only free parameters in the
theoretical modeling of the data presented in chapters 4 and 5.
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4 Coherent excitation and coherent forward
scattering

This chapter is based on Ref. [108]:
C. Liedl, S. Pucher, F. Tebbenjohanns, P. Schneeweiss, and A. Rauschenbeutel. Collective
Radiation of a Cascaded Quantum System: From Timed Dicke States to Inverted
Ensembles. Phys. Rev. Lett., 130(16):163602, 2023.

In this thesis, we are interested in the collective radiative dynamics of an ensem-
ble of nanofiber-coupled atoms. In particular, we want to explore how the dynamics
changes as a function of the initial excitation of the ensemble, from the weak excitation
regime to full inversion. In this chapter, we first describe and analyze the coherent
excitation of an atomic ensemble using fiber-guided laser pulses that are much shorter
than the excited state lifetime. Then, we explore the decay dynamics of the power emitted
into the nanofiber-guided modes following the excitation pulse. In particular, we will
focus on the role of coherent forward scattering.

4.1 Coherent excitation

Ideally, we would like to be able to coherently excite each atom close to the state |ψ0⟩, see
Eq. (3.30), which features an induced dipole moment, d0, and an excited state probability,
pexc,

|ψ0⟩ = cos
(
A

2

)
|g⟩ − i sin

(
A

2

)
|e⟩ , (4.1)

d0 = ⟨ψ0|
(
σ̂ + σ̂†

)
|ψ0⟩ = −2i sin

(
A

2

)
cos

(
A

2

)
, (4.2)

pexc = ⟨ψ0| σ̂†σ̂ |ψ0⟩ = sin
(
A

2

)2
. (4.3)

Here, we have expressed d0 in units of the transition dipole matrix element. Note that d0

is purely imaginary only for resonant excitation. We plot both the imaginary part of d0

and pexc as a function of the pulse area, A, in Fig. 4.1, see blue dashed and red solid lines,
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Figure 4.1: Dependence of the imaginary part of the induced dipole moment, d0,
and the excited state probability, pexc, on the pulse area, A. We assume coherent,
resonant excitation with an idealized Rabi pulse, which prepares the atoms in
state |ψ0⟩, see Eq. (4.1).

respectively. The excited state probability reaches a maximum of pexc = 1 for a pulse area
of π, i.e., the atom is fully inverted. For A ∈ (0, π), d0 is negative and imaginary, i.e., the
induced dipole moment features a 90◦-phase lag with respect to the excitation laser, as
for a classical Lorentz oscillator [109]. Importantly, Im(d0) vanishes for maximal pexc. As
A is further increased, Im(d0) increases again, albeit with the opposite sign.
The most straightforward way to prepare the atoms in state |ψ0⟩ is to expose them to

a short laser pulse that drives coherent Rabi oscillations, where the frequency is given
by the Rabi frequency, Ω. According to the area theorem, the corresponding pulse area
is then given by A =

∫
dtΩ(t) [110]. Since we use rectangular pulses, A is the product

between Ω and the pulse duration, Tpulse. The Rabi frequency is typically calculated as
the scalar product of the atomic transition dipole moment, d⃗, and the electric field of the
optical drive, E⃗,

Ω = d⃗ · E⃗
ℏ

(4.4)

However, we excite the atoms using a nanofiber-guided laser field. Since the evanescent
field varies substantially over the trapping volume, the temperature of the atoms in
their trap, and thus, their distribution of positions has to be precisely known in order to
calculate the Rabi frequency. Instead, we will express the Rabi frequency in terms of the
coupling strength, βf , which can be determined experimentally, see section 2.8.

Ω =
√

4βf ΓPin
ℏω

, (4.5)

where Pin is the initial power of the excitation laser, see Appendix A.2 for a derivation.
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Figure 4.2: Different constraints for the coherent excitation with a π-pulse as a
function of the pulse duration, Tpulse. (a) Excited state probability after a π-pulse
with duration Tpulse. (b) Number of photons in the π-pulse. (c) Absolute value
of the spectral component at 2π × 250 MHz, normalized by the DC component.

4.1.1 Choice of the pulse duration

In order to fully invert the ensemble, the pulse area, A, has to equal to π for each atom.
In addition, there are other constraints that have to be met. In Fig. 4.2, we show the
scaling of the following three constraints with the pulse duration, Tpulse:

1. Spontaneous emission: The pulse duration has to be much shorter than the excited
state lifetime of about 30.5 ns, since spontaneous emission inevitably leads to
decoherence. For a single atom and resonant excitation, one can analytically
compute the excited state probability, pexc, after a π-pulse with duration Tpulse,
which is shown in Fig. 4.2(a). See appendix A.3.2 for a derivation.

2. Number of photons: For an ideal π-pulse, each atom absorbs exactly 1 photon
from the laser. Therefore, the Rabi frequency decreases along the ensemble due
to absorption of the excitation pulse. In order to invert the entire ensemble, the
number of photons in the π-pulse has to be at least larger than the number of atoms.
Using Eq. (4.5), one can calculate the number of photons for a given pulse duration,
Tpulse, and a pulse area, A,

n(A) = A2

4βf ΓTpulse
. (4.6)

The number of photons in a A = π-pulse as a function of Tpulse is shown in Fig. 4.2(b).

3. Excitation of other hyperfine levels: The spectrum of a rectangular pulse centered at
t = 0 ns is given by its Fourier transform, F(ω) ∼ sin(ωTpulse/2)/(2ω). For a short
enough pulse, the pulse features a substantial spectral component that is resonant
with the other hyperfine levels of the excited state manifold. In Fig. 4.2(c), we
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show the magnitude of the spectral component at 250 MHz, which is the detuning
of the adjacent hyperfine level, |6P3/2, F = 4⟩, from the target hyperfine level,
|6P3/2, F = 5⟩. The excitation of other hyperfine levels can result in quantum beats
of the emitted power, which may obscure the observation of the targeted collective
dynamics.

While, in order to meet the first two constraints, the pulse duration should be as short
as possible, the third constraint is detrimental for very short pulses. For Tpulse = 4 ns,
the spectral component at 250 MHz is zero and the decay probability is only about 7 %.
Moreover, there are about 1900 photons in a π-pulse, which is substantially larger than
the at most 1000 trapped atoms in our experiment. A pulse duration of Tpulse = 4 ns is,
therefore, a natural sweet spot with respect to the three constraints listed above. However,
we only understood the third constraint after performing the measurements presented
in this section, such that we chose a pulse duration of 5 ns. The pulse duration is then
changed to 4 ns for the experiments presented in chapter 5.

4.1.2 Absorption of the excitation pulse

As explained above, the number of photons in a π-pulse should be larger than the number
of atoms. In this section, we will analyze this constraint more carefully to understand
the role of absorption of the excitation pulse in the coherent excitation of an ensemble
of atoms. To quantify this effect, we use a very simple model of pulse absorption. In
particular, this model neglects all other decoherence and dephasing effects, such that it
will allow us to analyze how the absorption of the probe laser along the ensemble limits
the maximally achievable excited state probability.
For an excitation pulse much shorter than the excited state lifetime, the kth atom absorbs,
on average, an energy that corresponds to that of pk

exc ≈ sin(Ak/2)2 photons from the
excitation pulse. Therefore, the number of photons in the excitation pulse that impinges
on atom k + 1 is given by

n(Ak+1) = n(Ak) − pk
exc. (4.7)

For the first atom, we can directly compute the pulse area, A1, and the corresponding
number of photons in the excitation pulse, n(A1), from the input power of the excitation
laser field. Then, we calculate the pulse area seen by each atom by iterative use of the
following expression,

Ak+1 =
√
A2

k − 4βf ΓTpulsepk
exc, (4.8)

where we have inserted the expression for n(A), i.e., Eq. (4.6), into both sides of Eq. (4.7).
Due to absorption of the excitation pulse, the pulse area seen by the atoms thus decreases
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Figure 4.3: Absorption of the excitation pulse, for a pulse duration of Tpulse = 5 ns
and βf = 0.0108. (a) Decrease of the pulse area Ak along the ensemble due to
absorption of the excitation pulse. Here, we chose a pulse area of A1 = 1.053π,
such that the average pulse area for 300 atoms is equal to ⟨Ak⟩ = π. (b) Excited
state probability along the ensemble, corresponding to the pulse areas shown
in (a). The average excited state probability for the 300 atoms is 0.997, see
black dashed line. (c) Pulse area, A1, that has to be set for the first atom in
order to achieve an average pulse area of ⟨Ak⟩ = π, as a function of the number
of atoms in the ensemble, N . (d) Maximally achievable average excited state
probability due to absorption of the excitation pulse as a function of N . Note
that, in our simple model of pulse absorption, we neglect all decoherence and
dephasing mechanisms.

along the atomic ensemble.
In Fig. 4.3(a), we show the decrease of Ak for 300 atoms. Here, we have chosen a pulse
area of A1 = 1.053π for the first atom, such that the pulse area averaged over the whole
ensemble, ⟨Ak⟩, is equal to π. In (b), we plot the excited state probability, pk

exc, for
each atom, assuming the pulse areas shown in (a). The black dashed line indicates the
average excited state probability, ⟨pk

exc⟩ = 0.997, i.e., almost unity. However, the effect of
pulse absorption introduces a systematic bias: The first atom will always see a slightly
larger pulse area than the last atom. This order has a small but systematic effect on the
collective decay dynamics following the excitation pulse, see section 5.4. While, in this
section, we have only presented a simplified model of pulse absorption, both the CSA
and MCSA models capture the full dynamics during the excitation pulse, such that all
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Figure 4.4: Collective excitation and decay of about 300 nanofiber-trapped atoms,
for different excitation powers, Pin. The excitation dynamics is displayed in (a)-
(c), for pulse areas of A1 = 0.02π, 0.7π, and π, respectively. The corresponding
decay dynamics after switching off the excitation pulse at t = 0 ns is shown
in (d)-(f). The measured signals are displayed as red dots, while the blue dots
show reference measurements without atoms. The corresponding CSA and linear
response predictions are shown as black solid and gray dashed lines, respectively.

propagation and absorption effects are taken into account.
Finally, in (c), we plot the pulse area, A1, that has to be set for the first atom, such that
the pulse area averaged over an ensemble of N atoms is equal to π. In the following, we
will denote the pulse area which maximally inverts the ensemble as Amax inv.

1 . In panel
(b), we plot the corresponding maximally achievable excited state probability. In our
experiment, we can trap up to about 1000 atoms, such that, for a pulse duration of
5 ns, the absorption of the excitation pulse does not substantially limit the maximally
achievable excited state probability. For even larger ensembles, one might have to either
reduce the pulse duration or use a different excitation method.

4.1.3 Dynamics of the transmitted excitation pulses

In Fig. 4.4, we show time traces of the power exiting the fiber in the forward direction,
Pf , for different excitation powers, Pin, and about 300 trapped atoms. Per experimental
sequence, we launch 400 optical pulses with a pulse duration of Tpulse = 5 ns into the
nanofiber-guided mode in order to improve the photon counting statistics. The repetition
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rate of the optical pulses is 5 kHz, i.e., the probing sequence takes 80 ms in total. We
perform continuous degenerate Raman cooling (DRC) with a free-space laser beam that
is near-resonant with the D1 transition, such that, at most, 15 % of the atoms are lost
from the trap during the probing sequence. We note that the scattering rate of the DRC
laser field of about 10 kHz is three orders of magnitude smaller than the collective decay
rate of the atomic ensemble. Therefore, we can assume that DRC does not substantially
alter the observed collective dynamics. Each time trace shown in the following is obtained
by averaging over the 400 probing pulses in each sequence. Moreover, we average over
hundreds of experimental sequences to obtain sufficient counting statistics.
The excitation dynamics is shown in (a)-(c) in red, a reference measurement without
atoms is shown in blue. In (d)-(f), we show the corresponding decay dynamics after the
pulse is switched off at time t = 0 ns. Note that the data for the excitation and decay
dynamics are taken from the same time traces and are simply displayed in two separate
plots due to the widely different y-scales. The corresponding CSA and linear response
predictions are shown as solid black and gray dashed lines, respectively, where we have
assumed a truncated Gaussian distribution of coupling strengths, βf , see section 3.7. In
(a), the excitation power is about 20 pW, which corresponds to a pulse area of A1 ≈ 0.02π,
i.e., much smaller than π. Consequently, the excited state probability is negligible, and the
atomic response is well described by linear response theory. We observe a steep decrease
of the transmitted power as the ensemble absorbs the excitation pulse. Subsequently,
the ensemble emits the absorbed energy into the waveguide with a decay constant of
6.1(1) ns, i.e., much faster than the natural lifetime of 30.5 ns, see panel (d). This
enhanced emission occurs due to the constructive interference of the atomic dipoles into
the forward direction and has been experimentally observed, e.g., in Refs. [45, 46]. In (b)
and (c), we increase the excitation power by about three orders of magnitude to 30 nW
and 60 nW, respectively. The pulse areas seen by the first atom are 0.7 π in (b) and π in
(c), such that the non-linear response of the systems becomes apparent, i.e., each two-level
atom can absorb at most one photon at a time. In particular, for the π-pulse in (c), the
power increases again after an initial decrease and finally reaches the level of the input
power at t = 0 ns. This indicates that the ensemble is fully saturated and can not absorb
any more, as expected for an inverted ensemble. The fluorescent decay dynamics in panels
(e) and (f) is non-exponential and deviates strongly from the predictions of linear response
theory. Still, the data is in excellent agreement with the CSA predictions. Surprisingly,
the maximum power emitted into the forward-propagating mode is about 20 times larger
in (e) than in (f), despite the fact that more energy is stored in the ensemble in (f).
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Figure 4.5: Number of photons absorbed per atom as a function of excitation
power, Pin, and pulse area seen by the first atom, A1, (green dots). The corre-
sponding CSA prediction is shown as the green solid line. The CSA predictions
for the average excited state probability with and without taking into account
fluctuations of βf are shown as the purple dashed and dash-dotted lines, respec-
tively.

4.1.4 Measurement of the excited state probability

In order to better understand the excitation dynamics, we will now analyze the time
traces more quantitatively. The blue-shaded areas in Fig. 4.4(a)–(c) are equal to the
energies that the atoms absorb from the excitation pulses. By dividing this energy by
the number of atoms, N , and the photon energy, ℏω, we can thus extract the number of
photons absorbed per atom, nabs.

nabs = 1
Nℏω

∫ 0

−Tpulse
dt
(
P ref

f − P sig
f

)
, (4.9)

which we plot as green dots in Fig. 4.5 for different excitation powers, Pin, and correspond-
ing pulse areas, A1. The corresponding CSA model prediction is shown as a green solid
line. In addition, we plot the model prediction for the average excited state probability at
t = 0, pexc, as a purple dashed line. We observe that the ensemble performs damped Rabi
oscillations, where nabs and pexc reach maximum values of 0.85(1) and 0.76(1), respectively.
Note that this maximal inversion is reached for a pulse area of Amax inv.

1 = 1.04π due to
absorption of the excitation pulse along the ensemble. This is in reasonable agreement
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with our calculation in section 4.1.2, which gave Amax inv.
1 = 1.053π. This shows that

we are indeed able to coherently and substantially invert the entire ensemble of about
300 trapped atoms in this measurement. For a finite excitation pulse duration, pexc is
slightly smaller than nabs since there is a non-zero probability that an excited atom decays
spontaneously during the pulse, as discussed in section 4.1.1. For the 5 ns-long pulse used
in this experiment, the probability of spontaneous emission during the pulse is about 0.08,
which explains the difference between the two quantities nabs − pexc = 0.09(2). In the
following, we take nabs as an estimate for pexc.
We also show the CSA prediction for a homogeneous coupling strength, βf = β̄f , as the
purple dash-dotted line. There, pexc reaches a maximum value of about 0.92=1-0.08,
i.e., the value that is also expected for a single atom and a pulse duration of 5 ns, see
Fig. 4.2(a). This confirms that the absorption of the pulse along the ensemble does not
substantially affect the state preparation. Instead, thermal fluctuations of βf that result
in an inhomogeneous spread of Rabi frequencies are the limiting factor for the maximally
achievable excited state probability.
While the excitation with resonant Rabi pulses is a conceptually and technically sim-
ple way to excite an ensemble of atoms, there are other methods that are more robust
against inhomogeneous coupling. In particular, excitation using a composite sequence of
picosecond pulses has recently been demonstrated for a few thermal atoms trespassing
an optical nanofiber [111–113]. Alternatively, one could employ adiabatic protocols such
as rapid adiabatic passage [114] or stark-chirped rapid adiabatic passage [115]. However,
all these protocols pose new experimental challenges. Importantly, despite the imperfect
state preparation due to the inhomogeneous atom-waveguide coupling strength, the ex-
perimentally observed collective dynamics is qualitatively very similar to the predicted
dynamics for a constant coupling strength, as we will see in the following.

4.2 Coherent forward scattering

We now turn to the dynamics that occurs once the excitation pulse is switched off.
In Figs. 4.4(d)-(f), the atoms emit a fraction of their stored energy into the forward-
propagating nanofiber mode, where the magnitude of the fluorescence strongly depends
on the power of the excitation pulse.

4.2.1 Scaling with the excitation power

Similar to our analysis in the previous section, we can extract the number of photons
that are emitted, per atom, into the forward (backward) propagating guided modes, nf

em
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Figure 4.6: Integrated power of the forward-emitted light as a function of excita-
tion power (and pulse area). (a) Number of photons per atom emitted into the
forward (backward) propagating mode. (b) Fraction of stored energy emitted
into the forward (backward) direction. The data for the forward and backward
directions are shown in blue and red, respectively. The corresponding CSA
predictions are depicted as solid blue and solid red lines.

( nb
em) from the orange shaded areas in Fig. 4.4(d)-(f).

nf
em = 1

Nℏω

∫ ∞

0
dt
(
P sig

f − P ref
f

)
, (4.10)

nb
em = 1

Nℏω

∫ ∞

0
dt
(
P sig

b − P ref
b

)
, (4.11)

which we show together with the corresponding CSA prediction in Fig. 4.6(a) in blue
and red, respectively. Note that the data for the backward direction is scaled by the
factor indicated in red. We first turn to the number of photons per atom emitted into
the forward direction, nf

em. We observe a maximal value of 0.225(2), which means that
about 70 photons are emitted into the forward-propagating nanofiber mode by only about
300 atoms. This has to be compared to the case of independent emission, where even a
perfectly inverted ensemble would only scatter about βfN ≈ 3 photons into the forward
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direction. Notably, the maximal nf
em does not coincide with the maximal excited state

probability, which occurs for a pulse area of Amax inv.
1 = 1.04π, see Fig. 4.5.

