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Abstract

Generating correlated photons is an outstanding challenge of modern quantum optics owing to
the inherently non-interacting nature of photons. Mediating interactions between uncorrelated
photons to generate complex many-body states of photons has therefore been long sought for.
Typically, such interactions require a high nonlinearity realized by quantum emitters strongly
coupled to an optical mode. However, such approaches are often significantly impaired by un-
avoidable dissipation in the form of photon loss, which leads to a reduction of the correlations.

In this thesis, I will demonstrate an experimental approach where we use a strongly dissipa-
tive medium weakly coupled to a light field to generate strongly correlated states of light. Key to
our system is a subwavelength diameter optical nanofiber, around which we trap neutral Cesium
atoms in two linear arrays using a two-color optical dipole trap. The mutually non-interacting
trapped atoms couple weakly to the guided mode of the nanofiber. Each atom can scatter a small
fraction of the light out of the fiber which is the dissipative part of the atom-light interaction,
thereby, reducing the number of uncorrelated photons. However, the fact that an atom can only
absorb one photon at a time, generates correlations between photons that arrive at the atom at
the same time. The scattered photons are spectrally detuned and, therefore, less absorbed. The
large number of atoms in the system collectively enhances the dissipative and nonlinear effects,
leading to highly correlated photons at the output of the nanofiber.

In the experiment, we launch a weak resonant light field through the nanofiber where it
interacts with an ensemble of weakly-coupled atoms. We measure the second-order correlations
induced in the transmitted light field via a Hanbury-Brown-Twiss setup. We observe that by
changing the number of atoms in the ensemble, we are able to tune the interaction between the
photons from non-interacting to repulsive to attractive, which we observe as a transition from no
bunching to antibunching to bunching, respectively. This realization of a collectively enhanced
nonlinearity opens new avenues for generating nonclassical states of light.
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Kurzfassung

Die Erzeugung korrelierter Photonen ist eine besondere Herausforderung der modernen Quan-
tenoptik, da Photonen intrinsisch nicht miteinander wechselwirken. Die Wechselwirkungen zwi-
schen unkorrelierten Photonen, verbunden mit dem Ziel komplexe Vielteilchenzustände von
Photonen zu erzeugen, wird daher seit Langem angestrebt. Typischerweise erfordern solche
Wechselwirkungen eine hohe Nichtlinearität, die durch stark an eine optische Mode gekoppelte
Quantenemitter realisiert werden kann. Solche Ansätze werden jedoch oft durch unvermeidliche
Dissipation in Form von Photonenverlust erheblich beeinträchtigt, was zu einer Reduktion der
Korrelationen führt.

In dieser Arbeit demonstriere ich einen experimentellen Ansatz, bei dem wir ein stark dissi-
patives Medium verwenden, welches schwach an ein Lichtfeld gekoppelt ist, um stark korrelierte
Lichtzustände zu erzeugen. Das Herz unseres Systems ist eine optische Nanofaser, deren Durch-
messer kleiner ist als die Lichtwellenlänge. An dieser Nanofaser fangen wir neutrale Cäsiuma-
tome in zwei 1-dimensionalen Gittern, die durch eine optische Zweifarben-Dipolfalle erzeugt
werden. Die nicht miteinander wechselwirkenden gefangenen Atome koppeln schwach an die in
der Nanofaser geführte Mode. Jedes Atom kann einen kleinen Bruchteil des Lichts aus der Faser
heraus streuen, was den dissipativen Teil der Atom-Licht-Wechselwirkung darstellt. Dadurch
wird die Anzahl unkorrelierter Photonen reduziert. Die Tatsache, dass ein Atom immer nur ein
Photon zur gleichen Zeit absorbieren kann, erzeugt jedoch Korrelationen zwischen Photonen,
die zur gleichen Zeit am Atom ankommen. Die gestreuten Photonen sind spektral verstimmt
und werden daher weniger absorbiert. Die große Anzahl von Atomen im System verstärkt die
dissipativen und nichtlinearen Effekte, was zu stark korrelierten Photonen am Ausgang der Na-
nofaser führt.

Wir messen die im transmittierten Lichtfeld induzierten Korrelationen zweiter Ordnung mit
Hilfe eines Hanbury-Brown-Twiss-Aufbaus. Dafür senden wir ein schwaches resonantes Licht-
feld durch die Nanofaser, wo es mit einem Ensemble schwach-gekoppelter Atome wechselwirkt.
Wir beobachten, dass wir durch Änderung der Anzahl der Atome im Ensemble die Wechsel-
wirkung zwischen den Photonen von “nicht-wechselwirkend“ über “abstoßend“ bis “attraktiv“
einstellen können, was sich in den Messdaten durch den Übergang von “no bunching“ zu “an-
tibunching“ zu “bunching“ äußert. Diese Realisierung einer kollektiv erhöhten Nichtlinearität
eröffnet neue Wege zur Erzeugung nicht-klassischer Lichtzustände.
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CHAPTER 1
Introduction

the investigation of light-matter interaction has been crucial to the development of modern quan-
tum optics. The conceptualization of photons as elementary particles of light was crucial in
understanding the absorption and emission of radiation by matter. Planck and Einstein high-
lighted the discrete nature of light energy through their work on the derivation of the blackbody
spectrum [1] and explanation of the photoelectric effect [2, 3] respectively. However, phenom-
ena such as interference, diffraction or scattering of light still could not be explained without
considering Maxwell’s electromagnetic waves formulation of light [4]. In the following years,
seminal works such as Neils Bohr’s quantization of electronic energy levels of the Hydrogen
atom [5], Louis De Broglie’s wave-particle duality hypothesis combining wave and particle na-
ture of matter [6], Heisenberg’s uncertainty principle [7], and Schrödinger’s equation [8] laid the
framework of quantum physics which allowed one to explain phenomena which otherwise could
not be physically understood. Following this, came one of the most important studies of quan-
tum optics on light-matter interaction, where Paul Dirac in a series of papers, used semiclassical
and fully quantum mechanical models [9,10] to explain emission and absorption of radiation by
atoms, and the spectrum of Hydrogen atoms. Due to a lack of a monochromatic light source, it
was not until the second half of the 20th century that one could start doing experiments where a
fully quantized approach to light-matter interaction was necessary.

The invention of the laser [11,12] allowed probing matter with almost monochromatic radiation
and with very well defined photon statistics [13]. Moreover, by letting the laser light interact
with the matter, one could now produce exotic states of light such as a single photon wavepack-
ets [14], entangled photon pairs [15, 16] and squeezed states of light [17]. This generated a
lot of interest in investigating applications of such interactions in quantum information process-
ing [18–21], precision measurements [22, 23], and quantum communication [24]. Therefore,
the realization of an efficient interaction between light and matter via the development of novel
light-matter interfaces [20, 25, 26] has become one of the major themes of the ongoing second
quantum revolution [27].
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1. INTRODUCTION

The usefulness of a light-matter interface for photonic quantum technologies depends on ef-
ficient coupling of photons - the fundamental carriers of quantum informatio - with the quantum
emitters. Usually the coupling strength depends on the product of the local electric field asso-
ciated with the photon and the atomic dipole. Therefore, higher interaction strengths usually
require a higher electric field. The most common approach to increase the coupling strength is
to focus the light. However, the focussing is fundamentally limited by the diffraction limit [4].
Therefore, since the early days of quantum optical research, such an enhancement of elec-
tric field has been achieved by cavities leading to the field of cavity quantum electrodynamics
(CQED) [28]. The increased coupling results from the enhancement of the light intensity at the
position of the quantum emitter located inside the cavity. However, the experimental complex-
ity, technical challenges, and bandwidth constraints associated with CQED experiments calls
for other alternative approaches. Another way for enhancing the coupling is to use large ensem-
bles of atoms. In such an approach, the collective superposition state of the atomic ensemble
enhances the coupling strength by

√
N , where N is the number of atoms [29, 30]. However,

the coupling strength is still depends on the local field strength at the position of the atoms in
the atomic ensemble, which is limited by the diffraction limited focusing of light. In addition,
it is not trivial to achieve high optical depths for a light beam passing through such an cold
atomic ensembles, which is usually a key parameter for a light matter interface to be useful.
However, with recent advances in technologies, optical waveguides-based light matter inter-
faces have gained a lot of attention as a possible solution. In particular, optical nanofibers have
established themselves as an efficient light matter interface [31–34].

In an optical nanofiber based-light matter interface, which is the key component of the re-
search presented in this thesis, the high-coupling strength comes in two forms. First, due to the
sub-wavelength confinement of light in the nanofiber waist [35] one can achieve high intensi-
ties over a larger distance which is usually not possible in a tightly focused light beam. Plus
most of the light energy is present in the evanescent region of the optical nanofiber, where it
can be easily interfaced with atoms in the vicinity of the nanofiber surface [35, 36]. The small
extent of the transverse mode leads to greater overlap with the atomic absorption cross-section,
thereby allowing for high atom-light coupling strength. The second enhancement comes due
to the large number of atoms that can be trapped around a nanofiber with each trapped atom
having a comparably high single atom-light coupling strength [37]. With the state-of-art devel-
opments [33, 34], that include large ground state coherence times [38], efficient cooling mecha-
nisms resulting in longer trap lifetimes [39], and proposals that allow collective enhancement to
exponentially increase the fidelity of information storage [40], nanofibers have establish them-
selves as a versatile and robust light-matter interface. In addition, they allow for unique features
such as spin-orbit coupling [41–43], multimode-strong coupling [44], Bragg reflection [45, 46]
and sub- and super-radiance effects [40, 47], which make the nanofiber-based light-matter inter-
face an attractive system for studying complex many-body physics of light-matter interaction, as
well as, for demonstration of novel physics which is not just limited to optical domain, but can
be extended also to other frequency regimes such as microwave.