To understand this behavior, we introduce two new quantities:

ηf = nf
em

nabs
, (4.12)

ηb = nb
em

nabs
, (4.13)

i.e., the fraction of stored energy that is emitted into the forward- and backward propa-
gating modes, respectively. The number of photons emitted into the forward (backward)
direction is then the product of the number of photons stored in the ensemble, nabs and ηf

(ηb), which can therefore be thought of as the collection efficiencies of the nanofiber-guided
modes. For independently emitting atoms, we expect ηf = βf and ηb = βb. Importantly,
we note that the physical meaning of ηf is not that of a coupling strength. In particular,
the optical drive by a fiber-guided light field is still determined by βf , and not by ηf .
The quantity ηf rather quantifies the collective enhancement of the emission into the
forward-propagating mode.
We plot the measured values of ηf and ηb together with the CSA prediction in red and
blue in Fig. 4.6(b), respectively. The enhancement in the forward direction is largest for
vanishing input power and ηf reaches a maximum value of 0.62(1), which corresponds to a
60-fold enhancement of forward scattering compared to independently emitting atoms. In
this regime, the data is also in good agreement with linear response theory, which predicts
ηf = 0.67 for our experimental parameters. There, the system behaves like a phased array
of classical antennas [116]. During the excitation, the propagation phase of the excitation
laser field is imprinted onto the atoms, such that, in the single-excitation manifold, the
ensemble is described by a so-called timed-Dicke state [32]:

|TD⟩ = 1√
N

N∑
n=0

eikf zn |g1, g2, . . . , en, . . . , gN ⟩ , (4.14)

which differs by the single-excitation Dicke state by the phase factor eikf zn , i.e., the
propagation phase of the laser. This phase factor ensures that the light that is coherently
scattered by the atoms interferes constructively into the forward direction, explaining
the collectively enhanced collection efficiency, ηf > βf . As we increase the excitation
power, the excited state probability, pexc, and, concomitantly, the probability of incoherent
spontaneous emission, increases and eventually dominates the decay dynamics. For a
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perfect π-pulse, the atoms are prepared in the fully inverted state

|FI⟩ = |e1, e2, . . . , eN ⟩ , (4.15)

which features no phase relationship to the excitation laser anymore. As a result, we observe
that ηf reaches a minimum value of 0.011(2) ≈ βf for a pulse area of Amax inv.

1 = 1.04π,
i.e., the collection efficiency of the forward-propagating mode is not collectively enhanced.
We note that, for the measurements presented in this chapter, the system is prepared
below the threshold for the onset of a superradiant burst. There, the light emitted by an
ensemble of fully inverted atoms can show substantial coherence that also manifests as a
collectively enhanced ηf , as we will see in chapter 5.
The peculiar dependence of nf

em on the pulse area, see Fig. 4.6(a), can now be understood
as a result of the complex interplay between coherent forward scattering (quantified by
ηf ) and the energy stored in the ensemble (quantified by nabs). While the former is
maximized for A1 → 0, the latter is maximized for A1 → Amax inv.

1 ≈ π, such that the best
compromise for our parameters is met for A1 ≈ 0.6π. Notably, the data is in excellent
agreement with the CSA predictions, which underlines the fact that the coherent part of
the light field dominates the atomic dynamics in the regime studied in this section.
The emission into the backward direction shows a behavior that is very different from the
forward direction. The number of photons per atom emitted into the backward direction
peaks at a pulse area of about π, in agreement with the CSA predictions. There, the
power emitted into the backward direction is assumed to be proportional to the incoherent
sum of all atomic populations, see Eq. (3.32), which is why the maximal nb

em coincides
with the maximal pexc. Therefore, one would naively assume that the collection efficiency
in the backward direction is not collectively modified, and hence, ηb = βb. However, as
can be seen from both the experimental data and the CSA prediction, ηb does depend on
A1 and follows the opposite trend as ηf . Since the fields scattered by the atoms interfere
constructively in the forward direction, there has to be destructive interference into the
other modes due to energy conservation [117]. If one assumes that the only preferred
mode is the forward direction, the fraction of energy emitted into the backward direction
should approximately be given by

ηb = βb

1 − βf
(1 − ηf ), (4.16)

which we show as the red dashed line in Fig. 4.6(b). Here, 1 − ηf is the fraction of energy
that is scattered into all directions except the forward-propagating mode. A fraction of
βb/(1 − βf ) of this energy should then be radiated into the backward direction. Indeed,
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Figure 4.7: Fraction of stored energy emitted into the forward direction, ηf as a
function of the number of atoms, N for different pulse areas, A1.

the calculation according to Eq. (4.16) qualitatively agrees with the full calculation using
the CSA model, which is displayed as the red solid line. This further strengthens our
assumption of incoherent backward emission.

4.2.2 Scaling with the number of atoms

To gain further insight into the underlying physics of coherent forward scattering beyond
the weak excitation regime, we now investigate the dependence of ηf on the number of
atoms, N . In Fig. 4.7, we show the dependence of ηf on N for different pulse areas,
A1. The corresponding CSA predictions are shown as colored solid lines, and the linear
response predictions are displayed as a black dashed line.
For the smallest pulse area, A1 = 0.03π, ηf first increases linearly. In this weak excitation

regime, the fields emitted by the atoms interfere constructively in the forward direction.
Therefore, the power Pf scales quadratically, while the absorbed power only scales linearly.
Since ηf is defined as the ratio between forward scattered energy and absorbed energy, the
linear scaling that we observe experimentally is expected as long as coherent scattering
dominates. As we increase the atom number further, ηf reaches a plateau, where up
to 66(2) % of the energy is emitted into the forward direction, in accordance with the
predictions of linear response theory. As we increase the pulse area to 0.3π and 0.5π,
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respectively, the initial slope of ηf (N) decreases and the plateau value is slightly lower.
For a pulse area of 0.9π, we observe a qualitatively different scaling with N . There, the
initial increase of ηf is superlinear, which is indicative of a build-up of coherence along
the atomic array. For a pulse area of π, ηf stays at a constant value of roughly 0.01 ≈ βf

until N reaches about 400, from when on it increases superlinearly. Finally, for a pulse
area of 1.3π, we observe a similar scaling as for the case of A1 = 0.7π. This is because the
average excited state probability should ideally be the same for pulse areas symmetric
around π. We numerically checked that the lower slope and plateau value are primarily
due to the larger thermal fluctuations of the absolute pulse area for larger A1.
One could interpret the superlinear scaling that we observe for pulse areas close to π as
a signature of superradiant burst dynamics, i.e., a phase locking of the atomic dipoles
during their decay. However, in this measurement, we chose a fixed excitation power, Pin,
for each scan of the number of atoms, N . Due to absorption of the excitation pulse, the
pulse area decreases with N . Since the induced dipole moment after a Rabi pulse, d0, is
largest for a pulse area of π/2, d0 increases with N for A1 ∈ (0.5π, π), see Fig. 4.1. Thus,
it is quite difficult to distinguish whether the superlinear scaling is caused by absorption or
by a collective phase locking of the atomic dipoles. Notably, the CSA model fully captures
the behavior of ηf over the whole parameter space explored in this measurement, where
we have scanned both the excitation power, Pin, and the number of atoms, N , over three
orders of magnitude. The fact that the CSA is sufficient to explain our data is evidence
that we have prepared the ensemble in a regime in which the coherent part of the light
fields emitted by the atoms dominates the decay dynamics.

4.3 Intermediate summary and conclusion

We have demonstrated the experimental capability to coherently excite an ensemble of
hundreds of nanofiber-trapped atoms using nanofiber-guided optical Rabi pulses. We
inferred the excited state probability from the number of photons that the atoms absorb
from the excitation pulse and achieved almost full inversion of the atomic ensemble.
We explored the subsequent decay of the power emitted into the waveguide from weak
excitation to full inversion. Importantly, we found that the fraction of energy scattered into
the forward-propagating nanofiber mode can be strongly enhanced. This enhancement is
known as coherent forward scattering and is well known in the regime of linear response [50].
Here, we showed that coherent forward scattering heavily influences the collective decay
dynamics even close to full inversion. Specifically, the amount of enhanced forward
emission can be understood as an interplay between coherent forward scattering and
decoherence due to spontaneous emission, which increases with the excited state probability.
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Consequently, the maximal waveguide-emitted energy occurs for a pulse area close to π/2.
It has been theoretically shown that the directional photon emission close to a nanofiber
leads to a lateral recoil force [118]. Using our method, this recoil force could be collectively
enhanced [119]. Moreover, since we realized a cascaded quantum system, the fraction of
energy emitted into the forward direction, ηf , is much larger for the last atom than for
the first atom since the latter decays independently. Consequently, also the recoil is larger
for the last atom than for the first atom, leading to a compression of the atomic ensemble
in the absence of axial confinement. Studying these effects may be interesting in the
context of optically driven self-organization of atomic ensembles close to a nanophotonic
waveguide [120–122].
Moreover, a superradiant phase transition has recently been observed in a driven, pencil-
shaped cloud of atoms close to the Dicke regime [123]. It would be an intriguing research
direction to study the influence of directional coupling on these effects and explore similar
dynamics in a wQED system.
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5 Superradiant bursts

This chapter is based on Ref. [124]:
C. Liedl, F. Tebbenjohanns, C. Bach, S. Pucher, A. Rauschenbeutel, and P. Schneeweiss.
Observation of superradiant bursts in waveguide QED. arXiv:2211.08940, 2022.

The clapping of an audience after an artistic performance often synchronizes, de-
spite the lack of any reference or leader. Still, crowds of thousands of people manage
to spontaneously agree on a common rhythm within seconds. Such spontaneous
synchronization was already observed by Huygens in the 17th century for mechanically
coupled pendulum clocks [125]. More generally, spontaneous synchronization lies at the
heart of a variety of natural phenomena, ranging from flocks of birds, to synchronized
heart cells and flashing fireflies [126].
We have already learned that an ensemble of initially inverted atoms can emit a
superradiant burst of light which is due to a build-up of coherence between the atomic
dipoles, i.e., the dipoles synchronize over time. However, the fully inverted state has zero
dipole moment and the phases of the individual atomic dipoles are initially not defined.
Thus, superradiant bursts of an initially fully inverted ensemble can be regarded as a
prime example of spontaneous synchronization in quantum optics.
In section 3.5, we described that our system is expected to exhibit superradiant burst
dynamics when prepared close to or at full inversion. While we have already shown
the capability to substantially invert the atomic ensemble in the previous chapter, we
concluded that we did not reach the regime in which incoherent emission by the atoms
dominates the collective decay dynamics, as it is the case for Dicke superradiant bursts of
a fully inverted ensemble.
In this chapter, we report on the observation of superradiant burst dynamics for an
ensemble of atoms that are unidirectionally coupled to the nanofiber mode. We then
analyze the scaling of the peak-emitted power with the number of initially inverted atoms.
We explore superradiant burst dynamics over a wide range of initial excitations and
measure the coherence properties of the superradiant burst. This allows us to identify two
regimes of burst dynamics in which the synchronization of the atomic dipoles is either
spontaneous or seeded by the excitation laser. Finally, we briefly explore the subradiant
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Figure 5.1: Dynamics of the power emitted into the forward-propagating mode,
Pf . The signal with and without atoms is shown as red and blue dots, respectively.
The ensemble of about 1000 atoms is maximally inverted after the excitation
pulse, which switches off at time t = 0 ns. The subsequent decay dynamics shows
a clear burst, characterized by an initial increase of the emitted power. The
MCSA and CSA predictions are shown as a black solid and black dashed line,
respectively.

dynamics following the initial superradiant decay.

5.1 Observation of superradiant burst dynamics

In order to reach the regime of superradiant burst dynamics, two technical changes with
respect to the measurements in chapter 4 where decisive. First, we changed the pulse
duration to 4 ns in order to minimize off-resonant excitation of the neighboring hyperfine
levels of the excited state manifold, as explained in section 4.1.1. Second, we used the
hybrid photodetector instead of the SPCM to measure the optical power that exits the
nanofiber. This greatly reduced afterpulsing, which was detrimental to the observation of
burst dynamics in our setting.
In Fig. 5.1, we show a time trace of the power emitted into the forward-propagating mode,
Pf , as red dots. A reference measurement without atoms is shown as blue dots. We apply
the same probing sequence used in chapter 4, i.e., we expose the atoms to 400 optical
pulses per experimental sequence while performing continuous cooling. The time traces
are then averaged over hundreds of experimental realizations.
The 4 ns-long excitation pulse with a power of 115 nW corresponds to a pulse area of
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A1 = Amax inv.
1 = 1.12 π, such that the ensemble of about 1000 atoms is maximally inverted

at time t = 0 ns. As the ensemble subsequently decays (t > 0 ns), we observe that the
power first increases, reaches a maximal value of Pmax

f after a delay of tD ≈ 9 ns, and then
decreases. This is in stark contrast to the exponential decay dynamics of an ensemble
of independently emitting atoms, where the power decreases monotonously. The initial
increase of the emitted power is the characteristic feature of a superradiant burst. Since
the ensemble is not driven for t > 0 ns, the energy stored in the ensemble can only decrease.
Yet, the power emitted by the ensemble features an initial increase. This observation
provides evidence that the atomic dipoles indeed synchronize during their decay and
acquire a common phase, which results in constructive interference of the emitted fields,
as in the case of standard Dicke superradiance. We also show the model predictions of
both the CSA and the MCSA models. We find an excellent agreement with the MCSA
prediction, while the CSA model fails to describe our observations. This suggests that we
have prepared the ensemble in a regime in which the atomic dynamics is predominantly
driven by incoherently emitted light, which is not captured by the CSA. This regime of
superradiance is sometimes called superfluorescence [127]. There, the synchronization of
the atomic dipoles is not seeded by the excitation laser field but triggered by vacuum
fluctuations. In the following sections, we will analyze different aspects of the superradiant
burst to gain further insight into the physical mechanisms which govern the observed
dynamics.

5.2 Scaling with the number of atoms

In the ideal case of Dicke superradiance, all atoms are located at the exact same position.
Therefore, they all emit into a single optical mode. In this case, even two atoms synchronize
during their decay and, consequently, a (small) burst occurs. In our case, however,
most of the energy stored in the atomic ensemble is emitted into free space, i.e., into
independent optical modes. However, only the emission into the forward-propagating
mode contributes to the synchronization between the atoms. Therefore, a superradiant
burst is only expected to occur above a certain threshold atom number, beyond which the
synchronization dominates over the independent decay, as discussed in section 3.2.3.
In Fig. 5.2, we plot the measured time traces of Pf for various numbers of atoms, N ,
where we have normalized each time trace by its peak value, Pmax

f . Importantly, in order
to maximally invert the ensemble, one has to slightly change the excitation power for each
N . This is because, due to absorption of the excitation pulse, the average pulse area seen
by the ensemble is smaller than the pulse area seen by the first atom, see section 4.1.2.
To determine the power of the excitation pulse, P1, which maximally inverts an ensemble
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Figure 5.2: Decay dynamics of the power, Pf , for ensembles consisting of a varying
number of maximally inverted atoms, N . Superradiant burst dynamics only
occurs beyond a certain threshold atom number. The MCSA predictions are
shown as black lines. In (a), we also plot the exponential decay that is expected
for independently emitting atoms as a dashed orange line.

with a given atom number, N , we scan P1 before each measurement. We then chose the
power at which the maximal number of photons is absorbed from the excitation pulse, see
section 4.1.4.
In Fig. 5.2(a), we show the decay dynamics for about 130 maximally inverted atoms.

We observe a monotonously decaying power, Pf . The dynamics is well described by
the MCSA model (black line), which almost coincides with the exponential decay of an
independently emitting ensemble (orange dashed line). As we increase the number of
atoms to about 230, see panel (b), we first observe a plateau before the power eventually
decreases. This indicates that N is close to the threshold atom number for the onset of
superradiant burst dynamics. We note that this threshold is larger than what is expected
from the analytical result, N ≈ 100, see Eq. (3.15). This is due to the inhomogeneous
spread of coupling strengths, βf . Using the MCSA, we extract that the spread of βf in
our experiment increases the threshold atom number to 146. Finally, we observe a clear
burst for 570 atoms, which becomes even more pronounced for 1100 atoms. We repeat the
measurement shown in Fig. 5.2 for even more different atom numbers and extract the peak
power emitted into the waveguide, Pmax

f , for each time trace. Figure 5.3(a) shows the
scaling of Pmax

f with N on a log-log scale. One can clearly observe two different regimes.
For small atom numbers, we observe a linear scaling. Fitting a power law to the data for
atom numbers smaller than 300 gives an exponent of 1.0(2), see red dashed line1. In this
regime, the peak power occurs directly after the switch-off of the excitation laser, i.e.,

1Fitting function: P max
f (N) = ANα
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Figure 5.3: Dependence of superradiant burst dynamics on the number of atoms,
N . (a) Scaling of the peak power, Pmax

f , with N . (b) Scaling of the fraction
of stored energy that is emitted into the forward direction, ηf . Note that both
panels feature a log-log scale, such that a power-law scaling with exponent α
appears as a straight line with slope α.

t = 0 ns, see Fig. 5.1. If the atoms emit independently, this peak power is given by

Pmax
f = Pf (t = 0 ns) = βf ΓEst. (5.1)

Here, Est = pexcℏωN is the energy stored in an ensemble with average excited state proba-
bility pexc at time t = 0 ns, which is radiated with a rate βf Γ into the forward-propagating
mode. By fitting a linear function without offset to the data in Fig. 5.3(a) for small N ,
we can extract an average excited state probability of pexc = 0.77(10) using Eq. (5.1),
which is consistent with the measurements based on the number of absorbed photons
per atom in section 4.1.4. There, we inferred pexc = 0.76(1) by measuring the number of
absorbed photons per atom for about 300 atoms. For larger atom numbers, the scaling
changes. Fitting the data for atom numbers larger than 300, we find a power law exponent
of 2.6(2). In the standard case of Dicke superradiance, each atom adds constructively
to the total dipole moment of the ensemble once the atomic dipoles have synchronized.
Therefore, the emitted peak power increases quadratically, since it is proportional to the
dipole moment squared. In this idealized scenario, it is assumed that all atoms couple
exclusively to a single optical mode. Therefore, the entire energy stored in the atomic
ensemble, Est, must be radiated into this mode, whether the dipoles synchronize or not.
However, in our case, the coupling strength of each atom to the shared optical mode,
i.e., the forward-propagating nanofiber-guided mode, is only about 1 %. This means that
a single atom emits 99 % of its radiation into independent free-space modes. As the
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superradiant burst emerges, the atoms synchronize via the forward-propagating mode,
such that each atomic dipole acquires an additional propagation phase. The resulting
phase pattern leads to constructive interference in the forward direction. Similar to a
phased antenna array, the ensemble then emits into a narrower solid angle, as the number
of atoms is increased [116]. Therefore, a larger fraction of the emitted light is coupled
into the nanofiber-guided mode, since the latter acts as a fixed aperture for the emission
pattern. This collectively enhanced coupling efficiency explains the faster-than-quadratic
scaling of the peak power with the number of atoms observed in the experiment.
To check the validity of this explanation, we extract the fraction of the stored energy
that is emitted into the forward direction, ηf , as we did in section 4.2. Note that we use
the SPCM signal to extract ηf from our measurements since the signal from the hybrid
photodetector is saturated during the duration of the excitation pulse, see section 2.4. In
Fig. 5.3(b), we plot ηf as a function of the number of inverted atoms, N . Also here, we
observe a threshold behavior. For small N , ηf stays at a constant value of ηf ≈ βf ≈ 0.01,
which is what is expected for independently decaying atoms, see gray dashed line. As
N surpasses the threshold, beyond which we observe a superradiant burst, ηf starts to
increase with a power law exponent of 1.2(1), see purple dash-dotted line. The increase
of ηf means that the scattering into the forward-propagating mode is indeed collectively
enhanced.
Importantly, this enhancement of ηf has a fundamentally different origin than the en-
hancement we observed in section 4.2. Also there, the enhancement was due to a phase
pattern across the atomic ensemble, which lead to constructive interference in the forward
direction. However, in the weak excitation regime, the phases are determined by the
excitation laser, which prepares the ensemble close to a timed Dicke state. In contrast, for
an initially fully inverted ensemble, the phase pattern emerges spontaneously through the
synchronization of the atomic dipoles during their decay. We will pick up on this notion
in section 5.5, where we will analyze the coherence properties of the superradiant burst in
more detail.

5.3 Scaling in the large-N limit

While it is technically challenging to increase the number of inverted atoms much further in
our experiment, we can use the MCSA model to investigate the scaling of the superradiant
burst for larger N . To do so, we assume a perfectly homogeneous coupling strength
of βf = 0.011 as well as perfect inversion at time t = 0. In Fig. 5.4(a), we plot the
simulated peak-emitted power, Pf , as a function of N as a black line. We observe three
different regimes of scaling. For small atom numbers, the peak power scales linearly
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Figure 5.4: MCSA predictions for the scaling of different quantifiers of the super-
radiant burst with the number of atoms, N . We assume a perfectly homogeneous
atom-waveguide coupling strength of βf = 0.011 and perfect inversion at time
t = 0 ns. (a) We observe three regimes, in which Pmax

f scales linearly (blue
dashed line), super-quadratically (orange dash-dotted line), and quadratically
(green dotted line) with N , respectively. (b) For large N , ηf reaches a plateau
value of about 0.4. (c) Dividing Pmax

f by ηf eliminates the effect of collectively
enhanced forward scattering, and, consequently, the super-quadratic scaling is
reduced to quadratic scaling.

with N , see blue dashed line. As the threshold atom number for the occurrence of a
superradiant burst is surpassed, the scaling becomes faster than quadratic, as observed in
our experiment. For atom numbers between 500 and 2000, we fit a power law exponent
of 3.25, see orange dash-dotted line. We numerically checked that the difference to the
experimentally observed exponent of 2.6(2) is mainly due to the inhomogeneous spread of
coupling strengths, βf . Eventually, the scaling approaches a quadratic scaling for even
larger N , see green dotted line. This is expected in the limit of large N , if we attribute
the super-quadratic scaling of Pmax

f to an increase of the collective coupling efficiency, ηf

since the latter can not become larger than 1. Therefore, the scaling of Pmax
f reduces to a

quadratic scaling as ηf saturates. In panel (b), we plot ηf as a function of N . As expected,
ηf saturates for large N , however, at a maximal value of about 0.4, i.e., substantially
smaller than 1.
Finally, in panel (c), we divide Pmax

f by the collective coupling efficiency, ηf , in order to
eliminate the effect of collectively enhanced forward scattering. Indeed, we observe only
two different scaling regimes: linear (blue dashed line) and quadratic (green dotted line).
This further consolidates our hypothesis that the observed super-quadratic scaling of
Pmax

f with N appears due to an increased coupling efficiency to the forward-propagating
mode, in addition to the usual quadratic enhancement, which is expected for Dicke-like
superradiant bursts.
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Figure 5.5: Dynamics of the power, Pf , for different pulse areas, A1, after
switching off the excitation pulse at time t = 0 ns. Each time trace is normalized
by the peak-emitted power, Pmax

f . The ensemble consists of about 1000 atoms
and is maximally inverted for a pulse area of Amax inv.

1 = 1.12 π. Panel (a) shows
the measured data, and panel (b) the corresponding MCSA predictions. The
time at which the peak power is emitted, tD, is indicated as dashed white lines.

5.4 Superradiant burst dynamics for a finite initial dipole
moment

A lot of the scientific literature on superradiant burst dynamics has focused on the case
of fully inverted ensembles, where the atomic dipole moment is initially zero. In this
case, the superradiant burst is seeded by spontaneous or fluorescent emission. Accord-
ingly, superradiant burst dynamics of an initially fully inverted medium is also called
superfluorescence [127–129]. However, coherent pulsed excitation of states with a finite
dipole moment has already been discussed in the very first paper on superradiance by
Dicke [9]. Various works have focused on the influence of an initial, so-called tipping angle,
which can be introduced intentionally in order to seed the emission of a superradiant
burst [15, 130, 131]. In our case, we coherently excite the ensemble using Rabi pulses, such
that we can control the excited state probability, as well as the magnitude of the induced
dipole moment via the pulse area, A1, see section 4.1. In Fig. 5.5(a), we show time traces
of the power emitted into the forward-propagating mode, Pf , for different pulse areas, A1,
as a colormap for about 1000 atoms. In panel (b), we show the corresponding MCSA
prediction, which is in excellent agreement with the experimental data. We note that, in
both panels, each time trace is normalized by its peak-emitted power, Pmax

f . The delay
time, tD, at which this peak power occurs is shown as the dashed white line. Importantly,
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Figure 5.6: Comparison of two different MCSA predictions for the dynamics
of the power emitted by 1000 atoms into the forward-propagating mode, Pf ,
as a function of the pulse area, A1. In both (a) and (b), we assume perfectly
homogeneous coupling strengths, βf =0.011. In (b), we additionally assume that
each atom is initially prepared in the ideal state, |ψ0⟩.

a time delay larger than zero indicates that a burst occurs.
As before, the excitation pulse is switched off at time t = 0 ns (not shown). For A1 < 0.8π,
the maximally emitted power occurs right after switching off the excitation pulse, i.e.,
tD = 0, and no burst occurs. As we increase the pulse area further, the time delay grows,
and a superradiant burst becomes apparent. The maximal delay of tD ≈ 9 ns is reached
for a pulse area of Amax inv.

1 = 1.12π, i.e., it coincides with maximal inversion of the atomic
ensemble. Recall that maximal inversion occurs at a pulse area slightly larger than π due
to absorption of the excitation pulse along the ensemble. Consequently, the pulse area
seen by the first atom, A1, is always slightly larger than the average pulse area seen by
the ensemble. Indeed, our simplified model of pulse absorption, see section 4.1.2, predicts
that maximal inversion should be reached for Amax inv.

1 = 1.13π for our parameters. For
even larger pulse areas, the ensemble is coherently de-excited, and the burst vanishes.
Notably, the time traces are not symmetric with respect to maximal inversion. First, the

delay tD is larger for A1 > Amax inv.
1 than for A1 < Amax inv.

1 . Second, the burst seems to
be more pronounced for A1 > Amax inv.

1 , i.e., the ratio between the peak power, Pmax
f , and

the power at time t = 0 ns is larger. Both of these asymmetric features also appear in the
MCSA simulation, such that we can assume that the observed asymmetry has a physical,
rather than technical reason. In order to further investigate the origin of this asymmetry,
we compare different MCSA predictions.
In Fig. 5.6(a), we show the MCSA predictions assuming a perfectly homogeneous coupling
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strength, βf . Qualitatively, the dynamics is very similar to what we observe in the
experiment, see Fig. 5.5(a). In particular, the asymmetry with respect to full inversion
is even more pronounced. In panel (b), we assume, in addition to perfectly homogenous
coupling, that the ensemble is prepared in |ψ0⟩ at time t = 0 ns. We thus neglect the
dynamics during the excitation pulse. Then, the asymmetry disappears, and the maximal
delay appears at a pulse area of A1 = π, since now each atom is initially excited with
the same pulse area. These observations suggest that the asymmetry with respect to full
inversion is due to a partial absorption of the excitation pulse along the atomic ensemble.
The pulse area seen by the atoms decreases along the ensemble, such that each atom is
initially prepared in a slightly different state. Since we work with a cascaded quantum
system, the first atom emits independently, while the last atom is driven by the light
emitted by the entire ensemble. For an average pulse area slightly larger than π, the last
atom is prepared closer to full inversion than the first atom, such that the superradiant
burst dynamics is more pronounced than for average pulse areas slightly smaller than π.

5.5 Coherence properties of the superradiant burst

In the previous sections, we have interpreted the occurrence of a superradiant burst as
the build-up of coherence between the atoms. This interpretation is backed by several
observations that are indirectly linked to the coherence of the burst: The fraction of
forward-emitted energy, ηf , is collectively enhanced even for maximal inversion, and we
have observed a superlinear scaling of the maximally emitted power, Pf , with the number
of atoms. To directly analyze the coherence properties of a light field, one typically
measures the so-called correlation functions.

5.5.1 Two-time correlation functions

The temporal first- and second-order correlation functions of a light field described by the
annihilation operator, â(t), and power P (t) = ⟨a†(t)a(t)⟩ are defined as [132]:

G(1)(t, τ) = ⟨â†(t)â(t+ τ)⟩,

g(1)(t, τ) = G(1)(t, τ)√
P (t)P (t+ τ)

,

G(2)(t, τ) = ⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩,

g(2)(t, τ) = G(2)(t, τ)
P (t)P (t+ τ) .

(5.2)
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Here, g(1)(t, τ) and g(2)(t, τ) denote the normalized first-order and second-order correlation
functions, respectively. Their physical meaning is the correlation between the field
(intensity) at time t with the field (intensity) at a later time, t + τ . Therefore, the
first-order correlation is called field-field correlation, and the second-order correlation is
called intensity-intensity correlation.
In the case of a stationary light field, one can integrate over t and it is sufficient to describe
the correlation functions in terms of the delay time τ ,

G(1)(τ) = Et

[
⟨â†(t)â(t+ τ)⟩

]
,

g(1)(τ) = G(1)(τ)
Et[P (t)] ,

G(2)(τ) = Et

[
⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩

]
,

g(2)(τ) = G(2)(τ)
Et[P (t)]2

(5.3)

where Et[x(t)] denotes the average over time,

Et[x(t)] = lim
T →∞

(
1
T

·
∫ T/2

−T/2
x(t)dt

)
. (5.4)

The normalized first-order correlation function can take values from -1 to 1 and is often
described as the degree of first-order coherence since it determines, e.g., the visibility of
the interference fringes as a function of the delay time between the two paths, τ . Moreover,
according to the Wiener-Khinchin theorem, g(1)(τ) is related to the power spectrum of
the light via the Fourier transform. We also note that, per construction, g(1)(t, t) = 1 ∀ t

and g(1)(0) = 1.
We note that one should take care when interpreting the two-time first-order coherence. For
example, a single atom that is inverted at time t = 0 emits a field for which g(1)(t, t+τ) = 1,
i.e., it does not decrease with time, see section A.6 in the Appendix. This is despite the
fact that the process of spontaneous emission is intrinsically incoherent. Indeed, when
averaging over time, we obtain g(1)(τ) = e−Γt/2.
Finally, we introduce the normalized first-order cross-correlation function between two
light fields, â1(t) and â2(t), with powers P1(t) and P2(t),

g
(1)
12 (t, τ) = ⟨â†

1(t)â2(t+ τ)⟩√
P1(t)P2(t+ τ)

,

g
(1)
12 (τ) =

Et

[
⟨â†

1(t)â2(t+ τ)⟩
]

Et

[√
P1(t)P2(t)

] .

(5.5)
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Analogous to the first-order (auto-) correlation function, the first-order cross-correlation
function gives the visibility of the interference fringes when overlapping the two light fields.
For a value of g(1)

12 (t, τ) = 1, we can thus say that the two fields are coherent with respect
to each other. After these definitions, we now turn to our experiment again.

5.5.2 Heterodyne measurement of the superradiant burst

We overlap the light emitted into the forward-propagating mode with a detuned local
oscillator (LO), see detection setup in section 2.4. This technique is called heterodyne
detection [133]. The LO is a continuous-wave field, which is split off the excitation laser field
before the optical pulses are generated. We detune the LO field by ωLO = 2π × 230 MHz
from the excitation laser field using an acousto-optical modulator. If the superradiant
burst is coherent with respect to the excitation laser field (and consequently, the local
oscillator field), the heterodyne signal should thus feature a beat pattern that oscillates
at a frequency of ωLO. However, in our experiment, the relative phase, θLO, between
the local oscillator and the excitation laser field is not actively stabilized. Therefore,
θLO drifts substantially during the 80 ms-long probing sequence due to random thermal
and acoustic fluctuations. Since our signal-to-noise ratio is not sufficient for single-shot
detection, we have to average the heterodyne signal over many experimental realizations,
such that the drift of θLO dephases any interference pattern. To circumvent this problem,
we compute the normalized second-order (intensity-intensity) correlation function of the
heterodyne signal, g(2)

D (t, τ). When the power of the local oscillator is much larger than the
superradiant burst signal, g(2)

D (t, τ) is given by the following expression, see Appendix A.5
for a full derivation,

g
(2)
D (t, τ) = 1 + Vmax(t, τ) cos(ωLOτ)g(1)(t, τ). (5.6)

The intensity-intensity correlation of the heterodyne signal is thus given by the field-field
correlation of the superradiant burst signal, g(1)(t, τ), and oscillates around 1 with the
local oscillator frequency, ωLO. The maximal visibility of this beat pattern, Vmax(t, τ),
is determined by the power of the local oscillator field, PLO, and the power of the light
emitted into the forward-propagating mode, Pf (t),

Vmax(t, τ) =
2PLO

√
Pf (t)Pf (t+ τ)

[PLO + Pf (t)] [PLO + Pf (t+ τ)] . (5.7)
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Figure 5.7: First-order coherence function of the light exiting the nanofiber in
the forward direction, oscillating at the local oscillator detuning ωLO. The pulse
areas are A1 = 0.99π, 1.12π, and 1.28π in (a), (b), and (c), respectively. As
before, the excitation pulse is switched off at t1 = 0 ns. Note that a pulse area
of Amax inv.

1 = 1.12 π in panel (b) maximally inverts the ensemble of about 1000
atoms.
Top part: Two-time first-order coherence function as a color plot.
Bottom part: Cut through the color plot along the black dashed line, i.e.,
t = −2 ns. For t < 0, the first-order coherence function can be interpreted as the
first-order cross-correlation function between the excitation laser field and the
superradiant burst, X (τ).

We can thus extract the following quantity by measuring both Vmax(t, τ) and g
(2)
D (t, τ),

cos(ωLOτ)g(1)(t, τ) = g
(2)
D (t, τ) − 1
Vmax(t, τ) . (5.8)

Since we measure both the time-dependent power of the signal field and the power of the
local oscillator field, it is straightforward to extract Vmax(t, τ) from the experimental data.
However, the measurement of the intensity-intensity correlation, g(2)

D (t, τ), usually requires
two detectors in a so-called Hambury-Brown-Twiss configuration since our detectors are
not photon-number resolving. However, here, we are not interested in the correlation
functions for zero time delay, τ = 0 ns, since the field-field correlation, g(1)(t, t), is equal
to one per definition. Since the hybrid photodetector features a dead time of only about
2 ns, we can measure g(2)

D (t, τ), for τ > 2 ns, even with one detector.
In the top part of Fig. 5.7, we show the first-order correlation function of the light exiting
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the nanofiber oscillating at the local oscillator detuning, cos(ωLOτ)g(1)(t, τ), as a function
of t and τ as a color map. In (a), (b), and (c), we show measurements for about 1000
trapped atoms and pulse areas of A1 = 0.99π, 1.12π, and 1.28π, respectively. As before,
the excitation laser pulse is switched off at time t1 = 0 ns.
For t > 0 ns, we observe oscillations with large contrast, irrespective of the pulse area.
By extrapolating the oscillations to τ = 0 ns, we infer that the first-order coherence is
positive-valued.
For t < 0 ns, the signal exiting the nanofiber is dominated by the excitation laser pulse
since the power of the latter is much larger than the power of the light emitted by the
atoms. Thus, g(1)(t < 0, τ > −t) can be interpreted as the first-order cross-correlation
function between the excitation laser field and the field emitted by the atoms. We plot
the quantity X (τ) = g(1)(t = −2 ns, τ), modulated with the local oscillator detuning, in
the lower part of Fig. 5.7. The modulus of X (τ), i.e., the visibility of the oscillations,
quantifies the coherence of the superradiant burst with respect to the excitation laser field.
Its sign is equal to the relative phase factor, eiθrel between the excitation laser field and the
superradiant burst. This phase factor can only be equal to 1 or -1 for resonant excitation,
corresponding to a relative phase of θrel = 0 or θrel = π, respectively, see Appendix A.5.
In (a), the pulse area, A1 = 0.99π, is slightly smaller than the pulse area required to
maximally invert the ensemble, Amax inv.