One such exciting application of nanofiber-based atom-light interfaces is to mediate inter-
actions between photons which by themselves are inherently non-interacting. The key to this
are the nanofiber-coupled atoms. Because of the quantized nature of atomic energy levels, an
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atom can absorb only a single photon at a given time [48]. This is the strongest nonlinearity
possible where absorption of one photon modifies the reaction of the medium with respect to
the next photon. Therefore, if one sends a stream of photons spaced randomly in time, the atom
modifies the temporal statistics of photons at the output. Nanofibers facilitate the interaction of
the photons with a large number of atoms, thereby enhancing the effects of light-matter inter-
action despite the moderate single atom-photon coupling strength [45]. There have been lots of
proposals which predict exciting many-body physics with waveguide interfaced quantum emit-
ters [49–51]. In this thesis, I will present the result of our experimental study on a complex many
body interaction phenomenon between photons from a weak resonant light field and an ensem-
ble of atoms trapped around an optical nanofiber based on the proposal from the reference [51].
We observe that by changing the number of atoms interfaced with the light field propagating in-
side the nanofiber, we are able to tune the effective interaction between the photons from none to
repulsive to attractive, as a result of which, the probability of observing two-photons simultane-
ously at the output also changes. We observe antibunching for low atom numbers which provides
clear evidence for the generation of non-classical light. In addition, for large atom numbers we
observe a change from antibunching to bunching which means that the photons tend to come
out of the nanofiber in bunches rather than separately. Larger number of atoms means higher
dissipation which stems from the fact that more atoms can scatter more light out of the nanofiber
which could potentially hamper the correlations. In our case, the interplay of nonlinearity and
dissipation by the atoms allows for the tuning of the two-photon probability amplitude leading
to the observed effect. Such an effect as demonstrated here, can be used for the generation of
antibunched stream of photons with high flux. The results shown in this thesis pave a way for
performing complex many body physics using atomic ensembles and light [51, 52].

The thesis is organized as follows. In chapter 2, I explain the physics of light propagation
in nanofibers and how it can be used to trap neutral Caesium atoms. Following it, in chapter 3,
I explain how I implemented a second generation of a nanofiber trap setup in my group. I ex-
plain the various tools and techniques that are used for designing, characterizing, and performing
measurements in my setup. Next, I introduce in Chapter 4 some basic definitions from quan-
tum optics which are required to understand the results from the demonstrated experiment. In
particular, I also discuss some basic physics of photon scattering from coupled emitters and sum-
marize the results from the theory proposal behind our experiment. Chapter 5 provides detailed
explanations of the experimental setup, and outlines methods, and results from the performed
experiment. Chapter 6 summarizes the work presented in this thesis and outlines the future
directions of research.
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CHAPTER 2
Trapping atoms around optical

nanofibers

2.1 Introduction

Optical fibers are cylindrical silica structures that are capable of guiding light over large dis-
tances with minimal losses. A typical cylindrical optical fiber consists of a central core with
refractive index n1 surrounded by a cladding with a slightly lower refractive n2. The accep-
tance angle at which the light enters into the fiber is given by the numerical aperture of the fiber
NA = sin−1[1−n2

2/n
2
1]. This constrains the angle of incidence at the core-cladding interface to

be greater than the critical angle (θc = sin−1[n2/n1]). Then the light is guided by total-internal
reflection without any loss. When the refractive index difference is much less than the refractive
index of the core, light is said to be weakly guided. The exact solution to the electromagnetic
wave equation for light propagation inside an optical fiber yields the guided mode functions
which give the spatiotemporal distribution of the associated electric and magnetic fields. Solv-
ing Maxwell’s equations for the guided modes has been thoroughly studied in the past [53, 54].

In contrast to the optical fibers with diameter larger than the wavelength of the propagating
light field, tapered optical fibers are structurally modified optical fibers that contain sections with
a diameter less than the wavelength of the propagating light field. This allows confinement of
light to sub-wavelength dimensions enabling a strong transverse confinement of the light field.
Due to this, nanofibers offer large coupling over large distance because of the non-diverging
guided mode. In this chapter, I will introduce the physics of light propagation inside such optical
nanofibers. Then, I will introduce Caesium as the neutral atom species with which we interface
the nanofiber guided light. I will then summarize analytical expressions related to creating the
optical dipole trap potential in the evanescent field of the nanofiber to trap neutral Cs atoms.
Following it, I will explain our choice of the far-off resonance light fields for creating the dipole
trap. In the end, we shall look quantitatively at some of the important properties of our nanofiber-
based trap.
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2. TRAPPING ATOMS AROUND OPTICAL NANOFIBERS

2.2 Light propagation through nanofibers

2.2.1 Nanofibers

The term nanofibers used throughout this thesis refers to a cylindrical section of a glass optical
fiber which is a few hundred nanometers in diameter and capable of guiding light fields such
that a large part of the field energy lies in the evanescent component of the field. It is derived
from a normal step index glass optical fiber in an optimized heat and pull process [55]. To
start with, a section of the fiber with only the core and cladding layers is cleaned. The cleaned
section is then heated uniformly in a clean hydrogen-oxygen flame and the two ends of the
section simultaneously pulled. As a result, the optical fiber section in the centre becomes thin,
with two tapered sections on the side connecting it to the unstretched part of the fiber as shown
schematically in 2.1. The central section called the nanofiber waist has a vanishing core. The
light is guided in the nanofiber waist by means of total internal reflection from the cladding-air
junction. Due to a large difference of refractive index of silica and the surrounding air/vacuum,
the light is said to be strongly guided. Depending on the radius of the fiber and wavelength of
the propagating field, the extent of the evanescent field outside the fiber can be a several times
the radius of the fiber. The properties of such guided modes have been studied in detail [32,35].
I will introduce some of the key properties in the next section.

 

 

 

 

 
waist

Ø ~400nm

tapertaperunstreched
fiber

Ø ~125µm

unstretched
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Ø ~125µm
~10mm~35mm ~35mm

x
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r

Figure 2.1: Sketch of a typical tapered optical fiber. The dimensions of the taper and the
nanofiber waist correspond to what we used in our experiment. The brown color represents the
extent of the field. In the waist region the field is extended outside the fiber which enables the
propagating light field to couple to an atom in the vicinity of the nanofiber waist.

2.2.2 Guided modes of a Nanofiber

Light propagation in the nanofiber waist cannot be described by a transverse electric mode as
is usually the case for weakly guided single mode fibers. This is because the tight confinement
of the light field guided by the nanofiber waist leads to a strong longitudinal component of the
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2.2. Light propagation through nanofibers

electric field 1. The guided modes in a optical nanofiber are described by the fundamental Hybrid
electric (HE11) mode. The light fields in this mode show non-vanishing longitudinal component
inside the nanofiber waist. In this context, depending upon the transverse polarization, the light
is said to be quasilinear or quasicircularly polarized if the transverse polarization is linear or
circular. The propagation constant β for an optical field (frequency ω, free-space wavelength λ)
in a nanofiber with waist refractive index n1, radius a surrounded by a medium air/vacuum with
refractive index n2 = 1 is given by solving the eigenvalue equation [53]:

J0(ha)

haJ1(ha)
= −n

2
1 + n2

2

2n2
1

K ′1(qa)

qaK1(qa)
+

1

h2a2

−

[(
n2

1 − n2
2

2n2
1

K ′1(qa)

qaK1(qa)

)2

+
β2

n2
1k

2

(
1

q2a2
+

1

h2a2

)2
]1/2

(2.1)

where h = (n2
1k

2 − β2)1/2 and q = (β2 − n2
2k

2)1/2 are constants that characterize the fields
inside and outside the waist, Jn and Kn are Bessel function of the first kind and modified Bessel
function of the second kind, respectively. Due to the cylindrical symmetry of nanofibers, one
can express the components of the electric field conveniently in the cylindrical coordinates. In
addition, it is most convenient to work with the normalized electric field mode functions with
the normalization constant C which can be found by the normalization condition for the electric
field defined later in equation 2.4. Keeping this in mind, for a counterclockwise quasicircularly
polarized field propagating along +z direction, the normalized electric field mode functions for
r < a can be written as [56]:

er = iC
q

h

K1(qa)

J1(ha)
[(1− s)J0(hr)− (1 + s)J2(hr)], (2.2a)

eφ = −C q
h

K1(qa)

J1(ha)
[(1− s)J0(hr) + (1 + s)J2(hr)], (2.2b)

ez = C
2q

β

K1(qa)

J1(ha)
J1(hr) (2.2c)

For r > a:

er = iC[(1− s)K0(qr) + (1 + s)K2(qr)], (2.2d)

eφ = −C[(1− s)K0(qr)− (1 + s)K2(qr)], (2.2e)

ez = C
2q

β
K1(qr) (2.2f)

In the above two sets of equations, the s parameter is defined as

s =
1/h2a2 + 1/q2a2

J ′1(ha)/haJ1(ha) +K ′1(qa)/qaK1(qa)
, (2.3)

1One can prove this by applying Gauss law,
∮
~E · d~S = ρfree/ε0, in a coaxial cylindrical volume within the

electrically neutral (ρfree = 0) nanofiber waist. This gives, Er ∝ −r∂Ez/∂z, which implies that if there is some
radial component of the electric field, the longitudinal component must be non-vanishing.
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2. TRAPPING ATOMS AROUND OPTICAL NANOFIBERS

and the parameter C is a normalization constant which one can obtain from normalizing the
mode field functions as ∫ 2π