1 = 1.12π. We observe oscillations with large
contrast, i.e., the light emitted by the atoms is coherent with respect to the excitation laser
field. We extrapolate that X (τ) is negative, i.e., the light emitted by the atoms is phase
shifted by π with respect to the excitation laser field. This is expected for pulse areas
smaller than Amax inv.

1 since the field radiated by the induced atomic dipoles oscillates π
out of phase with the excitation laser field, see section 4.1. This phase shift can also be
seen in the top part of panel (a), where we observe a clear phase jump of π as t changes
from negative to positive values.
In (b), the pulse area of A1 = 1.12π is chosen such that the atomic ensemble is maximally
inverted at time t = 0 ns. Then, the induced atomic dipole moment is zero, and
correspondingly, there is no fixed phase relationship with respect to the excitation laser
field. Indeed, we practically do not observe oscillations in the lower panel of (b), i.e.,
X (τ) ≈ 0. This confirms that the light emitted by the atoms is incoherent with respect to
the excitation laser field.
Finally, in (c), the pulse area of A1 = 1.28π is slightly larger than Amax inv.

1 . Again, we
observe oscillations with large visibility, i.e., the emitted light is coherent with respect to
the excitation laser field. In contrast to the data shown in (a), here we extract a relative
phase of zero, indicating that the emitted light oscillates in phase with the excitation laser
field. Also this behavior is expected since the average induced atomic dipole switches sign
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Figure 5.8: (a) Average coherence of the superradiant burst with respect to the
excitation laser field, |⟨X ⟩τ |, and time delay of the peak-emitted power, tD, as a
function of the pulse area, A1. The corresponding MCSA model predictions are
shown as a solid blue and dashed red line, respectively. We observe a time delay
of tD > 0 ns over a wide range of pulse areas, see gray shaded area, indicating that
a superradiant burst occurs. We observe superradiant bursts that are incoherent
with respect to the excitation laser only for a narrow range of pulse areas, see
green shaded area. This regime coincides with the regime in which it is necessary
to model the dynamics with the MCSA model. Panel (b) shows a zoom into (a),
where we again plot |⟨X ⟩τ | in blue, as well as the relative difference between the
MCSA and CSA predictions as the black dash-dotted line.

when the pulse becomes larger than Amax inv.
1 , such that the emitted light is in phase with

the driving field.

5.5.3 Identification of two regimes of burst dynamics

In section 5.4, we have investigated the superradiant burst dynamics as a function of
the initial excitation. In particular, we extracted the time tD, at which the peak power
emitted into the forward-propagating mode, Pmax

f , is reached. Let us recall that a time
delay of tD > 0 ns indicates the occurrence of a superradiant burst.
In the previous section 5.5.2, we have analyzed the coherence properties of the superradiant
burst. In particular, we extracted the first-order cross-correlation function between the
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excitation laser field and the superradiant burst, X (τ), oscillating at the local oscillator
detuning, ωLO, see bottom part of Fig. 5.7. We now fit this quantity using a cosine function,
with only an amplitude C as a free fit parameter. The fitted amplitude corresponds to
X (τ), averaged over τ ∈ [4, 20] ns. Its modulus quantifies the average coherence with
respect to the excitation laser field, |⟨X ⟩τ |.
We now compare the two sets of measurements discussed in sections 5.4 and 5.5.2 by
plotting both tD and |⟨X ⟩τ | as a function of the pulse area, A1, in Fig. 5.8(a). The solid
blue and dashed red lines show the corresponding MCSA predictions. We find that |⟨X ⟩τ |
vanishes in a very narrow range of pulse areas, A1, in excellent agreement with the MCSA
prediction. In this regime, the light emitted by the atoms is incoherent with respect to the
excitation laser field. However, superradiant burst dynamics, characterized by a non-zero
time delay, tD, occurs over a much wider range of pulse areas. This allows us to identify
two regimes of superradiant burst dynamics.
In the first regime, we observe superradiant bursts that are coherent with respect to the
excitation laser field, see gray shaded area in Fig. 5.8. This occurs when the pulse area is
well below or above the pulse area required to maximally invert the ensemble, but the
average excited state probability is still substantially larger than 0.5. Then, the laser
induces an initial atomic dipole moment, d0, which further builds up during the decay,
resulting in the emission of a burst. The induced dipole moment features a fixed phase
relationship with the excitation laser field, which is inherited by the light emitted by the
atoms after the excitation pulse is switched off. In particular, the superradiant burst is
either in phase (A1 < Amax inv.

1 ) or π out of phase (A1 > Amax inv.
1 ) with the excitation

laser field, see Fig. 5.7.
In the second regime, see green shaded area in Fig. 5.8, we observe superradiant bursts that
are incoherent with respect to the excitation laser field, i.e., |⟨X ⟩τ | ≈ 0. There, the initial
dipole moment of the ensemble practically vanishes. The build-up of coherence during
the decay is thus seeded by vacuum fluctuations. This process is indeed a spontaneous
synchronization of the atomic dipoles since, in this regime of superfluorescence, there is
no external reference that determines the phase of the emitted light.
Figure 5.8(b) shows a zoom into panel (a), where we again plot |⟨X ⟩τ |, as well as the
relative difference between the MCSA and CSA prediction, δ(CSA), as a black dash-dotted
line2. The superfluorescent regime, i.e., the green shaded area, coincides with the regime
in which the MCSA prediction substantially differs from the CSA prediction. There,
the atomic dynamics is predominantly driven by incoherently emitted light, which is
not captured in the CSA. For pulse areas in the gray shaded area, the initially induced
average dipole moment, d0, is large enough such that the atomic dynamics is driven by

2We use the same definition for the relative difference δ as in section 3.5, see Eq.(3.31)
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Figure 5.9: Time traces of the power emitted into the forward-propagating mode,
Pf , for different pulse areas, A1, as a color map with logarithmic scaling. Except
at the point of maximal inversion, we observe minima of the emitted power,
which indicates that the ensemble has evolved into a subradiant state. (a) shows
the measured data, and (b) the corresponding MCSA model prediction.

coherently emitted light. In this regime of “laser-seeded” superradiant bursts, the CSA
models the dynamics reasonably well, i.e., it deviates by less than about 20 % from the
MCSA prediction.

5.6 Subradiant dynamics following a superradiant burst

So far, we have focused on the dynamics shortly after switching off the excitation laser
pulse. This early dynamics is dominated by superradiant, i.e., collectively enhanced
emission. Following this initial superradiant dynamics, collectively inhibited decay has
been observed in dilute clouds of cold atoms in the weak excitation regime [36]. This
phenomena is termed “subradiance” and has since been studied in a variety of different
atomic systems [39, 51, 63, 134].
In particular, subradiance has been observed in waveguide QED in the form of sudden,
temporary switch-offs of the optical power emitted into the waveguide [45, 47, 135]. This
phenomenon is well captured by linear response theory and has, e.g., also been observed in
the resonant transmission of synchrotron radiation through effectively continuous media,
such as metal foils [136]. For an ensemble consisting of a discrete number of emitters,
one can understand this dynamics as a coherent evolution of the atomic state through
all N − 1 subradiant states of the single-excitation manifold, as described in Ref. [47]:
Initially, a weak, resonant laser pulse prepares the atoms in the so-called timed Dicke
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Figure 5.10: MCSA predictions for the times at which the first and second
minimum of the forward-emitted power, Pf , occurs, as a function of pulse area,
A1. (a) We also simulate the excitation dynamics and assume an inhomogeneous
spread of coupling strengths, βf . (b) We assume perfectly homogeneous coupling
strengths and that each atom is initially prepared in the ideal state, |ψ0⟩.

state, see Eq. (4.14), which is superradiant with respect to the forward-propagating guided
mode. However, one can also define a set of N − 1 orthogonal single-excitation states,
which are subradiant, i.e., the corresponding phase patterns interfere destructively in the
forward-propagating mode. As the ensemble decays, its state passes through all N − 1
subradiant states, and correspondingly, the optical power features N − 1 minima [47].
We note that this decay dynamics is of course still primarily dissipative and that the
coherent evolution through the subradiant states only occurs until a photon has been
emitted. Beyond the regime of linear response, the interpretation becomes more complex
since there are many more states that the system can explore.
Here, we observe subradiant dynamics that is very similar to what was reported in
Refs. [45, 47, 135], even beyond the weak excitation regime. To make these features more
visible, we plot time traces of the power, Pf , as a function of A1 as a color map with
logarithmic scaling in Fig. 5.9(a). We note that this data is taken from the same set of
measurements that is depicted in Fig. 5.5. As before, we plot the time delay, tD, as a white
dashed line. For the smallest pulse areas, A1, we observe two minima in the emitted power,
Pf . As we increase A1, these minima occur at later times. For A1 ≈ 1.12π = Amax inv.

1 ,
i.e., maximal inversion, we do not observe a clear minimum anymore. Finally, for
A1 > Amax inv.

1 , there is again at least one minimum. The corresponding MCSA prediction
is shown in panel (b) and qualitatively agrees with our experimental data.
In the following, we denote the time at which the kth minima of Pf occurs as tksubrad.. We

note that the occurrence of a minimum in the emitted power is not necessarily synonymous
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to a subradiant decay. A better definition of subradiance involves the ensemble decay
rate [47],

Γens(t) = −
∑N

k=1 ρ̇
k
ee(t)∑N

k=1 ρ
k
ee(t)

. (5.9)

The ensemble is subradiant when Γens(t) < Γ. We numerically checked that tksubrad.
coincides with the time at which a local minimum of Γens(t) occurs, and that Γens(t) < Γ.
Therefore, we will treat the occurrence of a local minimum of Pf as an indicator for
subradiance in the following.
We extract t1subrad. and t2subrad. from the MCSA predictions and plot them as a solid purple
and dashed green lines in Fig 5.10(a), respectively. We observe that the first minimum for
pulse areas of A1 > Amax inv.

1 suddenly disappears as the pulse area approaches Amax inv.
1 ,

while the second minimum smoothly transitions into the first minimum for pulse areas of
A1 < Amax inv.

1 . Recall that we discussed a similar asymmetry with respect to maximal
inversion for the delay time of the peak-emitted power, tD, in section 5.4. There, we
identified a systematic change of the induced atomic dipole moment along the atomic
ensemble due to a partial absorption of the excitation pulse while propagating through
the ensemble.
To check if the asymmetry for tksubrad. also stems from a similar effect, we plot the
MCSA prediction for perfectly homogeneous coupling, assuming that each atom is initially
prepared in the same state, |ψ0⟩, in panel (b). Indeed, the times at which the minima
of Pf appear are now completely symmetric around A1 = π. This suggests that the
asymmetry observed in (a) and, in particular, the connection of t1subrad. and t2subrad. is
caused by an ordering of the atomic dipole moments along the ensemble due to the finite
excitation pulse duration. Finally, when we neglect any experimental imperfections, see
panel (b), we do not observe any minimum at all for pulse areas very close to π.
Importantly, we note that the MCSA prediction deviates from the dynamics predicted by
solving the many-body master equation for longer times and full inversion, see section 3.5.
The following analysis of the subradiant dynamics using the MCSA model is motivated
by the qualitative agreement of our data with the MCSA model prediction away from full
inversion.

5.6.1 Phase pattern of the subradiant states

To gain more insight into the physical mechanism underlying the subradiant dynamics,
we perform an analysis similar to what was done in Ref. [47]. We simulate the dynamics
of 1000 atoms that are each perfectly prepared in state |ψ0⟩ at time t = 0 ns using the
MCSA model and neglect the inhomogeneous spread of βf values. In Fig. 5.11, we plot
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Figure 5.11: Values of Im(⟨σ̂k⟩) for different pulse areas, A. Positive and negative
values are indicated in orange and blue, respectively. Each row corresponds to a
different time, which is indicated on the right-hand side of the plot. At time tD,
the peak power, Pmax

f , is emitted into the forward-propagating mode. The time
tisubrad. corresponds to the time at which the ith local minimum of Pf occurs. We
simulate the dynamics of 1000 atoms using the MCSA model, assuming perfect
state preparation and homogeneous coupling strengths. Note that the units are
arbitrary.

the values of Im(⟨σ̂k⟩), which are proportional to the atomic dipole moment of atom k at
different times. The zeros in each plot are indicated as black dashed lines. Recall that
the atomic dipole moment is imaginary for resonant excitation, see section 4.1. For the
first row, we evaluate Im(⟨σ̂k⟩) at time t = tD, i.e., the time at which the peak power is
emitted into the forward-propagating mode. The second to fourth rows correspond to
the times at which we observe the first to third subradiant state, respectively. In the first
row, all dipole moments are negative and imaginary, i.e., they are all in phase. Indeed, we
expect constructive interference of the atomic dipoles at the point of maximal emission.
For A = 0.7 π and A = 0.95 π, we observe that the magnitude of the dipole moment
increases along the ensemble. In this regime, we observe a superradiant burst, which is
coherent with respect to the excitation laser field, see section 5.5.
The phase patterns of the subradiant states, see second to fourth row, are quite similar for
all pulse areas. For the first subradiant state, we observe that one part of the ensemble
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features negative imaginary dipole moments while the other part features positive imaginary
dipole moments. These two “domains” interfere destructively, which leads to a minimum
in the emitted power. For the second subradiant state, the total dipole moment also
vanishes. However, now there are three domains, i.e., the imaginary parts of the dipole
moments are negative for the first atoms, then positive, and again negative for the last
atoms. Finally, there are four domains for the third subradiant state, and so on. In total,
there are N − 1 ways to split the ensemble into such destructively interfering domains.
This means that, at most, N − 1 minima of the forward-emitted power can occur.
We note that the last subradiant state corresponds to a configuration in which each atomic
dipole moment points in the opposite direction of the dipole moment of the neighboring
atom. For even longer times, t > tN−1

subrad., the dipole moments decrease in a non-uniform
way, where the dipole moment of the last atoms decreases slower than the dipole moment
of the first atoms. However, the alternating sign pattern resembles antiferromagnetic
order, which is stable and does not change anymore.

5.6.2 Subradiant states for full inversion

The MCSA model does not predict subradiance for full inversion, see Fig. 5.10(b). However,
when solving the many-body master equation in chapter 3, we have observed the occurrence
of N − 1 minima of the emitted power even for full inversion. Note that, strictly speaking,
N−1 minima of the ensemble decay rate, Γens, occur, which are not necessarily accompanied
by local minima of the emitted power. For the following simulations, we checked that the
times at which the respective minima of Pf and Γens occur coincide. To investigate if this
dynamics is related to the same mechanism of domain splitting observed in the previous
section, we will calculate the dynamics for N = 10 atoms with unidirectional coupling,
βf = 1. One could again evaluate the expectation values of each atomic dipole moment at
the times at which the different subradiant states are observed. However, for full inversion,
⟨σ̂k⟩(t) = 0 ∀ t. Instead, we will calculate the expectation value of the correlation between
the total dipole moment and the dipole moment of each atom, ⟨Ŝ†σ̂k⟩. Here, Ŝ is the
collective lowering operator,

Ŝ = 1√
N

N∑
k=0

eikf zk σ̂k (5.10)

We plot the strength of these correlations for each atom in Fig. 5.12 for different times.
Importantly, we are mainly interested in the sign of each correlation, which is indicated
by the light orange and light blue shaded bars, respectively. In (a), we evaluate the
correlations at the time at which the peak power is emitted into the forward-propagating
mode, tD. There, all dipoles have the same sign, as before. For each subsequent subradiant
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Figure 5.12: Dynamics of ⟨Ŝ†σ̂k⟩ for an initially fully inverted ensemble. Positive
and negative values are indicated in orange and blue, respectively. For clarity,
the light-shaded bars indicate the sign of ⟨Ŝ†σ̂k⟩. Panels (a)–(d) correspond to
different times, which we indicate on the right-hand side of the plot. We simulate
the dynamics of 10 atoms using the many-body master equation, assuming perfect
state preparation and homogeneous coupling strengths. Note that the units are
arbitrary.

state, see panels (b)–(d), we observe the same behavior that is predicted by the MCSA
for pulse areas smaller than π. The ensemble first splits into two domains, then three,
and so on. Finally, the last subradiant state features N − 1 domains. Each correlation,
⟨Ŝ†σ̂k⟩, has the opposite sign of the correlation of the neighboring atoms, ⟨Ŝ†σ̂k±1⟩.
It thus seems that the subsequent splitting in more and more domains described above is a
universal feature of collective decay for unidirectional coupling. Understanding the origin
of this dynamics is, therefore, an exciting prospect for both experimental and theoretical
research on the subradiant dynamics in a cascaded quantum system.

5.7 Intermediate summary and conclusion

We have, for the first time, realized superradiant bursts in wQED. In particular, we
observed that the peak power emitted into the forward-propagating mode scales even
faster with the number of atoms than in the ideal Dicke case due to an increasingly
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directed emission pattern, which is thus more efficiently collected by the nanofiber-guided
mode. We explored the dynamics as a function of the pulse area of the excitation pulse
and found that burst dynamics persists over a wide range of initial excitations. By
measuring the first-order cross-correlation function between the superradiant burst and
the excitation laser, we were able to directly identify two regimes of superradiant burst
dynamics. In the first regime, the burst is seeded by an initial atomic coherence induced
by the excitation laser. In the second regime of superfluorescence, the burst is seeded by
vacuum fluctuations, i.e., it appears due to spontaneous synchronizations of the atomic
dipoles. Finally, we discussed the subradiant dynamics following the initial superradiant
decay. We found that the ensemble successively passes through N − 1 subradiant states.
These states are characterized by the same atomic phase patterns, from weak excitation
to full inversion.
In order to further study the late subradiant dynamics of the fully inverted state, it
would be advantageous to excite the atoms using either a free-space laser beam or a
nanofiber-guided beam that propagates in the opposite direction of the preferred direction
of photon emission. Then, the effect of coherent forward scattering can be switched off
since the excitation laser field does not imprint any phase pattern that constructively
interferes in the forward direction. This could be implemented, e.g., by preparing atoms
in the same ground state, |6S1/2, F = 4,mF = −4⟩, but on the other side of the nanofiber.
If one then excites the atoms to the |6P3/2, F = 5,mF = −4⟩ state using a π-polarized
laser field that propagates in the forward direction, the subsequent decay predominantly
couples to the backward-propagating mode, with a directionality of D = 0.68, see
section A.7 in the Appendix.
Here, we implemented almost unidirectional atom-waveguide coupling. However, one
can also implement symmetric coupling by choosing an appropriate level scheme. E.g.,
one could prepare the atoms in |6S1/2, F = 4,mF = 0⟩ via optical pumping and then
coherently excite the atoms to |6P3/2, F = 5,mF = 0⟩ using a π-polarized excitation laser
field. The subsequent decay is then either σ−-, σ+-, or π-polarized with branching ratios
of 2/9, 2/9, and 5/9, respectively, and the coupling is symmetric. However, one does
not deal with a two-level system anymore, which makes the dynamics and its theoretical
modeling much more complex. Still, it would be an interesting avenue for future research
to investigate the differences between symmetric and asymmetric coupling. It has been
recently proposed that superradiant bursts in wQED can give rise to an emergent
chirality, i.e., the superradiant burst is either predominantly emitted into the forward- or
backward direction [99]. One would then expect antibunching in the intensity-intensity
cross-correlation function between forward- and backward-propagating modes. While
this effect is most pronounced for symmetric coupling, it should also occur in the case of
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directional atom-waveguide coupling.
Measuring the intensity-intensity correlation function of the superradiant burst itself is
also an interesting prospect, which we currently investigate in our experiment. Initially,
one expects bunching since the emission of the first photon into the waveguide increases
the emission rate for the second photon [137]. The later dynamics is much more
complicated and, to our knowledge, not yet well understood. In this context, it would be
worthwhile to further study the subradiant dynamics of a fully inverted ensemble, which
we have only briefly touched on in this thesis.
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6 Observation of oscillatory Raman gain
associated with two-photon Rabi
oscillations

This chapter is based on Ref. [138]:
C. Liedl, S. Pucher, P. Schneeweiss, L. P. Yatsenko, and A. Rauschenbeutel. Observation of
oscillatory Raman gain associated with two-photon Rabi oscillations of nanofiber-coupled
atoms. J. Phys. B: At. Mol. Opt. Phys., 55(23):234005, 2022.