0
dφ

∫ ∞
0

n2
medium|e|2rdr = 1 (2.4)

where nmedium = n1 for r < a, and nmedium = n2 for r > a. The expressions presented here and
the notations used are borrowed from various relevant literature [56, 57] dealing with this topic.
The mode index is represented by µ = (ω, f, l), where ω is the mode frequency, f = +/−
indicates forward (+~z) or backward (−~z) propagation direction and l = +1,−1 indicates right
or left circularly polarized light field. Following this notation, the exact expression for the
electric field for a quasicircularly polarized light field can now be written as

~Eµcirc = A ~eµ eifβz+ilφ

= A(r̂er + lφ̂eφ + fẑez)e
ifβz+ilφ (2.5)

where, er, eφ, ez are the normalized electric field mode functions given by equation 2.2, and A
is the amplitude of the electric field and is determined by the power (Pz) of the propagating field
as

Pz =
ε0νg

2

∫
n2

medium(r)|E(r)|2dr (2.6)

where, νg = (dβ/dω)−1 is the group velocity of the guided light and nmedium = n1 for r < a,
and nmedium = n2 for r > a. The unit vectors used: r̂, φ̂, and ẑ can be converted to the Cartesian
coordinate unit vectors: x̂, ŷ, and ẑ as:

r̂ = x̂ cosφ+ ŷ sinφ,

φ̂ = −x̂ sinφ+ ŷ cosφ, (2.7)

ẑ = ẑ (2.8)

The cartesian coordinates are especially useful in expressing the electric field vector for
quasilinearly polarized light fields where the electric field may be polarized in the transverse
plane of the fiber at an angle φ0. Therefore, such a quasilinearly polarized mode is characterized
by three main parameters (ω, f, φ0), which represent the frequency, propagation direction and
the transverse polarization. Such a light field can be expressed as a superposition of two opposite
quasi-circularly polarized guided modes as:

~E
(ωfφ0)
lin =

1√
2

(
~E

(ωf+)
circ e−iφ0 + ~E

(ωf−)
circ eiφ0

)
(2.9)

Using equations 2.5 and 2.9, one can express the electric field for a quasi-linearly polarized
mode in the cylindrical coordinates as:

~E
(ωfφ0)
lin =

√
2A[r̂er cos(φ− φ0) + φ̂eφ sin(φ− φ0) + fẑez cos(φ− φ0)]eifβz (2.10)

Using equation 2.7, one can then transform equation 2.10 to obtain the expression of the electric
field in Cartesian coordinates. One can find plots of the electric field distribution in detail in
reference [35] for a quasilinear and quasicircular polarized guided mode in an optical nanofiber.
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Figure 2.2: (a) Azimuthal electric field distribution for a quasilinearly polarized field (main
polarization along x) around a nanofiber at position r ≈ 450 nm in the z = 0 plane. The top,
centre and bottom plot shows the real, imaginary and total azimuthal intensity distribution. The
fiber radius is 200 nm. The longitudinal component (here along z) of the field is out of phase
with the transverse (x and y) components. In particular, at φ = 0(π), the longitudinal compo-
nent, Ez , is π/2(−π/2) phase shifted from the transverse field component which is constituted
only by Ex. Therefore, the light is circularly polarized, σ+(σ−), with y as the quantization axis
(see section 2.2.3 for more details).
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Figure 2.3: Radial distribution of intensity for a quasilinear light field (main polarization ori-
ented along x) as seen along the x-axis (blue) and along the y-axis (orange). The fiber radius is
200 nm
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Figure 2.4: Polarization overlap of the electric field ( ~E) of a quasilinearly polarized field with
{σ±, π} polarizations as a function of the azimuthal angle. The solid or dashed lines correspond
quasilinearly polarized along x or y axis respectively. The overlap is given as ξ = |Ê · ê|2. The
radial distance is fixed at ∼ 450 nm in the z = 0 plane, and the quantization axis is along y.

2.2.3 Polarization of light fields

To get a intuitive understanding of the polarization distribution, I compute the real and imaginary
part of the electric field unit vector for a quasilinearlypolarized mode (main polarization along
x-axis) for parameters: radial position r = 450 nm, fiber radius a = 200 nm. This is plotted
in Figure 2.2 as a function of the azimuthal angle φ. From the top and centre panel one can see
that the transverse component is real whereas the longitudinal component (Ez) is imaginary i.e.,
90◦ phase shifted to the transverse, with positive shift for for φ ∈ {−π/2, π/2} and negatively
shifted for φ ∈ {π/2, 3π/2}. Such a phase shift between transverse and longitudinal electric
field component gives rise to a rotating polarization of the local electric field. It turns out that the
rotation sense of the elliptical polarization depends on the direction of propagation of the light
field and the azimuthal position, which allows for non-reciprocal coupling of a quantum emitter
with the fiber-guided mode [41–43, 58].

To see how the circularity of local polarization changes around the nanofiber surface, I cal-
culate the overlap of the normalized field outside the fiber (Ê) with the polarization basis vector
(ê) according to Ref. [43], as ξê = |Ê · ê|2 where ê ∈ {σ± = ±(x̂ ∓ iẑ)/

√
2, π = ŷ} . I

compute this as a function of the azimuthal position assuming a radial distance (r = 450 nm)
and assuming y-axis as the quantization axis. The solid and dashed lines in Figure 2.4 show
the corresponding polarization overlap for a quasilinearly polarized field with main polarization
along x- and (y-)axis respectively. For the x-polarized field, we see that for φ = {0,±π}, the
overlap with circular polarization {σ+, σ−} is more than 80%. In contrast, for a y-polarized
field the field is almost always π polarized with the overlap going to 100% on the x-axis. In our
experiments, we use quasilinear fields. The consequence of the polarization is explained with
relevance to trapping (vector light shifts) in section 2.5.5.
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2.3 Introduction to Cesium atom
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Figure 2.5: The optical transitions of the Cs atom used in our experiment. The cooler laser is
locked to the crossover peak of F ′ = 3 and F ′ = 5 in the 6P3/2 hyperfine manifold, whereas
the repumper is locked to transition indicated by the green line.

We trap neutral Caesium atoms around the nanofiber. The outer electron in of Cs has princi-
ple quantum number, n = 6. The sublevels {6S, 6P, 6D, · · · } represented by the orbital angular
momentum quantum number L = {0, 1, 2, · · ·n − 1} have different energies depending on the
n and L values. Depending upon the electron orbital angular momentum (L) and spin angular
momentum S, the total electron angular momentum J further splits the electronic sublevels ac-
cording to |L − S| ≤ J ≤ |L + S|, where S = 1/2 represents the spin angular momentum of
the electron. This gives us the fine structure of Cs. We are mostly interested in the ground state
(62S1/2) and excited states (62P1/2, 6

2P3/2) of Cs where the states have been written in the form
n2J+1LJ . The level-scheme is shown in Figure 2.5. The spectral lines corresponding to the tran-
sition 62S1/2 → 62P1/2 are called the D1-line (roughly around 894 nm), and 62S1/2 → 62P3/2

are called D2-line (roughly around 852 nm). Cs has a total nuclear angular momentum (repre-
sented by quantum number I) of 7/2 which interacts with the total electron angular momentum
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2. TRAPPING ATOMS AROUND OPTICAL NANOFIBERS

resulting in further splitting of the atomic energies in the form of hyperfine structure. The total
atomic angular momentum is represented by the operator F. The hyperfine levels are referred
to by the quantum number F where |J − I| ≤ F ≤ |J + I|. The ground state 62S1/2 thus
splits into hyperfine levels corresponding to F = {3, 4}. The excited state 62P1/2 also splits
into two corresponding to F ′ = {3, 4} whereas the other excited state 62P3/2 splits into four
hyperfine levels F ′ = {2, 3, 4, 5}. The corresponding ground to excited state transitions are
allowed according to selection rules are ∆F = 0,±1. In the presence of an external magnetic
field (Zeeman interaction), each hyperfine level denoted by F zou can rock is further split into
2F + 1 levels represented by the magnetic quantum number M with integral values mF such
that −F ≤ mF ≤ F . The selection rules modifies now to ∆F = {0,±1},∆mF = {0,±1}
except ∆mF = 0, if F = F ′ which is forbidden. The optical transitions of Cs that we use are
shown in Figure 2.5. Almost all other relevant information about about Cs useful for quantum
optics community can be found in References [59, 60].

2.4 Light shifts

Having discussed Cs atoms and the important quantum numbers, we can now investigate the
effect of subjecting a Cs atom to an electromagnetic field. In this section, I will summarize
some important results for calculating the optically-induced state-dependent light shift for an
atom when placed in a far off-resonance light field. Starting with an electric field which can be
written as

E =
Eueiωt

2
+ c.c. (2.11)

where E is the complex-valued electric field amplitude and u is the polarization vector2 One can
express the electric fields from equation 2.10 or 2.5 in the above form. The light field induced
Stark shift of the energy of the state is the time-averaged expectation value of the interaction
operator given as

Uopt = −〈d ·E〉 (2.12)

The induced dipole is dependent on the electric field inducing it through a factor called the
polarizability [61] as

〈d〉 = α(ω)E (2.13)

Substituting equation 2.13 into 2.12 one can obtain the Stark shift for an atomic state described
by the quantum numbers |n, J, F,M〉 3 The energy shift in the presence of far off-resonance

2Here the vector u is expressed in the form of the so called spherical tensor component. The transfor-
mation of a cartesian coordinate vector, {vx, vy, vz}, to spherical tensor component goes as {v−1, v0, v1} =
{(vx − ivy)/

√
2, vz,−(vx + ivy)/

√
2}, for y being the quantization axis.