In the previous chapters, we assumed that the atomic dynamics is equivalent to
the dynamics of a two-level system. However, the actual atomic level structure of cesium
is much more complex. By a suitable choice of the initial atomic state, as well as the
polarization and frequency of the driving fields, one can realize different level schemes
using the same atomic species. In particular, three-level systems with a Λ-type level
structure have played an important role in atomic and molecular physics. There, the
excited state spontaneously decays into two different ground states. By driving the two
respective transitions with suitable laser fields, one can control and manipulate the
atomic ensemble, enabling the observation of a wealth of physical phenomena, like, e.g.,
electromagnetically induced transparency (EIT) [139], and slow light [140]. Moreover,
three-level emitters find application in quantum information, where they can be used to
construct quantum memories and quantum repeaters [141, 142].
Several techniques have been developed in order to control the populations and coherences
of the two ground states. For example, stimulated Raman adiabatic passage (STIRAP)
can be used to transfer population between the two ground states with almost unity
efficiency [143]. Similar to a two-level system, one can also coherently drive the atoms
with two suitable laser fields, leading to so-called two-photon Rabi oscillations between
the two ground states of a Λ system[144].
In order to observe this effect, one typically exposes the atoms to two-photon Rabi pulses
with varying pulse duration and subsequently measures the atomic populations [145, 146].
However, this method does not give access to the dynamics of the light fields. Two-photon
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Rabi oscillations involve the coherent absorption of one driving field and the coherent
emission into the mode of the other driving field. The corresponding energy difference
between photons of the two driving fields is then transferred to (taken from) the atoms.
The oscillation of the atomic population is therefore accompanied by oscillatory Raman
gain and absorption of the two driving fields [138]. Raman gain and Raman lasing
have been experimentally observed using cold atoms, both in the steady-state and in a
transient regime [93, 147–150]. In order to observe oscillatory Raman gain, one has to
maximize the optical density of the atomic ensemble. At the same time, the two-photon
Rabi frequency has to be well-defined, meaning that all atoms have to be exposed to
approximately the same light intensity. In experiments with free-space optics, these two
requirements are challenging to meet simultaneously. In this context, coupling the atoms
to a waveguide allows for both efficient and homogeneous atom-light coupling. This has
facilitated what is, to our knowledge, the first observation of the oscillatory Raman gain
and absorption associated with two-photon Rabi oscillations.
In the following, we will first present a theoretical model to describe the oscillatory
Raman gain analytically. We then describe the experimental setting and the observation
of Autler-Townes splitting in the transmission spectrum of a nanofiber-guided probe field,
which allows us to precisely measure the Rabi frequency of a free-space laser field. Finally,
we present the observation of the oscillatory Raman gain associated with two-photon
Rabi oscillations and analyze the scaling of the two-photon Rabi frequency with the
two-photon detuning and the power of one of the driving fields. Finally, we will briefly
discuss the role of collective radiative effects in effective two-level systems.

6.1 Theoretical modeling

6.1.1 Three-level system

In this section, we describe the interaction between two classical laser fields with an
ensemble of nanofiber-trapped cesium atoms. The relevant energy levels are schemat-
ically depicted in Fig. 6.1(a), where we have applied a magnetic offset field along
the z-direction in order to stabilize the atomic spin states. The two ground states,
|a⟩ = |6S1/2, F = 4,mF = −4⟩ and |b⟩ = |6S1/2, F = 3,mF = −3⟩, and the excited state,
|e⟩ = |6P3/2, F = 4,mF = −4⟩, constitute the Λ system, which we address optically in the
following. The excited state, |e⟩, radiatively decays with a rate Γ = 2π×5.2 MHz to the two
ground states |a⟩ and |b⟩, with partial decay rates Γea = 5/12 Γ and Γeb = 7/15 Γ, respec-
tively. Note that we neglect the decay to the dark state, |c⟩ = |6S1/2, F = 4,mF = −3⟩,
since the corresponding decay rate of Γec = 7/60 Γ ≈ 0.1 Γ is quite small and does not

84



Figure 6.1: Illustration of the approximations we make to describe the atomic
dynamics in our system. (a) Relevant cesium energy levels and partial decay
rates for the decay from the excited state |e⟩ = |6P3/2, F = 4,mF = −4⟩. The
three levels comprising the relevant Λ system are indicated by the black lines.
(b) By neglecting the levels shown as gray lines in (a), the system features a
closed Λ configuration, which we drive with two laser fields. (c) By adiabatically
eliminating the excited state, |e⟩, we can describe the system as an effective
two-level system. Here we assumed that Ωp ≪ Ωc, and therefore neglect the
effective decay from |b⟩ to |a⟩.

substantially alter the dynamics on the short time scales we are interested in here. We
drive the atoms with a π-polarized coupling laser field and a σ−-polarized probe laser
field, which are near-resonant to the |a⟩ → |e⟩- and |b⟩ → |e⟩-transition, respectively, see
Fig. 6.1(b). Due to polarization selection rules, we can also neglect the excited state
|6P3/2, F = 4,mF = −3⟩. We thus assume a closed system in Λ configuration, as depicted
in (b). This means that we assume that the sum of the partial decay rates equals the total
decay rate, Γea + Γeb = Γ. The coupling laser field with Rabi frequency Ωc is detuned
by ∆c from the |a⟩ → |e⟩ transition. The probe laser field with a Rabi frequency Ωp

is detuned by ∆p from the |b⟩ → |e⟩ transition. We can then write down the standard
Hamiltonian of a driven Λ system [151]:

Ĥ = −ℏ
Ωp

2
(
σ̂be + σ̂†

be

)
− ℏ

Ωc

2
(
σ̂ae + σ̂†

ae

)
− ℏ∆pσ̂

†
eeσ̂ee − ℏ(∆p − ∆c)σ̂†

bbσ̂bb. (6.1)

The first two terms describe the coherent drive of the atoms by the probe and coupling
laser fields, where we have chosen both Rabi frequencies to be real. The operators
σij = |i⟩⟨j|, where i, j ∈ {a, b, e}, describe the atomic annihilation and creation operators
corresponding to the different transitions. The dynamics of the density matrix, ρ̂, is then
determined by the Lindblad master equation [103],

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] +

2∑
n=1

1
2
(
2ĉnρ̂ĉ

†
n − ρ̂ĉ†

nĉn − ĉ†
nĉnρ̂

)
, (6.2)
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where ĉn are the collapse operators describing spontaneous decay from the excited state,
|e⟩,

ĉ1 =
√

Γea · σ̂ae (6.3)

ĉ2 =
√

Γeb · σ̂be, (6.4)

6.1.2 Adiabatic elimination

We could now numerically solve Eq. (6.2). However, in the specific parameter regime we
are interested in, we are able to further simplify our model and will eventually obtain an
analytical solution of the atomic dynamics. Here, we only describe the main steps and
assumptions and refer to section A.8 in the Appendix for a more detailed derivation. Since
we want to observe two-photon Rabi oscillations, we drive the system close to two-photon
resonance with a large single-photon detuning, ∆c ≈ ∆p ≫ Γ. Therefore, the excited state
is almost unpopulated, and we can neglect the time derivative of the optical coherences
and populations of the excited state, i.e. ρ̇ae = ρ̇be = ρ̇ee = 0. This assumption is referred
to as adiabatic elimination of the excited state [152] and is valid if the excited state
population, ρee, is very small, i.e.,

Ω2
p ≪ 4∆2

p + Γ2, (6.5)

Ω2
c ≪ 4∆2

c + Γ2. (6.6)

In this limit, the system dynamics is solely described by the differential equations for the
matrix elements involving the two ground states. In addition, we will make the following
assumptions.

• For simplicity, we assume that Γea = Γeb = Γ/2.

• We assume that the probe field is much weaker than the coupling field, Ωp ≪ Ωc.

• We assume that we have tuned the two laser fields to the light-shifted two-photon
resonance, i.e., ∆̃ = ∆p − ∆c + Ω2

c
2∆c

= 0.

We are then left with the following differential equations,

ρ̇aa = −Γ̃ρaa − i
2Ω̃(ρba − ρab), (6.7)

ρ̇ab = − i
2Ω̃(ρbb − ρaa) − Γ̃ρab, (6.8)

which are qualitatively equivalent to the optical Bloch equations for a two-level atom.
Therefore, a driven three-level system, for which adiabatic elimination is justified, is also
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referred to as an effective two-level system [152]. Here, we have introduced an effective
Rabi frequency, Ω̃, an effective detuning ∆̃, and an effective decay rate, Γ̃,

Ω̃ = ΩpΩc

2∆ , (6.9)

Γ̃ = Ω2
cΓ

8∆2 . (6.10)

The effective two-level system and the effective quantities are schematically depicted
in Fig. 6.1(c). Here, the ground state, |a⟩, is equivalent to the excited state in a usual
two-level atom, which decays to the ground state, |b⟩, with the rate Γ̃. The underlying
process of this effective decay is off-resonant one-photon scattering of the coupling laser
field, which populates the excited state, |e⟩, which subsequently decays to the ground
state, |b⟩. ∆̃ denotes the detuning from the light-shifted two-photon resonance. Since we
are interested in resonant, two-photon Rabi oscillations, we will set ∆̃ = 0 in the following.
Importantly, there is one major difference compared to a real two-level atom. The
population in Eq. (6.7) decays with the same rate, Γ̃, as the coherence in Eq. (6.8). In
contrast, in the usual closed two-level system, the coherence decays with half the decay
rate of the excited state population. The additional decoherence channel in the effective
two-level system can be attributed to a transition from |a⟩ to the excited state, |e⟩, and
subsequent decay back into the initial state, |a⟩. This process does not affect the atomic
populations but results in additional decoherence.

6.1.3 Analytical solution and probe transmission

In the experiment, we initially prepare the atoms in |a⟩, such that the initial conditions
for solving Eqs. (6.7) and (6.8) are ρaa(t = 0) = 1 and ρab(t = 0) = 0, respectively. We
then solve the optical Bloch equations for the effective two-level system analytically and
express the solutions in terms of the two components of the Bloch vector, the inversion,
w = ρaa − ρbb, and twice the imaginary part of the coherence, v = 2ℑ(ρab),

v(t) = Γ̃Ω̃
Γ̃2 + Ω̃2

[
1 − e−Γ̃t

(
cos Ω̃t+ 2Γ̃2 + Ω̃2

Ω̃Γ̃
sin Ω̃t

)]
, (6.11)

w(t) = Γ̃2

Γ̃2 + Ω̃2

[
1 + e−Γ̃t

(
2Γ̃2 + Ω̃2

Γ̃2 cos Ω̃t− Ω̃
Γ̃

sin Ω̃t
)]

. (6.12)

Since the coherently absorbed (emitted) power is proportional to the optical coherence
created by the probe field, v(t), and the optical depth on the light-shifted two-photon
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resonance, ÕD, we can write the probe power transmission coefficient as

Tprobe = exp
[
−AÕDv(t)

]
. (6.13)

To find the factor A, we use the fact that the optical depth on the two-photon resonance,
ÕD is defined in the steady state, and for vanishing probe power,

ÕD = − log
[

lim
Ω̃→0

lim
t→∞

Tprobe

]
= AÕD lim

Ω̃→0
lim

t→∞
v(t) = AÕD

Ω̃
Γ̃
. (6.14)

Thus, we find that A = Γ̃/Ω̃ and can therefore write,

Tprobe = exp
[
−ÕD Γ̃

Ω̃
v(t)

]
. (6.15)

The optical depth on the two-photon resonance, ÕD, is related to the optical depth on
the one-photon resonance, OD, via the ratio of the (effective) decay rates,

ÕD = Γ̃
ΓOD = Ω2

c

8∆2OD (6.16)

6.2 Experimental setting

In our experiment, we want to measure the modulation of the probe field that results from
two-photon Rabi oscillations of the atomic ensemble. Therefore, we use a fiber-guided
probe laser field to maximize the atom-light coupling strength. It is locally σ−-polarized
at the position of the atoms, as in chapters 4 and 5. For all measurements presented in
this chapter, we record time traces of the power transmitted through the nanofiber using
two SPCMs, see detection setup in section 2.4. For the coupling field, we use a free-space
laser beam propagating in the +x-direction, see Fig. 6.2(a). We set its polarization to be
linear along z, i.e., π-polarization. We apply a magnetic offset field of about 5 G along the
z-direction to stabilize the atomic spin state. In order to tune the two laser fields to the
correct frequencies, we stabilize the coupling laser frequency using saturation absorption
spectroscopy of a cesium vapor cell. To maximize the relative phase stability between
the probe and coupling laser fields, we optically lock the phase of the probe laser field to
that of the coupling laser field, with a frequency offset that corresponds to the hyperfine
splitting of about 2π × 9.2 GHz. Both laser frequencies can be tuned individually using
acousto-optical modulators.
In order to calculate the Rabi frequency of the free-space coupling laser field, one has to
estimate the local intensity and polarization of the coupling field at the position of the
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Figure 6.2: (a) We expose the atoms to a fiber-guided probe field propagating
in the +y-direction and a free space coupling laser field propagating in the +x-
direction. (b) and (c) Calculated coupling laser field scattered by the nanofiber,
assuming an incident plane wave with a linear polarization along z. (b) Intensity
distribution in the x− z plane. The nanofiber cross-section is indicated in gray.
(c) Intensity along the white dashed line shown in (b). The location of the
trapped atoms is indicated by the black dashed vertical line.

atoms. Since the atoms are trapped only a few hundred nanometers from the nanofiber
surface, scattering by the nanofiber has to be taken into account. To do so, we assume an
incident plane wave with intensity I0 that propagates in the +x-direction and is linearly
polarized along z. We then use the analytical solution for the scattering of a plane wave
by an infinitely long cylinder to compute the intensity distribution of the scattered field
around the nanofiber, see Fig. 6.2(b) and (c) [153]. In (c), we show a cut through the
intensity distribution along x for z = 0. For x < 0, we observe an intensity modulation,
since the reflected light from the nanofiber surface interferes with the incident field to
create a standing wave pattern. Behind the fiber (x > 0), the light is focused by the
cylindrical nanofiber and the intensity features a maximum of about 1.7 I0. The location
of the maximal intensity almost coincides with the location of the trapped atoms, which
is indicated by the black dashed line. Since the intensity gradient is smallest behind the
nanofiber, it is beneficial to illuminate the atoms through the fiber. In this configuration,
the intensity seen by the atoms is more homogeneous. Using the analytical solution for
the scattered field, we also checked that the scattered field in the trapping region stays
almost perfectly π-polarized [82].
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Figure 6.3: Probe transmission spectra for different coupling laser detunings, ∆c.
Autler-Townes splitting of the resonance leads to an avoided crossing, where
the splitting on resonance is given by the Rabi frequency of the coupling laser
field, Ωc. The black solid lines indicate the Autler-Townes shift for a fitted Rabi
frequency of Ωc = 2π × 16.1(1) MHz, indicated by the black double arrow.

6.3 Autler-Townes splitting

In the above calculation of the field scattered by the nanofiber, we assumed an incident
plane wave. However, in the experiment, the coupling laser field features a Gaussian
intensity profile. While the corresponding Gaussian waist of about 4 mm is much larger
than the extent of the nanofiber-trapped atomic ensemble (about 1 mm), the finite
waist could lead to deviations from the calculated local intensity. Furthermore, both
the polarization and the intensity of the coupling laser field can be modified due to
other experimental imperfections, e.g., a non-zero angle of incidence, absorption, and
birefringence of the windows of the vacuum chamber. In order to directly measure the Rabi
frequency of the coupling laser field, Ωc, we make use of the Autler-Townes effect [154–156].
There, the strong driving of the atoms by the coupling laser field mixes the bare eigenstates
of the Λ system. The new eigenstates, the so-called dressed states, are then split and
shifted from the |g⟩ → |e⟩ transition frequency by

δ±
AT = 1

2

(
∆c ±

√
Ω2

c + ∆2
c

)
. (6.17)
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Thus, the Rabi frequency, Ωc, can be inferred from the Autler-Townes splitting for zero
detuning, ∆c = 0. In order to measure this splitting, we first turn on the coupling laser
field for 0.1 ms, such that almost all atoms are optically pumped to state |b⟩. Then, we
additionally turn on a weak probe field, with a saturation parameter of about 0.1, and
scan its detuning, ∆p, over the resonance in about 700 µs. From the transmitted power
and a reference measurement without atoms, we then infer the transmission spectrum. In
Fig. 6.3, we show the probe transmission spectra for different coupling laser detunings as
a colormap. We clearly observe an avoided crossing, which is characteristic for the Autler-
Townes effect. We note that we observe an asymmetry in the depth of the transmission
dips for large ∆c. This effect is likely caused by the direction of the frequency ramp: Since
we sweep from negative to positive ∆p, and resonant probing leads to recoil heating, the
atom number is slightly reduced during the sweep, leading to a shallower transmission dip.
We then fit each individual transmission spectrum to a double Lorentzian line shape and
extract the frequency splitting between the two respective resonances as a function of the
coupling laser detuning, ∆c. We then fit the resulting data using the equation for the
Autler-Townes splitting

δ+
AT − δ−

AT =
√

Ω2
c + ∆2

c , (6.18)

which yields a coupling laser Rabi frequency of Ωc = 2π × 16.1(1) MHz. When estimating
the local intensity from the power and diameter of the coupling laser field, we obtain
Ωc = 2π × 11.9(2) MHz. When taking into account the focusing effect of the nanofiber,
this calculated value increases to Ωc = 2π×15.4(3) MHz, which is in reasonable agreement
with the value extracted from our measurements. It is thus indeed important to take into
account the intensity pattern around the nanofiber. In the following, we use the measured
Rabi frequency of the coupling field as a calibration value to infer the Rabi frequency for
any given power of the coupling laser field.