3We use the assumption that splitting of Zeeman levels� hyperfine level splitting� fine-structure level splitting
such that state intermixing does not happen and also that the light-induced shifts are small compared to hyperfine and
fine splitting.

12
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optical fields can be written as [62, 63]

Uopt = −1

4
|E|2

[
αsnJF − iαvnJF

[u∗ × u] · F
2F

+ αTnJF
3[(u∗ · F)(u · F) + (u · F)(u∗ · F)]− 2F2

2F (2F − 1)

]
= Uscalar + Uvector + Utensor (2.14)

where the shift has been expressed as a sum of three different types of light shifts - scalar, vector
and tensor with the corresponding polarizabilities denoted by superscript {s, v, T}. The scalar,
vector and tensor polarizabilites are given by the following expressions [62] as

αsnJF =
1√

3(2J + 1)
α

(0)
nJ (2.15a)

αvnJF = (−1)J+I+F

√
2F (2F + 1)

F + 1

{
F 1 F
J I J

}
α

(1)
nJ (2.15b)

αTnJF = −(−1)J+I+F

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α

(2)
nJ (2.15c)

where the reduced dynamical scalar polarizabilities α(K)
nJ for K = {0, 1, 2} corresponding to

scalar, vector and tensor shifts of fine-structure level |nJ〉, and are given by

α
(K)
nJ = (−1)K+J+1

√
2K + 1

∑
n′J ′

(−1)J
′
{

1 K 1
J J ′ J

} ∣∣〈n′J ′‖d‖nJ〉∣∣2
× 1

~

(
1

ωn′J ′nJ − ω − iγn′J ′nJ/2
+

(−1)K

ωn′J ′nJ + ω + iγn′J ′nJ/2

)
(2.16)

Here the notation are ωn′J ′nJ = ωn′J ′−ωnJ for angular frequency and γn′J ′nJ = γn′J ′+γnJ for
angular linewidth, for transition between fine-structure levels |nJ〉 and |n′J ′〉. The term in the

curly brace of the form
{
j1 j2 j3
j4 j5 j6

}
represents the Wigner 6−J symbol. 〈n′J ′‖d‖nJ〉 is the

reduced electric dipole matrix element. We shall next discuss the three terms from equation 2.14.

Scalar light shift term

The first term is the scalar light shift which depends on the quantum numbers {n, J} of the
atomic state |nJFM〉, and the intensity and wavelength of the light field interacting with the
atom. To understand intuitively the implication of scalar light shift in optical dipole trapping, lets
consider a simple 2-level atom with levels |nJ〉 and |n′J ′〉. It can be shown using equation 2.14,
2.15(a), 2.16 that the scalar light shift for the ground state of an atom due to a far off-resonance
optical field is approximately given as [32]

Uscalar ∝ −
|E(r)|2

∆

{
1 0 1
J J ′ J

}
(2.17)
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2. TRAPPING ATOMS AROUND OPTICAL NANOFIBERS

where ∆ = ω − ωn′J ′nJ is the detuning of the light field from the frequency for the transition
|nJ〉 ↔ |n′J ′〉. Assuming the D2 line of Cs with n = 6 and {J, J ′} = {1/2, 3/2}, one can ex-
press the scalar light shift of the ground state to be Uscalar ∝ I(r)/∆, where I(r) ∝ |E(r)|2. This
change in potential energy causes a force on the atom proportional to −~∇Uscalar ∝ −~∇I(r)/∆.
This means for given intensity profile a positive (negative) detuned light field exerts a force
which tries to move the atom in the direction of decreasing (increasing) intensity. This means
that for a red (blue) detuned light field, ∆, is less (greater) than zero, the atom tries to minimize
its energy by seeking the maxima (minima) of the field intensity. Based on this principle we use
a combination of red and blue-detuned light fields to trap Cs atoms. More details on the conse-
quence of scalar light shift in our optical dipole trap implementation is discussed in section 2.5.1
and 2.5.4.

Vector light shift term

The second term of the equation 2.14 gives the so called vector light shifts for a given state. F
is the quantum number for the total angular momentum of the atom, F and M is the quantum
number for the projection Fq of F onto the quantization axis q such that M = mF , such that−
F ≤ mF ≤ F,∀mF ∈ integer.One can see that the vector light shift term is therefore dependent
on the quantum number M of the Zeeman manifold corresponding to F. Vector light shift of the
Zeeman manifold is analogous to the Zeeman splitting with an actual magnetic field. They are
hence, also referred to as being caused by the presence of a fictitious magnetic field [63] which
depends on the quantum numbers n, J and F and on the local field polarization vector u as
i[u∗ × u]. More specifically, the latter is proportional to the ellipticity of the local electric field
polarization. Hence, for a linearly polarized electric field the vector light shift is zero. We try
to use a trapping configuration where the vector light shift is minimized at the mean position
of the atoms in the trap. More details on the exact trap implementation and its consequence is
discussed in section 2.5.5.

Tensor light shift term

The tensor light shift is given by the third term of equation 2.14 where the tensor polarizability
is given by equation 2.15(c). The reduced dynamical tensor polarizability given by 2.16 for
K = 2 is zero when J = 1/2 owing to the Wigner 6-j symbol. This means that the tensor light
shifts for neutral Cs atoms in their ground state is zero. However, for the excited state the tensor
light shift is non-zero which we shall explore more in section 2.5.6. In the following section, we
analyse quantitatively some of the features of our nanofiber based trap.

2.5 Properties of our nanofiber based trap for neutral Cs atoms

In this section, I will use the concepts developed in the previous section to analyse quantitatively
the properties of the nanofiber-based two-color optical dipole trap that we use to trap atoms in
our lab. Figure 2.6 shows the usual polarization configuration of the trapping lasers with respect
to the nanofiber (in grey) and atoms (yellow).
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x

y

z

Figure 2.6: A schematic showing the main polarization axis of the blue-detuned (blue arrow,
y-z plane) and red-detuned (red arrow, x-z plane) trapping light fields in the transverse plane
of the nanofiber waist (grey). The atoms (yellow) are trapped in the x-z plane defined by the
polarization of the red-detuned trap laser. The near-resonance probing field (not shown here) is
also usually quasilinearly polarized similar to the red-detuned trap laser.

2.5.1 Radial confinement

We use a two color optical dipole trap in the evanescent field of the nanofiber to trap neutral
Cs atoms. For this, we send two quasilinearly polarized far off-resonant red- and blue-detuned
optical fields at 935 nm and 685 nm, respectively, through the nanofiber to create a dipole trap
in the evanescent field of the nanofiber (solid black line in Figure 2.7). The intensity of the
trapping field decays exponentially in the evanescent field of the fiber but does so more slowly
for red- than for the blue-detuned optical trap field. Since the red-detuned field provides an
attractive potential (red solid line) which lowers the energy of the atoms as the intensity of the
field increases, therefore it tries to pull the atoms closer towards the nanofiber surface. The
blue-detuned trapping field prevents the atoms from colliding with the surface of the nanofiber.
It provides a repulsive potential (solid blue line) that increases the energy of the atoms as it
approaches the nanofiber surface thereby making it energetically less favorable for atoms to ap-
proach the nanofiber surface. By suitably choosing the powers of red- and blue-detuned optical
fields one can achieve a local minimum such that moving closer to or further from the surface
increases the energy of the atom owing to the dominating repulsive or attractive force, thereby
confining the atoms radially. A typical trapping potential (Utotal) is shown by the solid black
line in the Figure 2.7. The red and blue lines show the attractive (Ured) and repulsive potential
(Ublue) respectively whereas the dashed green line shows the Van der Waals potential4 (UVDW).
A near resonance probe field can also shift the potential energy shown by the dotted blue and
red lines for positive and negative detuned probe field, respectively. This shift is discussed more
in section 2.5.7.

4The Van der Waals potential can be approximately given as UVDW (r) = −C/(r− a)3 where r is the position
and a is the fiber radius and C is some constant which is well defined for a Cs atom near a cylindrical silica surface
[32]. The potential is large for small distances and can perturb the atomic energy levels significantly. However, for
our trap distances the effect is negligible.
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Figure 2.7: Radial trapping potential (black solid line) along x-axis. The red and blue solid lines
showing the attractive and repulsive potential generated from red- and blue-detuned trap lasers at
935 nm and 935 nm respectively. The Van der Waals potential is shown with the dashed green
line. The dashed red (blue) line show the perturbation of the radial trapping potential due to
addition of a probe field which is red-detuned (blue-detuned) from the D2-cycling transition by
0.5ΓD2 with power of 0.1Psat (see section 2.5.7 for more details on this). The other parameters
used are fiber radius: 200 nm, Pbluetrap = 14 mW, Predtrap = 2 × 184 uW. The polarization
configuration is shown in Figure 2.6.

2.5.2 Axial confinement

The axial confinement of the atoms is obtained due to the periodicity imposed by the stand-
ing wave of red-detuned trap field in the evanescent field of the nanofiber. This is achieved by
sending the red-detuned laser from both sides of the nanofiber. The resulting periodic attrac-
tive potential confines the atoms along the antinode of the standing wave where the intensity
of the red-trap is the maximum and hence the lowest potential energy for the trapped atoms.
Figure 2.8(left) shows the periodic trapping potential along the nanofiber in the plane defined
by the transverse polarization of the quasilinearly polarized red-detuned trap field. The red and
blue colors represent the regions of higher and lower potential energy, respectively.

2.5.3 Azimuthal confinement

As was shown in Figure 2.2(bottom), a quasilinearly polarized optical field propagating in the
nanofiber waist leads to an azimuthally varying intensity distribution outside the nanofiber waist.
The intensity of the quasi-linearly polarized red trap is animuthally maximum along the main
polarization axis. This asymmetry in the intensity distribution of the red-detuned trapping field
leads to azimuthal confinement of the atoms such that their mean position is along the polariza-
tion axis of the red-detuned trap field. The blue-detuned field further contributes to the azimuthal
confinement due to its strong repulsive potential around the fiber at an angle orthogonal to the
main polarization of the red-detuned trap laser. Figure 2.8(right) shows the trapping potential in
the transverse plane at z = 0. The red trap and blue trap have transverse polarization along x
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Figure 2.8: Axial (left) and azimuthal (right) trapping potentials. In the left figure, the nanofiber
is represented by the grey region and the atoms are trapped in the x-z plane. The right figure,
shows a transverse section view of the plane at z = 0. The red (blue) arrows at polar angle
0◦ (90◦) show the quasilinearly polarized redtrap (bluetrap). Other parameters used are: waist
radius = 200 nm, Predtrap = 2× 0.184 mW, Pbluetrap = 14 mW.

and y axis respectively such that the atoms are trapped in the x-z plane.

2.5.4 Magic wavelengths: Vanishing differential scalar light shift

The system of nanofiber trapped atoms may exhibit undesired inhomogeneous broadening of
the absorption spectrum of the atomic ensemble for a given configuration of the trapping light
fields [64]. This may have several contributing factors. At a given time, the trapped atoms
oscillating about the minimum of the local trapping potential, will not have the same relative
position to their respective trapping minimum. Therefore, due to the asymmetric distribution
of trapping light field intensity around the fiber, they may each experience different scalar light
shifts of the transition frequency depending upon their instantaneous positions which in turns
leads to inhomogenous broadening of the absorption spectrum of the nanofiber-trapped atomic
ensemble. For a single atom, a probing duration longer than the trap oscillation period has a
similar broadening effect on the absorption spectrum of the atom. To prevent such trapping laser
power dependent broadening, we use the trap lasers at the magic wavelength of Cs where the
scalar light shifts of the ground and excited state of a transition are the same thereby giving a
differential scalar light shift of zero [65,66]. The scalar light shifts for each state is dependent on
the respective scalar polarizability, as can be seen from equation 2.15(a). Therefore, calculation
of magic wavelength reduces down to finding the wavelength for which the pair of states have
the same scalar polarizabilities.

Figure 2.9 shows the calculated scalar polarizabilities versus wavelength for ground (blue
solid line) and excited (orange line) state in the transition : 6S1/2, F = 4→ 6P3/2, F

′ = 5 in a
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2. TRAPPING ATOMS AROUND OPTICAL NANOFIBERS

Cs atom. Since we probe the Cs atoms at this transition, therefore, we want the same scalar light
shift for both the involved states which is indicated in the figure by the crossing of the orange and
blue lines. The left and right figure shows the points where the differential scalar light shifts for
the blue- and red-detuned far off-resonant fields is zero. This is roughly ∼ 935 and ∼ 686 nm,
5respectively.
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Figure 2.9: The scalar polarizabilities of the excited state (orange) and ground state (blue) for
wavelengths blue-detuned (left) and red-detuned (right) to the D2-line. The point where they are
equal, leading to vanishing differential scalar light shift for the D2 cycling transition, is called
the blue- or red-detuned magic wavelength. In our case, this happens roughly at ∼ 686 nm and
∼ 935 nm.

2.5.5 Vanishing vector light shift

The vector light shifts requires elliptical polarization of the light field (see section 2.4). The red-
trap field is quasilinearly polarized and counterpropagating. When the power of the counterprop-
agating pair of red-detuned trap fields are equal, the longitudinal electric field (z-component)
from the two arms are equal but out of phase. This leads to an effective linear polarization at the
position of the atoms, and hence vanishing vector light shifts due to the red-trapping fields.

The blue-detuned trap field is quasilinearly polarized, but its transverse polarization plane is
orthogonal to the trapping plane as shown in Figure 2.6 It exhibits no ellipticity in polarization
at the position of the trapping minimum. However, around the trapping minimum it exhibits
a gradient of ellipticity which leads to a spatially varying Zeeman state dependent light shift.
This is similar to applying a gradient of magnetic field [67] that is zero at the azimuthal trap-
ping minimum and increases in magnitude on either side. By reducing the extent of the spatial
spread of the atomic centre-of-mass motion around the trapping minimum, for example by using

5The tensor light shift for the excited 6P3/2, F = 4 Hyperfine state manifold is small compared to the scalar light
shift but non-negligible for the typical trapping fields power and polarization configuration used by us. Accounting
for the range of total light shift (scalar and tensor), Reference [65] quotes a theoretically more accurate value (∼
685.5 nm) than what considering merely the scalar light shift predicts here .
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degenerate Raman cooling [39], one can reduce the Zeeman manifold splitting and hence coun-
ter any inhomogeneous broadening effects. An alternative solution would be to get rid of the
local ellipticity of the polarization by using a running standing wave for the blue-detuned trap
laser [66].

2.5.6 Nonvanishing tensor light shifts

The tensor light shift (Utensor) for the ground state 6S1/2 is zero but non-vanishing for the 6P3/2

excited state hyperfine manifold. To quantify it for our nanofiber trapped atoms, we use the
simplified expression [62]:

∆Etensor(r) =
1

4
|E(r)|2(1− 3|e0|2)αTnJF

3M2 − F (F + 1)

2F (2F − 1)
(2.18)

where, e0 = ez is the normalized z-component of the electric field unit vector ~E(r)/| ~E(r)|, and
αTnJF is the dynamical tensor polarizability given by equation 2.15(c), and M = mF , where
{−F ≤ mF ≤ F} represents the Zeeman manifold corresponding to the quantum number
F . Note that the expression is an even function of the quantum number mF . The tensor light
shifts calculated for the excited state Zeeman manifold 6P3/2, F = 5 is shown in Figure 2.10.
The left plot shows the light shift for a standing wave corresponding to different powers of the
redtrap quasilinearly polarized along x-axis. The centre plot shows the same but for the blue
trap quasilinearly polarized along the y-axis. Note that due to opposite detuning, the tensor
light shifts for a given Zeeman level have opposite signs for the red- and blue-detuned trap laser
respectively. Figure 2.10(right) shows the tensor light shift for our specific trap powers used in
our experimental configuration (specified by the dashed line in the left and centre figures). The
red, blue and green colors in the Figure 2.10(right) represent the tensor light shift due to the red-
detuned trap laser only, blue-detuned trap laser only, and both of them combined, respectively,
for each Zeeman sublevel. We notice that the tensor light shifts are almost negligible for us when
compared to the excited state linewidth (ΓD2).

2.5.7 Light shift from detuned probe laser

As we saw in section 2.4, the change in the potential energy of an atom (due to scalar light
shift) is inversely proportional to the detuning for a far off-resonance fields. However, when
probed with a near-resonance probing field where the detuning is of the order of the excited state
linewidth Γ, the energy eigenstates of the unperturbed atom is no longer an eigenstate of the
system, an as can be seen from a dressed-state formalism. In other words, the expression 2.12,
and hence 2.14 cannot be used to find the optical light shifts as the unperturbed states are no
longer good eigenstates for the system. However, one can solve this by using another approach.
Using the Bloch equations [68], the steady state dipole interaction term for a probe field (electric
field and detuning : { ~E, δ}) can be written as:
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Figure 2.10: Tensor light shifts for the excited state 6P3/2, F = 4 hyperfine manifold for
different powers of redtrap field (left) and bluetrap field (centre) and for our specific experimental
configuration used (right). The y-axis has tensor light shifts normalized to linewidth of the Cs
D2 cycling transition (ΓD2 = 2π ·5.22MHz). The experimental configuration used corresponds
to the dashed lines in the left and centre plots.

∆E = 〈 ~̂d〉 · ~E

= 〈~d |1〉 〈2|+ ~d∗ |2〉 〈1|〉 · ~E

= ~d · ~E 〈ρ12 + ρ21〉 (assuming ~d is real)

= ~Ω× Ωδ

δ2 + Ω2/2 + Γ2/4
(2.19)

The Rabi-frequency Ω can be obtained as [56]

Ω = Ω21 = Ω∗12 =
1

~
(~d21 · ~E) =

1

~
∑

q=0,±1

(−1)qd
(q)
21 E−q (2.20)

where, E−q represents the spherical tensor components of the electric field ~E defined as E0 =
Ez, E±1 = (∓Ex − iEy)/

√
2, and the dipole matrix element for state |1〉 = |FM〉 and |2〉 =

|F ′M ′〉 is given by [56]:

d
(q)
M ′M = (−1)I+J

′−M ′〈J ′‖D‖J〉
√

(2F + 1)(2F ′ + 1)

{
J ′ F ′ I
F J 1

}(
F 1 F ′

M q −M ′
)

(2.21)
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Figure 2.11: Light shift due to a detuned probe with power 0.1Psat at a distance corresponding
to the trapping minima in Figure 2.7.

Figure 2.11(a) shows the resulting light shift assuming probe power to be 0.1Psat
6, transition

6S1/2 → 6P3/2, with 〈J ′‖D‖J〉 = 5.38×10−29 C m. Such a light shift is usually not important
as the atoms are probed with lower powers as we shall see in the next chapter. However, there
might be situations where one would like to probe the atoms with a strong resonant light field.
In such a situation, the potential energy shift and the resulting acceleration of the atoms must be
considered in addition to the problem of heating due to scattering probe photons.