6.4 Observation of oscillatory Raman gain

In Fig. 6.3, we observe that one of the resonances converges to ∆p ≈ ∆c for large detunings,
∆c. This resonance is the light-shifted two-photon resonance, i.e., where the detuning in
the effective two-level system is zero, ∆̃ = ∆p − δ±

AT = 0. In the following, we tune the
probe laser field to this light-shifted two-photon resonance. To fulfill the requirements of
adiabatic elimination, the single-photon scattering rates of the two laser fields have to be
small compared to the excited state decay rate, Γ, see Eq. 6.6.
For the coupling laser field, we chose a detuning of ∆c = −2π × 32.5(3) MHz and a Rabi
frequency of Ωc = 2π × 28.2 MHz. For these parameters, we can now check whether the
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Figure 6.4: Measured probe transmission coefficient as a function of time after
switching on the coupling field at time t = 0 µs. We observe the oscillatory
Raman gain that is associated with two-photon Rabi oscillations of the atoms.
We fit the data using the analytical expression for the probe transmission, see
orange solid line. Using the fit results, we also show the corresponding average
population in |a⟩, given by ρaa as the dashed blue line.

coupling laser field fulfills the criterion for adiabatic elimination, see Eq. (6.6). We get
Ω2

c/(4∆2
c + Γ2) = 0.19, which is substantially smaller than one. Thus, the condition for

adiabatic elimination is fulfilled for the coupling laser field.
In order to maximize the modulation of the probe transmission due to two-photon Rabi
oscillations, the probe laser Rabi frequency, Ωp, should be as small as possible. However,
a minimal requirement for observing Rabi oscillations is that the oscillation frequency
is faster than the effective decay rate, Ω̃ > Γ̃. For our effective two-level system, this
condition can be written as

Ωp >
ΩcΓ
4∆c

, (6.19)

where we have used the definitions of Ω̃ and Γ̃, see Eqs. (6.9) and (6.10), respectively. For
our parameters, this condition gives Ωp > 2π × 1.1 MHz. In order to calculate the probe
Rabi frequency, we can use Eq. (4.5), with an extra factor of

√
5/12 to account for the

branching ratio of the probe transition,

Ωp =
√

5
12

4βf ΓPp

ℏωp
, (6.20)
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where ωp is the optical frequency of the probe field, and Pp is the probe input power.
In order to increase the atom-light coupling strength, βf , we adiabatically ramp the red
trapping power from 2.4 mW to 2.8 mW in 100 µs shortly before the probing. This
moves the location of the trapping minima closer to the nanofiber surface, resulting in an
increased coupling strength. From the increase of the optical density on the D2 cycling
transition, we infer a coupling strength of βf = 0.015, which corresponds to a roughly
40 % increase compared to our standard trapping configuration. We choose a probe input
power of Pp ≈ 480 pW, which corresponds to a Rabi frequency of Ωp = 2π× 6.5 MHz, i.e.,
about six times larger than the minimum value to observe two-photon Rabi oscillations
for our parameters, see above. At the same time, Ω2

p/Ω2
c ≈ 0.05 ≪ 1, justifying that we

neglected the effective decay rate from |b⟩ → |a⟩ in our modeling. Now that we have
identified an experimental setting for which we can expect to observe oscillatory Raman
gain and absorption, let us turn to the experimental realization.
First, we only switch on the probe laser field for 200 µs. We observe a transmission
coefficient of one since the probe laser field does not couple to the about 700 trapped
atoms in the initial state, |a⟩. At the time, t = 0 µs, we then also switch on the coupling
laser field and plot the resulting dynamics of the probe transmission coefficient in Fig. 6.4.
Initially, the atoms are prepared in state |a⟩, which corresponds to full inversion of the
effective two-level system, see Fig. 6.1(c). Therefore, the probe transmission increases first
and the probe field experiences a Raman gain of up to about 2. Then, the transmission
oscillates between Raman gain and Raman absorption. This dynamics can be understood
as a coherent exchange of photons between the probe and the coupling laser fields. As the
atoms are transferred from |a⟩ to |b⟩, photons in the coupling laser field are coherently
scattered into the probe laser field, which therefore experiences gain. For the reverse
process, photons are coherently scattered from the probe laser field into the coupling
laser field, such that the probe field experiences coherent absorption. Two-photon Rabi
oscillations between |a⟩ and |b⟩ therefore manifest as oscillatory Raman gain and absorption
in the probe field. If we would monitor the transmission of the coupling laser field at
the same time, we would also expect oscillatory Raman gain and absorption. However,
the oscillation would be π out of phase with the oscillations of the probe transmission
coefficient. After about two oscillation periods, the system reaches a steady state.
We fit the analytical solution for the probe transmission coefficient to our data, see
Eq. (6.15), where we use Ω̃, Γ̃ and ÕD as fit parameters. Our model fits well to the
experimental data, and we extract a two-photon Rabi frequency of Ω̃ = 2π× 2.63(3) MHz,
which is in reasonable agreement with our estimate based on independently calibrated
parameters, Ω̃ = 2π × 2.83(3) MHz. Also the fitted value for the effective decay rate,
Γ̃ = 2π × 516(21) kHz is in good agreement with the expected value, Γ̃ = 2π × 490 kHz.
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Since the effective decay rate is given by the rate of spontaneous emission from the
excited state, |e⟩, we can assume that Γ̃ = Γρee. From this relation, we infer an average
excited state probability of ρee = 0.100(1) ≪ 1, confirming that adiabatic elimination is
appropriate in our parameter regime. For the optical depth on the light-shifted two-photon
resonance, we obtain ÕD = 5.6(2). This is in good agreement with the expected value of
5.5, see Eq. (6.16).
Finally, we use the fit results to calculate the average population in |a⟩, given by ρaa, and
plot it as the dashed red line in Fig. 6.4. As expected for two-photon Rabi oscillations,
ρaa features damped oscillations, reaching a steady state value of 0.481(4). The oscillation
is 90◦ out of phase with the oscillation of the probe transmission coefficient. This can
be understood by considering Rabi oscillations in the (hypothetical) perfectly coherent
case, i.e., Γ̃ = 0. There, the atomic coherence is proportional to the time derivative of
the population in the effective excited state, v(t) ∼ ρ̇aa(t), see Eq. 6.8. Therefore, if ρaa

features sinusoidal (Rabi) oscillations, its derivative, and thus, v(t), features oscillations
with the same frequency but with a phase shift of 90◦. The associated modification of
the power of the light field is quantified by the transmission coefficient, Tprobe, which is
determined by the coherence, v(t), see Eq. (6.15). Therefore, the oscillations of Tprobe are
also 90◦ out of phase with the oscillations of population, ρaa.
More intuitively, one can understand the fact that Tprobe is related to the time derivative
of ρaa as follows: ρaa is a measure of the energy stored in the atoms. Its derivative thus
indicates how fast the atoms lose (gain) energy by coherently emitting (absorbing) photons
into (from) the guided mode.

6.4.1 Scaling with probe power and detuning

To further consolidate our hypothesis that the observed oscillatory Raman gain results
from two-photon Rabi oscillations, we repeat our measurement for different detunings, ∆̃,
and probe powers, Pp. In Fig. 6.5(a), we show the fitted two-photon Rabi frequency as
a function of the detuning from the light-shifted two-photon resonance, ∆̃. For a finite
detuning, ∆̃, the oscillation frequency is determined by the generalized Rabi frequency,
Ω̃g = (Ω̃2 + ∆̃2)1/2 [157]. Indeed, our data fits well to this expression for an on-resonance
Rabi frequency of Ω̃ = 2π × 2.12(4) MHz, see green solid line. This is in reasonable
agreement with the estimated Rabi frequency of Ω̃ = 2π × 2.0(2) MHz for the slightly
different probe power used in this measurement.
Finally, we show the dependence of the resonant Rabi frequency, Ω̃, on the probe power,
Pp, in Fig. 6.5(b). Recalling the expressions for the two-photon Rabi frequency and
the Rabi frequency of the probe field, Eqs. (6.9) and (6.20), respectively, we expect the
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Figure 6.5: Scaling of the oscillation frequency of the probe transmission coefficient.
(a) For finite detuning, the oscillation frequency is determined by the generalized
Rabi frequency, Ω̃g, which increases with the detuning, ∆̃. (b) The resonant Rabi
frequency, Ω̃, increases with the square root of the probe power, Pp.

following scaling with the probe power, Pp,

Ω̃ = A
√
Pp = Ωc

2∆c

√
5
12

4βf Γ
ℏωp

√
Pp. (6.21)

Indeed, the data in (b) fits well to a square root function, and we obtain a fitted amplitude
of A = 2π × 138(3)kHz/

√
pW, see orange solid line in (b). Using Eq. (6.21) and our

independent calibrations of Ωc and ∆c, we can then extract the atom-light coupling
strength, βf = 0.0171(8) from the fitted amplitude, A. This is in reasonable agreement
with our expectation, given the increased red trapping power in this measurement.

6.5 Intermediate summary and conclusion

We have experimentally studied the temporal dynamics of an ensemble of driven three-level
systems in Λ configuration, which are coupled to an optical nanofiber. By far-off-resonantly
driving the atoms, we were able to realize an effective two-level system in which the excited
state can be adiabatically eliminated. In this setting, we observed oscillatory Raman gain
and absorption. This dynamics is the manifestation of two-photon Rabi oscillations in
the driving field. The fact that the fitted values for Ω̃ and Γ̃ are so close to the expected
values is evidence that the approximations that we made in our model are justified. This
is not obvious since there are several effects that we neglect in our modeling. First, we
do not include temperature-induced fluctuations of the coupling strength, βf , as it was
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necessary when modeling the data presented in chapters 4 and 5. This effect leads to
an inhomogeneous broadening of the two-photon Rabi frequency, leading to additional
dephasing. Second, we assume that the dynamics of the entire ensemble can be described
by the dynamics of a single atom with a large, effective optical depth, i.e., we neglect
any collective effects. The latter could be modeled by the cascaded interaction models
described in sections 3.3 and 3.4, adapted for three-level atoms. However, as we have
seen in section 4.1, the strongly driven dynamics is not substantially altered by collective
effects.
It would be an interesting avenue for further research to study the superradiant decay
dynamics in an effective two-level system. In order to do so, one would simply turn off the
probe laser field. The system is then effectively equivalent to a fully inverted ensemble of
two-level atoms. As we have seen in chapter 5, the decay dynamics of such a system can
feature superradiant burst dynamics. Indeed, so-called Raman superradiance has been
observed in BECs and thermal vapors [17, 20, 158]. It can be advantageous to use an
effective two-level system since one can perfectly invert the ensemble by simply preparing
atoms in state |a⟩ via optical pumping and then switch on the effective decay rate by
turning on the coupling laser field. One could also prepare atoms in different mF -states
of the F = 4 ground state manifold, thereby controlling the directionality of the photon
emission. In addition, one can tune the effective decay rate, Γ̃, via the detuning and Rabi
frequency of the coupling laser field. This would change the timescale of the superradiant
burst dynamics, relaxing the required temporal resolution of the detectors. However, the
effective optical depth is much smaller than for a one-photon transition. Therefore, one
would likely need many more atoms to surpass the critical threshold atom number, beyond
which superradiant burst dynamics appears.
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7 Conclusion and perspectives

We have experimentally explored collective radiative dynamics in waveguide quantum
electrodynamics (wQED). In particular, we demonstrated the coherent excitation of
nanofiber-coupled atomic ensembles using guided optical pulses. This technique allowed
us to explore the collective decay dynamics for a wide range of initial excitations, from the
weak excitation regime to full inversion. By unidirectionally coupling the atoms to the
guided modes of an optical nanofiber, we implemented a cascaded quantum system. We
introduced two new models that are based on the cascaded interaction between the atoms
to accurately describe the dynamics in our system. We showed that many of the collective
radiative effects known to occur in the Dicke regime can also be observed in wQED systems.
There, the requirement of tight confinement is relaxed, making wQED an excellent testbed
for studying the fundamental mechanisms underlying sub- and superradiance. Moreover,
the possibility of tuning the directionality of the atom-waveguide coupling provides a
new tool for tailoring collective radiation. Finally, we realized an ensemble of effective
two-level atoms by driving two-photon Rabi oscillations between the two ground states in
a Λ system. We observed this effect dynamically by measuring oscillatory Raman gain
and absorption of a nanofiber-guided laser field.
Beyond the effects studied in this thesis, interesting avenues for future research open up.
It has been predicted that the light emitted as a superradiant burst can feature a large
overlap with a multi-photon Fock state [59]. To make use of the excellent metrological
properties of these photonic states, it would in principle be advantageous to implement
unidirectional coupling, as the light would then be emitted into a single, well-defined
mode. In this context, a first step towards characterizing the photonic state of the
collectively emitted light would be to measure the second-order autocorrelation function
of the superfluorescent light.
It is an open question how directional atom-waveguide coupling influences the properties
of this photonic state. In particular, the emergence of subradiant states seems to be a
universal feature of collective emission in a cascaded quantum system. However, it is not
yet clear how to quantitatively model this subradiant dynamics for hundreds of atoms
since higher-order correlations between the atoms are expected to play an important role
for a fully inverted ensemble [159]. The study of subradiance in a cascaded quantum
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system is thus an interesting avenue for both experimental and theoretical research.
A dynamical symmetry breaking due to the emission of a superradiant burst in wQED
has been proposed, leading to an emergent chirality [99]. We expect this effect to
manifest as antibunching in the second-order cross-correlation function between the
forward- and backward-emitted light. Measuring this effect is well within reach of our
current experimental capabilities. It is expected to be most pronounced for symmetric
atom-waveguide coupling, which could also be implemented in our experiment.
For many of the above-described effects, it might be advantageous to work with an effective
two-level system, i.e., a Λ system driven on a light-shifted two-photon resonance. There,
one can prepare the fully inverted state perfectly via optical pumping. In addition, one
can modify the effective decay rate by suitably choosing the detuning and power of the
coupling laser field. First results on Raman superradiant bursts in wQED have recently
been obtained [160].
It would also be intriguing to lift the axial confinement of the nanofiber-based dipole
trap. One could then study the motional dynamics of the ensemble due to the recoil
induced by superradiant emission into the guided modes. Since collective effects in a
cascaded quantum system build up along the ensemble, this recoil could result in a
compression of the atomic ensemble. Imaging of a nanofiber-trapped ensemble, even of
single atoms, has already been demonstrated in our setup [91], making the observation of
such a dissipation-induced compression, in principle, feasible.
While here, we have investigated collective radiation of waveguide-coupled atomic ensembles
in a pulsed regime, one can also expose the atoms to a continuous-wave driving field in
order to study the steady-state properties of the system. For example, we could study
the influence of directional coupling on superradiant phase transitions [123]. Moreover,
it would be interesting to explore photon transport in continuously driven ensembles of
effective two-level system. There, the effective decay rate can be tuned, which may be
beneficial for applications such as single-photon sources and squeezed light [161–163].
Finally, many protocols in wQED rely on an almost unity atom-waveguide coupling
strength. This could possibly be realized by coupling so-called Rydberg superatoms to a
nanofiber-guided mode [164]. Reaching near-unity coupling with many emitters would be a
transformative milestone for wQED, paving the way towards generating complex quantum
states of light as a resource for quantum technologies [56, 57, 59, 60, 165]. Moreover, it has
been predicted that a driven dissipative cascaded quantum system can evolve into a pure
atomic many-body state, which may also feature multi-partite entanglement [166–168].