6Psat = ~ωΓ/8β is defined as the on-resonance optical power sent through a waveguide which saturates an
atom trapped around it for a given atom-fiber distance.
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CHAPTER 3
Implementation of Nanofiber-based

light-matter interface

3.1 Introduction

The nanofiber based platform for trapping neutral atoms was first proposed by Fam Le Kien
et. al [32]. The trapping scheme involved sending two far-off resonant light fields through the
nanofiber to realize an optical dipole trap potential for the neutral atoms in the evanescent field
mode of the fiber. Its first realization was done by our group [64]. Since then it has attracted
a lot of interest from other research groups [66, 69–71] owing to its salient features such as
the ability to obtain high optical depth with fewer atoms [64, 72], large ground state coherence
times [38], chiral interaction with matter [41], high trapping lifetime [39] and inherent optical
fiber coupling. A nanofiber-based optical dipole trap for neutral Caesium atoms is well suited for
the implementation of quantum hybrid systems [73]. The intrinsic coupling of a nanofiber-based
system to an optical fiber makes them ideal for application in quantum information processing
and communication (QIPC) protocols enabling future quantum technologies [24,74]. Therefore,
a lot of effort has gone into realizing such a system with even better characteristics [39, 46, 66,
67, 72].

In this chapter, I will first present the second generation experimental setup from our group
for realizing nanofiber-based trapping of neutral atoms. I started my PhD work by contributing
to the design and construction of the setup from scratch. In the first half of the chapter, I will
describe the critical features of the setup and reasons for having them. The second half of the
chapter is dedicated to explaining the various characterization methods used for measuring the
defining parameters of our system such as optical depth, atom number, filling factor etc.
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3. IMPLEMENTATION OF NANOFIBER-BASED LIGHT-MATTER INTERFACE

3.2 Experimental setup

In this section, I will present the details of the various components of the experimental setup.
In the first subsection, I will present the vacuum setup where the tapered optical fiber (TOF)
is hosted. I will describe methods to characterize the transmission and polarization properties
of the nanofiber once it is inside vacuum. In the next section, the optics setup that is needed
to realize the two-color dipole trap is presented. Then, I will describe the magneto-optical trap
(MOT) that is used to precool the cesium atoms before they are trapped in the two-color optical
dipole trap. In this context, I will describe the construction of magnetic coils, the MOT setup
and alignment procedure. I will also touch upon the experimental control hardware and the
python-based control program designed by us. In the last part of this section, I will describe the
detection setup for measuring the transmission at the output of the nanofiber setup. Lastly, I will
describe some of the results from the characterization measurements done for our system. An
understanding of the characterization methods will be useful in chapter 5.

3.2.1 Ultra high vacuum setup

3.2.1.1 Chamber design

Bellow with
Cs reservior

Fiber mount
fixed on arm

Glass cell

Al flange pressing
over an O-ring 

to turbo 
pump

UHV valve

back flange

move horizontal
move vertical

Translation arm on
mirror mount

Ion-getter
pump

Cs dispensers

Chamber | dispenser
valve

Front flange

Figure 3.1: The main chamber with the glass cell. The cut-out in the chamber steel body shows
a 2D-translation mechanism for moving the fiber waist in horizontal and vertical directions.
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The designed chamber and the glass cell is shown in Figure 3.1. The experiment is performed
in the glass cell (actual glass cell depicted in Figure 3.2(right)) which contains the nanofiber-
waist section on an aluminium mount. The glass chamber is attached to a non-magnetic steel
chamber on one of the big flanges which has a circular hole cutout to allow the fiber mount to
extend into the glass chamber. The metal glass junction is sealed by pressing a fairly malleable
indium metal wire in between the glass cell base. To avoid cracking the cell the pressure is
applied via a soft Viton o-ring onto the base plate of the glass cell using a circular aluminium
plate from the top. The steps involved in making the Indium seal and the final setup with the
glass cell is shown in Figure 3.2. The steel chamber (shown in Figure 3.1) is a cylinder with front
flange having a circular cutout on which the glass cell is attached. The back flange has the fiber
inlets and feed-throughs for translating the fiber mounts. The circular side of the steel chamber
has five different tube outlets with CF flange connection through which we attach additional
components like turbo-pump, pressure gauge, ion-getter pump, Cs dispensers and a elemental
Cs reservoir. For more details on the design of the chamber, the feed-throughs and the fiber
translation stage, please refer to my colleague’s thesis [75].

The first tube (front view, right) in the figure is connected to a Cs reservoir in a flexible
bellow separated from the main chamber by an angle valve (see Figure 3.1). The second tube

Figure 3.2: Photo showing steps involved in making an indium seal between glass and metal.
(left: top to bottom) First an Indium metal wire is joined end-to-end in a circle. The wire is then
pressed with the metal plate (emulating the base of the glass cell). An O ring is placed on the
plate and an aluminium ring is tightened from the top pressing the O-ring which presses the base
plate (glass cell base in the right figure) which in turn flattens the Indium wire which fills the
empty spaces or irregularities at the microscopic level. The wire, which is flattened as a result
of the force, separates the atmosphere from vacuum inside the chamber.
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3. IMPLEMENTATION OF NANOFIBER-BASED LIGHT-MATTER INTERFACE

is connected to a sub-assembly of valves and tubes which is separated from the main chamber
by an angle valve. The sub-assembly consists of a T shaped metal tube, one end of which has
an angle valve which allows one to access the tube from outside via a flange. The other end of
the T-shaped tube hosts 6 Cs dispensers. The sub-assembly with the valve allows us to replace
the Cs dispensers if needed without affecting the vacuum in the main chamber. The third tube
of the main chamber is connected to a NEXTorr UHV pump which has a passive getter pump
in combination with a small ion pump that pumps the noble gases. The fourth tube is connected
to a ATMion pressure gauge which is capable of measuring pressure from 103 mbar down to
10−8 mbar. Therefore, combining the pressure-gauge and the NEXTorr ion-getter pump, we
are able to monitor the pressure inside the chamber at all times. The fifth tube is connected to
a turbo pump with an UHV angle valve separating the turbo-pump from the vacuum chamber.
The turbo pump uses a scroll pump as pre-pump.

3.2.1.2 Caesium source

As indicated in the previous section, the Cs inside the chamber comes mostly from the Cs dis-
pensers and partly the Cs reservoir (elemental Cs). The Cs dispenser wire from SAES Getters
are supplied with around 6 A of current on a regular basis to dispense out Cs atoms while the
Cs reservoir is maintained at room temperature. In our observation, the dispensers are a reli-
able source of Cs atoms. The elemental Cs was incorporated following an incident 1 where the
previously used nanofiber contained crystals of Cs oxide on the surface. We speculated that Cs
dispersers could be a source of oxygen based impurities as they contain alkali-metal chromate
plus a reducing agent [76] necessary for dispensing the alkali metal. Therefore, to avoid any
possible contamination, we also decided to incorporate the elemental Cs reservoir.

3.2.2 Nanofiber integration into the setup

The nanofiber section is part of a 2 m long single mode fiber. We use SM800 fiber from fibercore
with a ∼ 660 nm cutoff and specified operating wavelength 800 − 980 nm. This fiber is well
suited for an experiment with Cs atoms as the specified optical operating range covers both D1-
and D2-lines of the Cs atom. We choose a non-polarization maintaining fiber because otherwise,
it will not be suitable for aligning the polarization at the nanofiber waist. The two ends of the
fiber are attach to a single mode pigtailed fiber connector (thorlabs) which allows the light to be
coupled into the fiber. While pulling the nanofiber, we characterize the transmission of the fiber
at 852 nm. In our case, the transmission of the fiber was > 99% for this wavelength. However,
once the fiber is put into the chamber, the losses through the fiber increase due to bending or
stress at various points of the fiber or due to Cs adsorption 2. Therefore, it is important to

1An scanning electron microscopy (SEM) was performed on one fiber sample that had to discarded due to
gradual loss of transmission. We found that the fiber was covered by unknown crystalline structure of sub-wavelength
dimensions, which after EDXRD (Energy dispersive X-Ray Diffraction) was determined to be a complex oxide of
Cs. In light of the new developments, we decided to install a Cs reservoir in addition to Cs dispensers as a source of
Cs atoms.

2At times, when the nanofiber section is cold it can temporarily accumulate Cs deposit on the surface owing to
surface adsorption which can lead to significant losses for weak near-resonance optical fields. To prevent this, we
make sure that we always send a few milliwatts of a blue-detuned laser beam through the fiber-waist.
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characterize the transmission of the fiber after it has been put into the chamber. Measuring the
losses allows one to estimate the power of the trapping fields needed to be coupled into the fiber
to obtain a reasonable trapping potential for the atoms. These estimated powers usually serve as
the starting point for further optimization of the trap.

3.2.2.1 Nanofiber transmission measurement

To measure the transmission properties of the nanofiber we use the method published recently
by our group [77]. The setup is shown in Fig. 3.3.

X coupler

4 2 PD

Nanofiber section 

Digital Oscilloscope

Port A
(Input )

Port B
(Spliced)

IN OUT

Adjustable
coupling

Port C
(Spliced)

Port D
(Output)

Figure 3.3: Experimental setup to measure the nanofiber transmission. The light is sent into one
of the input ports of an X-coupler and the transmission is monitored on one of the output ports,
while the nanofiber is spliced to the other input and output port. The transmission is monitored
using a photodiode connected to an oscilloscope.

The two ends of the TOF including the nanofiber are spliced to input port A and output
port B of an X-coupler3, thereby forming a ring resonator cavity. By swapping the ends of the
2 m fiber, one can measure transmission in the other direction. The frequency of the input light
field which is sent into the system by input port A of the X-coupler is scanned using the piezo
element in the external cavity of a diode laser. We use light with a wavelength of 852 nm light
field derived from a Toptica TA amplifier for this purpose. One must ensure that the power sent
into the nanofiber is not more than a mW because the amplification of the light field owing to
the cavity can overheat and break the nanofiber. The transmitted output light field from port D is
monitored on an oscilloscope using a photodiode. The input light field polarization is adjusted
via the λ/4 and λ/2 waveplates such that the light couples to only one of the two orthogonal
polarization modes supported by the ring-resonator cavity. To avoid any polarization drifts due to
temperature fluctuations all the fiber segments are taped to the surface of the optical table. Using

3An X-coupler is a tunable fiber optic beam splitter. The light sent through the two input fiber ports can couple
evanescently to each other and the coupling can be regulated from undercoupled to overcoupled regime via the knob.
The model used was F-CPL-830-N-FA from Newport.

27

https://www.newport.com/f/variable-ratio-couplers


3. IMPLEMENTATION OF NANOFIBER-BASED LIGHT-MATTER INTERFACE

the adjustable coupling knob of the X-coupler, and the polarization optics of the input field as
the tuning parameters, we align the system at critical coupling where the losses from port A→D
equal the round trip losses in the ring-resonator. By recording the transmission spectrum of the
nanofiber cavity at critical coupling, one can extract the Finesse (F) of the cavity by estimating
the free-spectral range (νFSR) and the field-decay rate (κ0), and then calculate the losses as [4]:

F =
νFSR
κ0

≈ 2π

1− ρ
(3.1)
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Figure 3.4: (a) Three example transmission spectra of the nanofiber resonator cavity at different
coupling strengths with top, middle and bottom plots showing undercoupled, critical coupling
and overcoupling. (b) For different coupling to the ring resonator the total decay rate (κ) and
transmission at resonance (Tr) are plotted. From the fit (dashed line) one can extract the un-
loaded decay rate (κ0) which is then used to normalize the x-axis.

The above approximation is valid for small losses (< 10%). An important feature of this
measurement of Finesse is that one does not really need a frequency calibration as it is a ratio of
two frequencies in equation 3.1. The absorption linewidth (2κ) is proportional to the total power
losses in the system (from A to D) for different values of couplings. At critical coupling, the
losses in the ring resonator (B-C-B, see Fig 3.3) equals to the coupling from the transmission
fiber (A-D, see Fig 3.3) to the ring resonator. At this value, the on resonance transmission goes
to zero. Three sample transmission spectra recorded at different coupling strengths are shown in
Figure 3.4a. From the spectra one can calculate the set of field decay rate (κ) and on-resonance
transmission ({κ, Tr}) where the subscript r denotes on-resonance. We then fit this data to the
theoretical transmission Tr = |t|2 where t = (2κ0− κ)/κ, [77] for different losses (κ) to obtain
the (κ0), which is the unloaded field decay rate. From that one can extract the Finesse and hence
the total losses per round trip (ρ). The transmission losses in the fiber is ρ/2 as the decay rate of
the nanofiber ring resonator is half the total losses at critical coupling as also shown by Fig 3.4b
where the transmission goes to zero at 2κ0. From κ0, one gets the transmission loss through
the nanofiber assuming that in- and out-coupling to/from the X-coupler are lossless. From this
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analysis, we infer a cavity finesse of 208± 6 which translates to losses of 1.49± 0.04% for one
pass through the TOF for an optical field at 852 nm.

3.2.2.2 Coupling optics for input into nanofiber
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Figure 3.5: The input setup comprises of 5 possible light fields coupled into the fiber. The
red-detuned trap, blue-detuned trap laser and probe fields are represented by red, blue and green
paths respectively. In the top centre is the probe filtering and detection setup. The labels LP, L/2
and L/4 correspond to linear polarizer, half- and quarter-waveplate.

The trapping light fields at 685 nm and 985 nm along with 852 nm probe fields are com-
bined as shown in Figure 3.5. All the lasers are present on a separate optical table. The light
from each laser is coupled into 10m long polarization maintaining fibers and brought to the ex-
perimental table. Before the optical fields are combined, as shown in Figure 3.5, each field is
sent through an acousto-optic modulator (AOM) in a single-pass (685 nm, 935 nm) or double-
pass (852 nm, 894 nm) configuration which allow us to modulate the intensity of each beam as
well as to stabilize the intensity via appropriate feedback to the RF power supplied to the AOMs.
The double-pass configuration allows for a larger frequency tunability of the 852 nm (cooler /
probe laser) and 894 nm (repumping / probe) laser. The purpose of the cooling and repumping
laser (See figure 2.5) is to laser cool the atoms, and will be discussed more in the section 3.2.3.
Here, we will briefly outline the setup used for coupling the trapping and probing optical fields
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into the nanofiber.

In figure 3.5, there are 5 input ports shown on the bottom, which supply light fields which, af-
ter further manipulation are coupled into the nanofiber (left to right: red-detuned trap laser at
935 nm, two probe beams at 852 nm, one probe beam at 894 nm, and blue-detuned trap laser at
685 nm).

A few key details of our setup are as follows. All single mode fibers (except the nanofiber
arms) used in our setup are single mode and polarization maintaining such that the light field
propagates with its polarization matched to one of its eigenaxis. To compensate for any remain-
ing drifts in polarization and to further increase the polarization purity, we place linear polarizers
(denoted by LP) after the fiber outcoupler in all the five paths. These polarizers may convert any
remaining polarization fluctuation into intensity changes. To compensate for the fluctuations, we
intercept a small but fixed fraction of light via photodiodes PD1 (for red-detuned trap laser), PD4
(for probe beam), PD5 (for blue-detuned trap laser) and stabilize it via feedback on the AOMs
as discussed before. Once the polarization and intensity are stabilized, we align the polarization
of each light field at the nanofiber waist. In our configuration, the red-detuned trap laser and
probe fields have transverse polarization set in the same plane inside the nanofiber waist while
the blue-detuned trap laser is set to be orthogonal. The polarization at the nanofiber waist is set
for each arm by means of a half- and quarter-wave plate (denoted by L/2 and L/4). The polar-
ization alignment procedure is discussed in detail in next section. There are wedged glass plates
in each red-detuned trap laser arm which intercept a fraction of the transmitted light field and
direct it to photodiodes PD2 and PD3. We are also able to stabilize the transmitted optical power
of the trap light fields through the nanofiber. However, the transmitted fields contain signatures
of mechanical motion of the nanofiber in the form of polarization fluctuations. Therefore, we
avoid using feedback based on the transmitted power of trapping fields due to the risk of ampli-
fying any mechanical motion via periodic feedback. The shutters and some of the setting of the
half-waveplates are electronically controlled via the PC. The red-detuned laser beam is split into
two beam paths at a PBS to balance the power at the nanofiber waist arriving from each path.
These two arms of the red-detuned laser are counterpropagating and form a standing wave in
the the evanescent field of the nanofiber as discussed in section 2.5.2. We use dichroic mirrors
to combine or separate two light fields which are at different wavelengths. For the transmitted
probe field the detection optics is discussed in section 3.2.2.4.

3.2.2.3 Polarization variation along long nanofiber waist

In our experiment, the length of our nanofiber waist is more than a centimeter so as to allow
trapping a large number of atoms. Therefore, achieving a uniform polarization along the entire
nanofiber waist is crucial for reducing the inhomogeneities in trapping and for observing possi-
ble collective effects in light scattering by the atomic ensemble [40] (see appendix A). To this
end, we are able to align and analyze the polarization for any section of the nanofiber waist (see
Figure 3.6).
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For aligning the polarization we use a similar setup as shown schematically in the reference
[72]. The basic idea of such a setup is as follows. The light field propagating inside the fiber
excites the point-like impurities present in the nanofiber waist or on the surface of the nanofiber.
These impurities scatter light, maintaining the polarization and phase of the light. We observe
the total of the Rayleigh scattering from the impurities on the fiber waist along two orthogonal
viewing axis (x and y in Figure 2.6) using two CCD cameras. The camera placement, also
used for absorption imaging, can be seen in Figs. 3.7 or 3.10). We place a polarizer in front
of the camera such that the light polarized longitudinally (along the fiber axis) is blocked, and
the camera receives the light polarized in a plane perpendicular to the fiber axis. For a linear
dipole polarized along ê, the radiative emission power per unit solid angle along r̂ goes as
sin2 θ, where θ = cos−1(ê · r̂). The impurities in the waist are polarization maintaining dipole
scatterers. Therefore, the maximum and minimum brightness of the waist, as observed by the
camera, will be dependent on the orientation of the tranverse polarization in the nanofiber waist.
For polarization perpendicular or along the direction of observation (ê · r̂ = 0 or 1), the observed
emission is maximum or minimum, respectively. To quantify the deviation from perfect linear
polarization, we do a visibility measurement where we rotate the transverse polarization of the
field inside the nanofiber by using the L/2 and L/4 waveplates, and then measure the difference
between the maximum and minimum intensities at the nanofiber waist as seen using the camera.
The detailed procedure is described below.
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Figure 3.6: Investigating polarization variations along a nanofiber waist longer than 10 mm. (a)
(top) Light scattered (transverse component) from the nanofiber waist as seen through a camera
placed on the side (see horizontal imaging camera placement in Figure 3.7, 3.10); (centre) angles
indicating the relative orientation of the transverse polarization for different sections of the waist;
(bottom) visibility measured for each ∼ 1mm section along the fiber (b) Intensity as a function
of the angle of the HWP for the waist region enclosed inside orange rectangle in fig (a)(top).
The visibility V is 90%.