98



Bibliography

[1] S. Haroche. Nobel lecture: Controlling photons in a box and exploring the quantum
to classical boundary. Rev. Mod. Phys., 85(3):1083, 2013. 1

[2] D. J. Wineland. Nobel lecture: Superposition, entanglement, and raising
Schrödinger’s cat. Rev. Mod. Phys., 85(3):1103, 2013. 1

[3] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage. Trapped-ion quantum
computing: Progress and challenges. Appl. Phys. Rev., 6(2):021314, 2019. 1

[4] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and
C. Jurczak. Quantum computing with neutral atoms. Quantum, 4:327, 2020. 1

[5] H. J. Kimble. The quantum internet. Nature, 453(7198):1023, 2008. 1

[6] S. Wehner, D. Elkouss, and R. Hanson. Quantum internet: A vision for the road
ahead. Science, 362(6412):eaam9288, 2018. 1

[7] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Rev. Mod. Phys.,
89(3):035002, 2017. 1

[8] C. Gross and I. Bloch. Quantum simulations with ultracold atoms in optical lattices.
Science, 357(6355):995, 2017. 1, 2

[9] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93(1):99,
1954. 1, 24, 25, 66

[10] M. Gross and S. Haroche. Superradiance: An essay on the theory of collective
spontaneous emission. Phys. Rep., 93(5):301, 1982. 1, 24, 25, 28

[11] M. G. Benedict, A. M. Ermolaev, V. Malyshev, I. Sokolov, and D. Trifonov, Evgenii.
Super-radiance: Multiatomic coherent emission. CRC Press, 2018. 1

[12] N. Skribanowitz, I. Herman, J. MacGillivray, and M. Feld. Observation of Dicke
superradiance in optically pumped HF gas. Phys. Rev. Lett., 30(8):309, 1973. 1, 2

99

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.1083
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.1083
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.1103
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.1103
https://aip.scitation.org/doi/full/10.1063/1.5088164
https://aip.scitation.org/doi/full/10.1063/1.5088164
https://quantum-journal.org/papers/q-2020-09-21-327/
https://www.nature.com/articles/nature07127
https://www.science.org/doi/full/10.1126/science.aam9288
https://www.science.org/doi/full/10.1126/science.aam9288
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.035002
https://www.science.org/doi/full/10.1126/science.aal3837
https://journals.aps.org/pr/abstract/10.1103/PhysRev.93.99
https://www.sciencedirect.com/science/article/pii/0370157382901028
https://www.sciencedirect.com/science/article/pii/0370157382901028
https://www.taylorfrancis.com/books/mono/10.1201/9780203737880/super-radiance-benedict
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.30.309
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.30.309


[13] H. J. Metcalf and P. Van der Straten. Laser cooling and trapping of neutral atoms.
The Optics Encyclopedia: Basic Foundations and Practical Applications, 2007. 2

[14] M. Gross, P. Goy, C. Fabre, S. Haroche, and J. Raimond. Maser oscillation and
microwave superradiance in small systems of Rydberg atoms. Phys. Rev. Lett., 43
(5):343, 1979. 2

[15] D. D. Grimes, S. L. Coy, T. J. Barnum, Y. Zhou, S. F. Yelin, and R. W. Field.
Direct single-shot observation of millimeter-wave superradiance in Rydberg–Rydberg
transitions. Phys. Rev. A, 95(4):043818, 2017. 2, 66

[16] S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, D. Pritchard, and W. Ketterle.
Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science, 285
(5427):571, 1999. 2

[17] D. Schneble, G. K. Campbell, E. W. Streed, M. Boyd, D. E. Pritchard, and
W. Ketterle. Raman amplification of matter waves. Phys. Rev. A, 69(4):041601,
2004. 2, 96

[18] Y. Kaluzny, P. Goy, M. Gross, J. Raimond, and S. Haroche. Observation of self-
induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the
ringing regime of superradiance. Phys. Rev. Lett., 51(13):1175, 1983. 2

[19] M. A. Norcia, M. N. Winchester, J. R. Cline, and J. K. Thompson. Superradiance
on the millihertz linewidth strontium clock transition. Science Adv., 2(10):e1601231,
2016.

[20] Y. Yoshikawa, T. Sugiura, Y. Torii, and T. Kuga. Observation of superradiant
Raman scattering in a Bose-Einstein condensate. Phys. Rev. A, 69(4):041603, 2004.
2, 96

[21] R. DeVoe and R. Brewer. Observation of superradiant and subradiant spontaneous
emission of two trapped ions. Phys. Rev. Lett., 76(12):2049, 1996. 2

[22] G. Ferioli, A. Glicenstein, F. Robicheaux, R. T. Sutherland, A. Browaeys, and
I. Ferrier-Barbut. Laser-driven superradiant ensembles of two-level atoms near Dicke
regime. Phys. Rev. Lett., 127(24):243602, 2021. 2

[23] A. Glicenstein, G. Ferioli, A. Browaeys, and I. Ferrier-Barbut. From superradiance
to subradiance: exploring the many-body Dicke ladder. Opt. Lett., 47(6):1541, 2022.
2

100

https://onlinelibrary.wiley.com/doi/full/10.1002/9783527600441.oe005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.43.343
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.43.343
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.043818
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.043818
https://www.science.org/doi/full/10.1126/science.285.5427.571
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.041601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.51.1175
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.51.1175
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.51.1175
https://www.science.org/doi/full/10.1126/sciadv.1601231
https://www.science.org/doi/full/10.1126/sciadv.1601231
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.041603
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.041603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.2049
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.2049
https://link.aps.org/doi/10.1103/PhysRevLett.127.243602
https://link.aps.org/doi/10.1103/PhysRevLett.127.243602
https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-6-1541&id=470372
https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-6-1541&id=470372


[24] A. Angerer, K. Streltsov, T. Astner, S. Putz, H. Sumiya, S. Onoda, J. Isoya, W. J.
Munro, K. Nemoto, J. Schmiedmayer, et al. Superradiant emission from colour
centres in diamond. Nat. Phys., 14(12):1168, 2018. 2

[25] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff. Observation of
Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat.
Commun., 5(1):1, 2014. 2

[26] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and
D. Hommel. Superradiance of quantum dots. Nat. Phys., 3(2):106, 2007. 2

[27] K. Cong, Q. Zhang, Y. Wang, G. T. Noe, A. Belyanin, and J. Kono. Dicke
superradiance in solids. JOSA B, 33(7):C80, 2016. 2

[28] D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman. Experimental
evidence for subradiance. Phys. Rev. Lett., 54(17):1917, 1985. 2

[29] Y. Takasu, Y. Saito, Y. Takahashi, M. Borkowski, R. Ciury lo, and P. S. Julienne.
Controlled production of subradiant states of a diatomic molecule in an optical
lattice. Phys. Rev. Lett., 108(17):173002, 2012.

[30] C. Hettich, C. Schmitt, J. Zitzmann, S. Kuhn, I. Gerhardt, and V. Sandogh-
dar. Nanometer resolution and coherent optical dipole coupling of two individual
molecules. Science, 298(5592):385, 2002.

[31] B. H. McGuyer, M. McDonald, G. Z. Iwata, M. G. Tarallo, W. Skomorowski,
R. Moszynski, and T. Zelevinsky. Precise study of asymptotic physics with subradiant
ultracold molecules. Nat. Phys., 11(1):32, 2015. 2

[32] M. O. Scully, E. S. Fry, C. R. Ooi, and K. Wódkiewicz. Directed spontaneous
emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev.
Lett., 96(1):010501, 2006. 2, 53

[33] M. O. Scully and A. A. Svidzinsky. The super of superradiance. Science, 325(5947):
1510, 2009. 2, 22, 26

[34] M. O. Scully. Collective Lamb shift in single photon Dicke superradiance. Phys.
Rev. Lett., 102(14):143601, 2009. 2

[35] M. O. Scully. Single photon subradiance: quantum control of spontaneous emission
and ultrafast readout. Phys. Rev. Lett., 115(24):243602, 2015. 2

101

https://www.nature.com/articles/s41567-018-0269-7
https://www.nature.com/articles/s41567-018-0269-7
https://www.nature.com/articles/ncomms6186
https://www.nature.com/articles/ncomms6186
https://www.nature.com/articles/nphys494
https://opg.optica.org/josab/abstract.cfm?uri=josab-33-7-c80
https://opg.optica.org/josab/abstract.cfm?uri=josab-33-7-c80
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.54.1917
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.54.1917
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.173002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.173002
https://www.science.org/doi/full/10.1126/science.1075606
https://www.science.org/doi/full/10.1126/science.1075606
https://www.nature.com/articles/nphys3182
https://www.nature.com/articles/nphys3182
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.010501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.010501
https://www.science.org/doi/full/10.1126/science.1176695
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.143601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.243602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.243602
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A Appendix

A.1 Transmission coefficient on resonance

The transmission coefficient of a single atom that is coupled to an optical waveguide is
well known [69]. Here, we present a somewhat hand-waving but intuitive derivation based
on a beam splitter model. We will assume weak, resonant driving and a coupling strength
of βf . We model the system as an interferometer, which is depicted in Fig. A.1. A light
field Ein impinges on a beam splitter with field reflection and transmission coefficients rBS

and tBS, respectively. The reflected field is then assumed to perfectly couple to a single
two-level atom. Since we have defined the coupling strength, βf , as the partial decay
rate into the forward-propagating mode, |rBS|2 = βf in the beam splitter model, since a
fraction of βf of the emitted power couples to the forward-propagating mode. We choose
rBS ∈ R, such that rBS =

√
βf . Using |r|2 + |t|2 = 1, we then obtain tBS =

√
1 − βf . We

also assume that the propagating phases are the same in both arms of the interferometer.
The transmitted field, Ef , can be computed by interfering the field that is reflected twice
with the field that is transmitted twice,

Ef = t2BSEin − r2
BSEin. (A.1)

The minus sign originates from the relative phase between the incoming field and the
field scattered by the atomic dipole. For weak resonant excitation, the field emitted by
the dipole is π-out of phase, yielding a minus-sign for the field in the upper arm of the

Figure A.1: Beam splitter model of transmission through a waveguide for a single
atom that is coupled to the forward-propagating mode with a coupling strength,
βf .
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interferometer in Fig. A.1. Thus, the scattered field interferes destructively with the
incoming light field, i.e., the atom absorbs light. The field transmission coefficient through
the nanofiber is given by

t = Ef

Ein
= 1 − 2βf . (A.2)

For small βf ≪ 1, the power transmission coefficient is

T = |t|2 = 1 − 4βf . (A.3)

where we have neglected the term of order β2
f , which is appropriate for βf ≈ 0.01 in our

experiment. The optical depth of a single atom, OD0, is defined via the power transmission
coefficient, T = exp(−OD0) ≈ 1 −OD0. By comparing this expression with Eq.(A.3), we
obtain

OD0 = 4βf . (A.4)

A.2 Rabi frequency of a nanofiber-guided light field

The Rabi frequency of a light field is usually defined as

Ω = d⃗ · E⃗
ℏ

, (A.5)

where d⃗ is the transition dipole moment and E⃗ the electromagnetic field. Computing the
electric field of the nanofiber-guided mode at the position of the atoms is quite cumbersome.
Thus, it is useful to express the Rabi frequency in terms of the coupling strength, βf , and
the optical power, P , which can both be measured.
The saturation parameter, S, is defined as [89]

S = I

Isat
= 2Ω2

Γ2 , (A.6)

where I is the intensity at the position of the atom and Isat denotes the saturation
intensity [89],

Isat = ℏωΓ
2σ0

. (A.7)

Here, σ0 = 3λ2/2π is the resonant scattering cross section of a single atom [78]. We thus
obtain

Ω =
√
σ0ΓI
ℏω

. (A.8)
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In order to find how Ω depends on P and βf , we thus have to find how I depends on βf

and P . For a given input power, P , the atoms are exposed to the intensity

I = P

Aeff
, (A.9)

where we have introduced the effective mode area, Aeff. With these definitions, a single
atom absorbs a fraction of σ0/Aeff from a weak, resonant probe field [78]. For σ0/Aeff ≪ 1,
we can write

T = exp
(

− σ0
Aeff

)
. (A.10)

Comparing the exponent of the above equation to the optical depth of a single atom, see
Eq. (A.4), we get

Aeff = σ0
4βf

, (A.11)

such that the intensity is given by
I = 4βfP

σ0
. (A.12)

Finally, we insert the above expression for I into Eq. (A.8) and obtain

Ω =
√

4βf ΓP
ℏω

. (A.13)

A.3 Optical Bloch equations for a two-level atom

In the rotating wave approximation, the interaction of a single two-level atom with a
coherent light field is described by the following Hamiltonian [169]

Ĥ = ℏ∆σ̂†σ̂ + ℏΩ
2
(
σ̂† + σ̂

)
, (A.14)

where ∆ and Ω describe the detuning and Rabi frequency of the light field, respectively.
The dynamics of the atomic density matrix, ρ̂ is then determined by the Lindblad master
equation,

˙̂ρ = − i
ℏ

[
Ĥ, ρ̂

]
+ Γ

[
σ̂ρ̂σ̂† − 1

2
(
σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂

)]
. (A.15)
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The first term describes coherent evolution, while the second term describes dissipation.
Since ρee + ρgg = 1, and ρge = ρ∗

eg, it is sufficient to solve the following two equations:

ρ̇eg = −i∆ρeg − Γ
2 ρeg − i

2Ω(1 − 2ρee), (A.16)

ρ̇ee = −Γρee + i
2Ω(ρeg − ρge). (A.17)

A.3.1 Transmission coefficient for arbitrary detuning

In the weak excitation regime, the excited state probability ρee vanishes, i.e., ρee ≪ 1.
Then, one can solve Eq. (A.16) in the steady state,

ρss
eg = lim

t→∞
ρeg = −iΩ

2i∆ + Γ . (A.18)

For a given input field Ein, the forward scattered field Ef can be obtained via the input
output equation [102],

Ef = Ein − i
√
βf Γρeg. (A.19)

Inserting ρss
eg for ρeg and using the relation Ω =

√
4βf ΓEin, we can calculate the amplitude

transmission coefficient, t,

t(∆) = Ef

Ein
= 1 − βf Γ

i∆ + Γ/2 . (A.20)

The power transmission coefficient through an ensemble of N atoms is then given by

TN (∆) =
∣∣∣t(∆)N

∣∣∣2 ≈
∣∣∣∣∣
(

1 − βf Γ
i∆ + Γ/2

)N
∣∣∣∣∣
2

= exp
[
2N ln

(
1 − βf Γ

i∆ + Γ/2

)]
≈ exp

[
− 2βfNΓ

i∆ + Γ/2

]
=: exp [−OD(∆)] ,

(A.21)

where we have again neglected terms of order β2
f . The on-resonance optical depth is thus

given by OD(0) = 4βfN , consistent with our derivation in section A.1.

A.3.2 Analytical solution

While an analytical solutions to the optical Bloch equations exists, here we will only treat
the case of resonant driving, i.e., ∆ = 0 [170]. This can be done either by using a computer
program like Mathematica or by following the approach known as Torrey’s solution, which
is well explained, e.g., in Ref. [157]. We assume that the atom is initially prepared in the
ground state, such that the initial conditions ρee(t = 0) = 0, ρeg(t = 0) = ρge(t = 0) = 0.

116



The solutions are then given by:

ρee(t) = Ω2

2Ω2 + Γ2

[
1 − e− 3Γ

4 t
(

cos ΩΓt+ 3Γ
4ΩΓ

sin ΩΓt

)]
, (A.22)

ρge(t) = iΩΓ
Ω2 + Γ2/2

[
1 − e− 3Γ

4 t

(
cos ΩΓt− Ω2 − Γ2/4

ΓΩΓ
sin ΩΓt

)]
, (A.23)

ρeg(t) = ρ∗
ge(t). (A.24)

Here, ΩΓ is the oscillation frequency in the presence of radiative damping with the rate Γ,

ΩΓ =
√

Ω2 − 1
4Γ2. (A.25)

The pulse duration of Tpulse = 4 ns used in chapter 5 requires a Rabi frequency of
Ω = 2π × 125 MHz. For this setting, the value of ΩΓ = 2π × 124.97 MHz is almost the
same as Ω, which is why we do not take into account this modification of the oscillation
frequency in the main part of this thesis.
If we assume ΩΓ = π/Tπ, we can calculate the excited state probability after a π-pulse
with duration Tπ, i.e. ρee(t = Tπ),

pexc(Tπ) = 4(π/Tπ)2 + Γ2

8(π/Tπ)2 + 5Γ2

(
1 − e− 3Γ

4 Tπ

)
, (A.26)

which is plotted in Fig. 4.2(a) as a function of Tπ.

A.4 Ideal Dicke superradiance in wQED

In this section, we analyze the many-body master equation (ME) of wQED for the case
of unity coupling, i.e., βf + βb = 1, in two cases: symmetric and unidirectional atom-
waveguide coupling. We furthermore compare the resulting ME to that of the ideal Dicke
case, where all atoms are located at the same position. In the first case of symmetric
coupling, we additionally assume that the atoms are arranged in the Bragg configuration,
i.e., the spacing between different atoms is an integer multiple of the optical wavelength.
In this case, the coefficients Jij and Γij are particularly simple,

Jij = 0, (A.27)

Γij = Γ, (A.28)
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and the ME reads

˙̂ρ =
N∑

i,j=1

Γ
2
(
2σ̂iρ̂σ̂

†
j − ρ̂σ̂†

j σ̂i − σ̂†
j σ̂iρ̂

)
= Γ

2
(
2Ŝρ̂Ŝ† − ρ̂Ŝ†Ŝ − Ŝ†Ŝρ̂

)
, (A.29)

where Ŝ = ∑N
i=1 σ̂i is the collective lowering operator. Equation (A.29) is identical to

the master equation of ideal Dicke superradiance. In the Dicke regime, all atoms radiate
into a single optical mode with unity coupling strength. They feature particle exchange
symmetry, and any lowering operator that can act on the ensemble has to be symmetric
with respect to particle exchange. In particular, the dynamics in Eq. (A.29) is purely
dissipative, i.e., there are no dipole-dipole interactions between the atoms.
The situation becomes more complex when we introduce unidirectional coupling, where
βf = 1 and βb = 0. In addition, one can absorb the propagation phases by introducing
ˆ̃σi = eikf zi σ̂i, such that the ME becomes independent of the atomic positions, zi. For the
coefficients Jij and Γij , we get

Jij = − i
2Γsign(i− j), (A.30)

Γij = Γ, (A.31)

and the ME reads

˙̃̂ρ = − i
ℏ

[
Ĥ, ρ̂

]
+ Γ

2
(
2 ˆ̃Sρ̂ ˆ̃S† − ρ̂ ˆ̃S† ˆ̃S − ˆ̃S† ˆ̃Sρ̂

)
, (A.32)

Ĥ = − iℏΓ
2
∑
i>j

ˆ̃σ†
i
ˆ̃σj + c.c.. (A.33)

The dissipative part is still the same as for symmetric coupling and the ideal Dicke case.
However, now the effective Hamiltonian does not vanish. The nanofiber-guided mode
mediates unidirectional dipole-dipole interactions between the atoms. This interaction
seems to be responsible for the occurrence of subradiant dynamics after the emission of a
superradiant burst by a fully inverted ensemble, see section 5.6.

A.5 Extracting the first-order correlation function from the
heterodyne signal

In section 5.5.2, we extracted the first-order correlation function of the signal field from the
second-order correlation function of a heterodyne signal. In this section, we present a more
detailed explanation of this procedure. Let us assume a light field â(t) with power P (t)
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that describes the light exiting the nanofiber and superpose a classical, continuous-wave
local oscillator field alo with power PLO, with a randomly fluctuating relative phase, θLO,
and relative frequency, ωLO:

alo(t) =
√
PLOe

−i(ωLOt+θLO). (A.34)

The field and power incident on the detector are then given by

âD(t) =
√
PLOe

−i(ωLOt+θLO) + â(t), (A.35)

PD(t) = PLO + P (t), (A.36)

In our experiment, we measure the normalized second-order correlation function of this
heterodyne signal. We average over the relative phase between the local oscillator and
the signal field, θLO, since the latter is not stabilized and drifts randomly on the time
scale of the repetition period of our measurements. Due to these random drifts, there
is no interference term in Eq. (A.36) since it averages to zero. Using the definitions in
Eqs. (5.2), we first calculate the unnormalized second-order autocorrelation function of
the heterodyne signal,

G
(2)
D (t, τ) =⟨â†

D(t)â†
D(t+ τ)âD(t+ τ)âD(t)⟩

=PD(t)PD(t+ τ) + 2PLO

√
P (t)P (t+ τ)Re

[
e−iωLOτg(1)(t, τ)

]
+ P (t)P (t+ τ)

[
g(2)(t, τ) − 1

]
,

(A.37)

where we have averaged over the randomly fluctuating relative phase, θLO, such that terms
of order O(P 1/2

LO ) and O(P 3/2
LO ) average to zero. We have also introduced the normalized

correlation functions for the light exiting the nanofiber, g(1)(t, τ) and g(2)(t, τ). We can
then normalize this result to obtain the normalized second-order autocorrelation function
of the heterodyne signal,

g
(2)
D (t, τ) =1 + 2PLO

√
P (t)P (t+ τ)

PD(t)PD(t+ τ)
[
cos(ωLOτ)Re

(
g(1)(t, τ)

)
+ sin(ωLOτ)Im

(
g(1)(t, τ)

)]
+ P (t)P (t+ τ)
PD(t)PD(t+ τ) [g(2)(t, τ) − 1].

(A.38)

Note that since we drive the atomic ensemble on resonance, we assume that g(1)(t, τ) is
real, which is confirmed by the MCSA model. Since, for the experimental parameters
in our experiment, PLO ≫

√
P (t)P (t+ τ), we neglect the last term that includes the
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contribution of g(2)(t, τ) such that we are left with

g
(2)
D (t, τ) = 1 + Vmax(t, τ) cos(ωLOτ)g(1)(t, τ). (A.39)

Here, we have introduced the maximum visibility of Vmax(t, τ).

Vmax(t, τ) = 2PLO
√
P (t)P (t+ τ)

PD(t)PD(t+ τ) . (A.40)

The second-order correlation function of our heterodyne signal is thus given by the first-
order correlation function of the signal field â(t), oscillating at ωLO. We extract both
g

(2)
D (t, τ) and Vmax(t, τ) from our measurements and infer the following quantity from our

data:

cos(ωloτ)g(1)(t, τ) = g
(2)
D (t, τ) − 1
Vmax(t, τ) , (A.41)

which we show in Fig. 5.7 of section 5.5.2.
To test our method of extracting the first-order correlation function as described

above, we launch a time-modulated signal that is substantially weaker than the local
oscillator field into the nanofiber-guided mode without trapping any atoms. The
amplitude modulation is created using our pulse generation setup. This field stems from
the same laser field as the local oscillator field and should be completely coherent on
the time scale of tens of nanoseconds that we are interested in, such that we expect
g(1)(t1, τ) = 1. We use a polarizing beam splitter and waveplates to exactly match
the polarization of the local oscillator field to the polarization of the signal field that
exits the nanofiber-guided mode. The time trace of the power detected with the HPD
is plotted in Fig. A.2(a). Next, we compute the normalized second-order correlation
function, g(2)(t1, τ), which is shown for t1 = 5 ns in Fig. A.2(b) in blue. Note that we
subtract 1 from g(2)(t1, τ). At the same time, we measure the time traces using the
SPCM, on which only the signal field is incident. This allows us to extract the maximal
visibility, Vmax(t1, τ), which we show in orange in panel (b). While the visibility of
the oscillations of g(2)(t1, τ) decays with τ , this decay exactly matches the decay of
Vmax. Indeed, when we normalize g(2)(t1, τ) − 1 with Vmax(t1, τ), the visibility stays
constant, see panel (c). According to our analysis above, this is the first-order correlation
function of the signal field, g(1)(t1, τ), oscillating at the local oscillator frequency, ωLO.
The visibility of the oscillations is thus given by g(1)(t1, τ). Fitting the amplitude of
a cosine function to this data gives g(1)(t1, τ) = 1.04(1) ≈ 1, in accordance with our
expectation. Note that the visibility can be further reduced if the polarization of the
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Figure A.2: Extracting the first-order coherence function of a coherent, nanofiber-
guided signal from the second-order correlation function of a heterodyne signal.
Here, no atoms are present. (a) Time trace of the detector signal. (b) Normalized
second-order correlation of the heterodyne signal. The decay of the fringe visibility
coincides with the decay of the maximal visibility, Vmax. (c) By normalizing
the second-order correlation function by the maximal visibility, we obtain the
first-order correlation function of the signal exiting the nanofiber-guided mode,
oscillating at the local oscillator frequency, ωLO.

field exiting the nanofiber-guided mode and the local oscillator field do not match.
We checked that this effect is limiting the maximal visibility of our measurement in Fig. 5.7.

A.6 First-order correlation function of independent and inverted
two-level atoms

Here, we analyze the first-order coherence function of an ensemble of independently
emitting atoms that are initially excited and then decay due to spontaneous emission. We
start with the first-order coherence function of a single atom, which is, e.g., derived in
Ref [104]. For the initial conditions, ⟨σ̂(t = 0)⟩ = 0, ⟨σ̂†σ̂(t = 0)⟩ = 1 (i.e. full inversion),
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the solution of the Lindblad Master equation is

⟨σ̂†σ̂(t)⟩ = e−Γt, (A.42)

⟨σ̂†(t)⟩ = ⟨σ̂(t)⟩ = 0. (A.43)

Using the quantum regression theorem, one can calculate the corresponding two-time
correlation function,

⟨σ̂†(t)σ̂(t+ τ)⟩ = e−(Γ/2)τe−Γt, (A.44)

where we have chosen a frame rotating at the atomic transition frequency. The field ⟨â⟩(t)
emitted by the atom is proportional to ⟨σ̂⟩, while the power is proportional to ⟨σ̂†σ̂⟩.
Consequently, the two-time first-order coherence of the light emitted by the atom can be
calculated as follows:

g(1)(t, τ) = ⟨â†(t)â(t+ τ)⟩√
⟨â†â(t)⟩⟨â†â(t+ τ)⟩

= ⟨σ̂†(t)σ̂(t+ τ)⟩√
⟨σ̂†σ̂(t)⟩⟨σ̂†σ̂(t+ τ)⟩

. (A.45)

Inserting the solutions given in Eq. (A.42) and (A.44), respectively, we get

g(1)(t, τ) = e−(Γ/2)τe−Γt

√
e−Γt · e−Γ(t+τ)

= e−(Γ/2)τe−Γt

e−(Γ/2)τe−Γt
= 1, (A.46)

i.e., the two-time first-order coherence of the light spontaneously emitted by a single atom
is time-independent.
Now we want to extend this result to two independently emitting atoms that are initially
inverted. The field emitted by the atoms is proportional to ⟨σ̂1⟩ + eiϕ⟨σ̂2⟩, where eiϕ is the
relative propagation phase, and the index denotes the first and second atom, respectively.
The total emitted power is given by ⟨σ̂†

1σ̂1⟩ + ⟨σ̂†
2σ̂2⟩. The first-order coherence function

of two independently emitting atoms is then proportional to

g(1)(t, τ) ∼

〈(
σ̂†

1(t) + e−iϕσ̂†
2(t)

) (
σ̂1(t+ τ) + eiϕσ̂2(t+ τ)

)〉
√

(P1(t) + P2(t)) · (P1(t+ τ) + P2(t+ τ))
. (A.47)

Since we assume that the two atoms emit independently, all correlators involving both
atoms vanish. We then get

g(1)(t, t+ τ) ∼ ⟨σ̂†
1(t)σ̂1(t+ τ)⟩ + ⟨σ̂†

2(t)σ̂2(t+ τ)⟩
2
√
P (t)P (t+ τ)

, (A.48)

where we have used that P1(t) = P2(t) = P (t). This means that the two-time first-order
correlation of the combined field is simply the mean of the two-time first-order correlations
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Figure A.3: (a) Excitation scheme as described in chapter 4. There, spontaneously
emitted photons predominantly couple to the forward-propagating mode, i.e., the
direction in which the excitation laser field propagates. (b) Alternative excitation
scheme: Here, the atoms predominantly decay into the backward-propagating
mode, i.e., opposite to the excitation laser field.

of the two individual atoms,

g(1)(t, τ) = 1
2
[
g

(1)
1 (t, τ) + g

(1)
2 (t, τ)

]
= 1, (A.49)

i.e., also time-independent. This result can be generalized to the case of N independently
emitting atoms that are inverted at time t = 0.
We can also calculate the time-averaged first-order correlation function for a single atom,

g(1)(τ) = lim
T →∞

1
T

∫ T

0
dt

⟨σ̂†(t)σ̂(t+ τ)⟩
P (t) . (A.50)

Using Eqs. (A.42) and (A.44), we get g(1)(τ) = e−(Γ/2)τ . As for the two-time first-order
correlation function, we can generalize this result for N independently emitting atoms.

A.7 Alternative excitation scheme

In Fig. A.3(a), we show the optical excitation scheme used in chapter 4. We use a
fiber-guided excitation laser field that is locally σ− polarized to resonantly excite the
atoms to the state |e⟩ = |6P3/2, F = 5,mF = −5⟩. Note that the quantization axis points
out of the plane. The subsequent decay is σ−-polarized, and the light predominantly
couples to the forward-propagating mode, with a directionality of D = 0.84.
In panel (b), we show an alternative excitation scheme for which the ensemble predomi-
nantly decays into the opposite direction of the propagation direction of the excitation
laser field. We trap atoms on the other side of the fiber in the same initial ground state
as in (a), |6S1/2, F = 4,mF = −4⟩. This can be achieved by performing DRC using a
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fiber-guided laser that propagates from right to left. Then, we excite the atoms using a
fiber-guided laser field that is locally π-polarized, which excites the atoms to the state
|6P3/2, F = 5,mF = −4⟩. This state features a π- and a σ−-polarized decay channel, with
branching ratios of 0.2 and 0.8, respectively. The overall directionality of the emitted light
is thus given by

D = 0.8Dσ− + 0.2Dπ = 0.68, (A.51)

where Dπ = 0 and Dσ− = 0.84, are the directionalities of the π- and σ−-polarized decay
channels, respectively.

A.8 Optical Bloch equations for a three-level atom

This section is based on the supplementary material of Ref. [138]:
C. Liedl, S. Pucher, P. Schneeweiss, L. P. Yatsenko, and A. Rauschenbeutel. Observation of
oscillatory Raman gain associated with two-photon Rabi oscillations of nanofiber-coupled
atoms. J. Phys. B: At. Mol. Opt. Phys., 55(23):234005, 2022.

Here, we describe the interaction between two classical laser fields with an
atomic Λ-system, comprising two ground states, |a⟩ = |6S1/2, F = 4,mF = −4⟩ and
|b⟩ = |6S1/2, F = 3,mF = −3⟩, as well as an excited state, |e⟩ = |6P3/2, F = 4,mF = −4⟩,
as depicted in Fig. 6.1. The Λ-system is driven by a probe laser field and a coupling laser
field. The π-polarized coupling field with the Rabi frequency Ωc is detuned by ∆c from
the |a⟩ → |e⟩ transition. The σ−-polarized probe field with the Rabi frequency Ωp is
detuned by ∆p from the |b⟩ → |e⟩ transition. In the rotating wave approximation, the
Hamiltonian is given by [151]

Ĥ = −ℏ
Ωp

2
(
σ̂be + σ̂†

be

)
− ℏ

Ωc

2
(
σ̂ae + σ̂†

ae

)
− ℏ∆pσ̂

†
eeσ̂ee − ℏ(∆p − ∆c)σ̂†

bbσ̂bb. (A.52)

where we have chosen the Rabi frequencies to be real. The operators σij = |i⟨⟩j|, where
i, j ∈ {a, b, e}, describe the atomic annihilation and creation operators for the different
transitions. As for a two-level atom, the dynamics of the density matrix ρ̂ is then
determined by the Lindblad master equation [103]

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] +

∑
i∈{a,b}

1
2
(
2ĉnρ̂ĉ

†
n − ρ̂ĉ†

nĉn − ĉ†
nĉnρ̂

)
. (A.53)
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Here, ĉi are the collapse operators that describe spontaneous emission from the excited
state, |e⟩ to the two ground states,

ĉa =
√

Γea · σ̂ae, (A.54)

ĉb =
√

Γeb · σ̂be, (A.55)

where Γea = (7/15)Γ and Γba = (5/12)Γ are the population decay rates from the excited
state to |a⟩ and |b⟩, respectively, and Γ = 2π × 5.2 MHz is the total decay rate. There are
losses from the three-level system with the rate Γloss = (7/60)Γ ≈ 0.1Γ, which we neglect
in the following since they do not significantly alter the dynamics on the short timescale
we are interested in. The differential equations for the density matrix elements read

ρ̇aa = − i
2Ωc (ρea − ρae) + Γeaρee, (A.56)

ρ̇bb = − i
2Ωp (ρeb − ρbe) + Γebρee, (A.57)

ρ̇ab = − i
2 (Ωcρeb − Ωpρae) − i (∆c − ∆p) ρab, (A.58)

ρ̇ae = − i
2Ωc(ρee − ρaa) + i

2ρabΩp −
(Γ

2 + i∆c

)
ρae, (A.59)

ρ̇be = − i
2Ωp(ρee − ρbb) + i

2ρbaΩc −
(Γ

2 + i∆p

)
ρbe, (A.60)

ρ̇ee = i
2Ωc (ρea − ρae) + i

2Ωp (ρeb − ρbe) − Γρee. (A.61)

A.8.1 Adiabatic elimination

Adiabatic elimination of the excited state means that we can neglect the time derivative
of the optical coherences and the population of the excited state, i.e. ρ̇ae = ρ̇be = ρ̇ee = 0.
We can then express the matrix elements that involve the excited state in terms of the
coherences and populations of the two ground states:

ρae =
− i

2Ωc(ρee − ρaa) + i
2ρabΩp

Γ
2 + i∆c

, (A.62)

ρbe =
− i

2Ωp(ρee − ρbb) + i
2ρbaΩc

Γ
2 + i∆p

, (A.63)

ρee = i
2

Ωc

Γ (ρea − ρae) + i
2

Ωp

Γ (ρeb − ρbe) . (A.64)

Since we are interested in the dynamics for large detuning and on two-photon resonance,
we assume ∆c = ∆p = ∆. The condition for the validity of adiabatic elimination is that
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the excited state population ρee is very small, i.e., that

Ω2
p,Ω2

c ≪ 4∆2 + Γ2. (A.65)

If this condition is met, we can eliminate ρee in Eqs. (A.62)–(A.64) and insert the resulting
expressions into the differential equations for the ground-state density matrix elements,
Eqs. (A.56)–(A.58), which then read

ρ̇aa = −Γaρaa + Γbaρbb − i
2Ω̃(ρba − ρab), (A.66)

ρ̇bb = −Γbρbb + Γabρaa + i
2Ω̃(ρba − ρab), (A.67)

ρ̇ab = − i
2Ω̃(ρbb − ρaa) + i∆̃ρab −

(Γc

2 + Γp

2

)
ρab. (A.68)

Here, we have introduced the two-photon Rabi frequency

Ω̃ = ΩcΩp

2∆ . (A.69)

The transition rates to the excited state from state |a⟩ and |b⟩ due to excitation by the
coupling and probe fields are given by

Γc,p = Γ
Ω2

c,p

4∆2 , (A.70)

respectively. These rates also lead to a relaxation of the coherence ρab with rate Γc/2+Γp/2.
The rates Γa,Γb,Γab, and Γba describe the redistribution of population between the two
ground states due to spontaneous emission. They are given by the following expressions:

Γa = 1
4

Ω2
c

∆2 (Γ − Γea) = Γc

(
1 − Γea

Γ

)
= 8

15Γc, (A.71)

Γba = 1
4

Ω2
p

∆2 Γea = Γp
Γea

Γ = 7
15Γp, (A.72)

Γb = 1
4

Ω2
p

∆2 (Γ − Γeb) = Γp

(
1 − Γeb

Γ

)
= 7

12Γp, (A.73)

Γab = 1
4

Ω2
c

∆2 Γeb = Γc
Γeb

Γ = 5
12Γc. (A.74)

Finally, ∆̃ denotes the detuning from the light-shifted two-photon resonance,

∆̃ = ∆p − ∆c + Ω2
c

2∆c
. (A.75)
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A.8.2 Simplified effective two-level system

To describe the experimental data in the main manuscript, we make the following approx-
imations:

1. We assume that the system is closed, such that Γea + Γeb = Γ.

2. For simplicity, we assume that the approximate equality Γea ≈ Γeb is exact: Γea =
Γeb = Γ/2.

3. Since the probe field is much weaker than the control field, we assume that Γp = 0.

4. We assume that we have tuned the laser frequency to the light-shifted two-photon
resonance: ∆̃ = 0.

Under these assumptions, the different rates simplify such that Γa = Γab = Γc/2 and
Γb = Γba = 0. The dynamics of the ground-state populations and coherences is then
governed by the following set of equations.

ρ̇aa = −Γ̃ρaa − i
2Ω̃(ρba − ρab), (A.76)

ρ̇bb = +Γ̃ρaa + i
2Ω̃(ρba − ρab), (A.77)

ρ̇ab = − i
2Ω̃(ρbb − ρaa) − Γ̃ρab. (A.78)

These equations describe a resonantly driven two-level system with ground state |b⟩ and
excited state |a⟩, with an effective decay rate from |a⟩ → |b⟩, Γ̃:

Γ̃ = Γc

2 = Ω2
c

8∆2 Γ. (A.79)

Here, the coherence ρab decays at the same rate as the population, Γ̃. This marks an
important difference compared to the usual two-level closed system, in which the coherence
would decay with a rate of Γ̃/2. This additional decoherence channel is associated with a
transition to the excited state |e⟩ and a subsequent decay to the initial state. This process
does not affect the ground-state populations but leads to additional decoherence. The
solution of these equations is analogous to the solution we gave in section A.3.2. However,
here we are interested in the initial conditions ρaa(0) = 1, ρab(0) = 0.
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