Our imaging system allows us to look at roughly 18 millimeters of the nanofiber waist,
allowing us to maximize the visibility (contrast of the fringes) in any desired section of the
nanofiber. I automated the polarization alignment of all the fields going through the nanofiber. A
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computer script turns a HWP on a motorized precision rotation mount (Thorlabs, K10CR1/M)
and records the corresponding scattered light intensity in the region of interest that the user
selects (red rectangle in figure 3.6 (left,top)). It then fits a sinusoid f(θ, θ0) = C+A sin2[2(θ−
θ0)] to the recorded intensity as a function of HWP rotation angle (θ) and calculates the visibility.
For a given angle of the HWP (usually corresponding to minimum of the fringe), we adjust the
QWP in the path of the input light field so as to increase the visibility. The visibility measurement
and QWP adjustment is done iteratively such that we get the best visibility. We then set the angle
of the HWP to set the polarization in the waist to one of the configurations corresponding to
maximum or minimum intensity. This corresponds to the best linear polarization configuration
achieved by our setup.

Figure 3.6 shows the outcome of such a visibility measurement. In the top panel a fiber
waist section roughly ∼ 14 mm long is shown. We divide it into 11 sub-regions and calculated
the visibility shown in figure (a), bottom panel and the relative transverse polarization angle (a),
center, for each of these sections. We infer from these measurement that the visibility is around
80% for most of the fiber section while the transverse polarization fluctuates within ∼ 8◦ along
the entire section of the nanofiber. In Fig. (b), the visibility measurement is shown corresponding
to the fiber section in the dashed rectangle in (a), top panel.

3.2.2.4 Detection optics after nanofiber output

Figure 3.5 shows, at the top, the optical setup used to analyze the probe light transmitted through
the nanofiber. The probe light field is sent into the nanofiber via port2 and comes out at port1.
The transmitted probe light is in the same spatial mode as transmitted red-detuned trap laser
@935 nm and (spurious) backreflection of blue-detuned trap laser @685 nm. In addition to
trapping fields, it also contains photons arising from Raman Scattering of the trapping light
fields in the fiber material. To separate out the transmitted probe field photons, we adopt the
following procedure. First, we send the blue-detuned trap laser from the direction opposite to the
one from which we send in the probe. This way we avoid having to separate the strongest light
field (blue-detuned trap laser) from the weakest field (probe) in the system which would require
many more optical filters. Next, we use a pair of dichroic mirrors to separate the probe field
coming out of the nanofiber from the trapping fields with an effective suppression of roughly
20 dB of the trapping fields. Next, we send the probe beam through a lens filter cavity with a
linewidth of ∼ 200 MHz, which filters the probe field from the remaining trapping fields and
the Raman-scattered photons spread across tens of Terahertz. This leads to a further suppression
of the background count rate on the SPCM by roughly 25 dB. After that we also reflect the
output from a holographic volume bragg grating (VBG) (opti grate) with a reflection window
of roughly 40 GHz around the Cs D2 line which removes the remaining impurities, offering a
further suppression of the contaminating photons by roughly 50 dB. The VBG is placed after
the cavity because the lens filter cavity is the most sensitive optical component with respect to
its alignment. Therefore, we prefer not to frequently realign the path from nanofiber to the lens-
cavity. The remaining light field is coupled into single photon counting modules (Excellitas,
dark count <50 Hz) using 50 µm core shielded multimode fibers. Before the multimode fibers,
we put a 852 nm laser line filter (Semrock Maxline LL01-852) (suppression roughly 40 dB
for background fields) to prevent optical crosstalk between the two SPCMs which can happen
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Figure 3.7: 3D view of the MOT setup. The green color beams in the horizontal plane (x-z)
plus the two vertical beams above and below the glass cell constitute the MOT cooling beams.
Components such as vacuum chamber, UHV gauge and pump, magnetic coil assembly, optical
field distribution, and absorption imaging setup are shown as well. The nanofiber is at the centre
of the magnetic coils with its axis parallel to z-axis.

when the photons emitted during the detection process in the avalanche photodiode from one of
the SPCMs manages to reach the other SPCM. We get a base background SPCM count rate of
< 200 Hz per detector and a total detection efficiency of ∼ 22% with two SPCMs including the
quantum efficiency of the SPCMs at this wavelength (∼ 55% for each).
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3.2.3 Magneto-optical trap

For our long term goal of having an efficient quantum memory, an important requirement for us
is to trap a large number of nanofiber-coupled atoms. In particular, we trap atoms along a 1D
optical lattice potential. Loading this trap with a 3D MOT which is isotropic in three directions
may not be the optimum way. In addition, we would like to have a high filling factor and uniform
occupancy of the trapping sites along the nanofiber waist. It turns out that appropriately designed
magnetic coils can help greatly for our requirements. The details of the magnetic coil setup is
described in the following section. After that I describe the optical setup for performing laser
cooling. In the end, I also outline briefly the absorption-imaging setup used for characterizing
the MOT cloud.

3.2.3.1 Magnetic coil design
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Figure 3.8: Magnetic coil assembly for a “cigar-shaped” MOT. (a) Three pairs of racetrack
shaped magnetic coils for implementing magnetic confinement in a MOT. The red coil shows
the main quadrupole field coil, whereas the blue and green coils are used for creating additional
gradients. The nanofiber axis is coincides with z− axis with x = y = 0. (b) The total magnetic
field in Gauss as measured at different positions along the x-, y- and z-axis at the centre of the
coil assembly. The blue dots represent measured data, orange is the RADIA simulation and
dashed green line is a straight line fit in the region [−2.5, 2.5] cm from which we infer the
measured magnetic field gradient.

To obtain a high OD from the 1D array of Cs atoms trapped around the nanofiber, one
requires efficient loading of the trap sites and large overlap of the cold atom cloud from the
MOT and the waist of the nanofiber. As mentioned before, a good choice for the shape of the
MOT cloud in this case is that of a “cigar”. It has been shown [78] that magnetic coils are
important for implementing such anisotropic (in two dimensions) cloud shapes. To understand
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intuitively how such a coil assembly helps, we need to look at the expression for the force on the
atoms (say along x) in a MOT cloud, which is given as [79]

FMOT (x) = −αvx − βx (3.2)

where α is a constant dependent on the atomic mass and transition frequency of the two-level
scheme which is used for Doppler cooling and β ∝ ∂| ~B|/∂x is the restoring spring coefficient
which arises from the magnetic field gradient. The higher the gradient in a given direction, the
tighter is the confinement. Therefore, for a cigar shape confinement, we want a larger gradient
in the transverse direction (perpendicular to the nanofiber axis) and smaller gradient in the lon-
gitudinal direction (along the nanofiber waist). Other requirements for the magnetic coils is a
wide tunability of the generated magnetic fields and field gradient, flexibility of using a pair of
coils in Helmholtz or anti-Helmholtz configuration, and a fast switching time.

To meet our requirements, I designed a compact, widely tunable magnetic coils that can
be placed close to the trapped atoms. The simulations were done in Mathematica using an open
source finite element computation package called RADIA 4 where one can calculate numerically
the magnetic fields and gradient distribution corresponding to any arbitrary coil configuration.
The parameters for design are specified below in Table 3.1. The assembly contained 3 pairs of
racetrack-shaped coils (see Fig 3.8(a)), each of which could be operated in either Helmholtz/anti-
Helmholtz configuration. Together, the coils can generate uniform magnetic fields of up to
100 G and magnetic field gradients of up to 20 G/cm at the position of the nanofiber. The high
magnetic fields allows us to reach the non-linear regime of Zeeman splitting (B & 10 G), if
needed. The gradients from the simulated coil assembly was verified with measurements from
the actual coil assembly as shown in Fig 3.8(b). One can see that the magnetic field gradient
in the x-y plane is around a factor 12 larger than that along the z-axis, which gives the cold
atomic cloud a cigar-like shape (see Figure 3.10 for the shape and extent). The current used
for comparing the simulation and measurement was 1 A in each coil. The wires in the coils
are capable of carrying several Amperes which allows for a wide tunability of the magnetic
field. The current in each coil can be flipped, allows for reversing the direction of the magnetic
field. This in combination with series connection between coils of a pair can generate uniform
or quadrupole magnetic field at the nanofiber. The compactness of the coils allowed for smaller
inductive load and, hence faster fall and rise times. In our case, the 1/e time for decay of the
magnetic field due to the main quadrupole coil pair (red) was observed to be ∼ 10 ms. The
supporting frame for the coil was designed by a co-student. The current supply used for driving
the coils was from Delta-elektronica, model number ES030-10 (0−30 V, 0−10 A) or ES015-10
(0− 15 V, 0− 10 A). The output current from the coil drivers were controlled via analog input
voltages.
For making finer adjustments to the magnetic field we added an additional pair of compensation
coils for each pair of main coils. They were made by winding a few turns of a thick insulated
wire around the parent coils. Each such pair of compensation coils was calibrated according to
the procedure discussed in section 3.2.3.5.

4http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
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Coil pair
from
Fig. 3.8(a)

centre sep-
aration

#wires in the cross-
section

wire
diameter

resistance/length
× length

typical op-
erating cur-
rent

Red 107 mm 15× 15 1.8 mm 8.2Ω km−1 ×
350 m = 2.69 Ω

2 A

Blue 121 mm 10× 14 1.5 mm 10.5Ω km−1 ×
170 m = 1.8 Ω

1 A

Green 65 mm 10× 10 1.0 mm 24Ω km−1 ×
160 m = 3.8 Ω

∼ 100 mA

Table 3.1: Parameters of the three racetrack shaped coil pairs simulated using Radia. The width
and thickness of the racetrack shaped coil can be obtained by knowing the diameter and number
of turns of the wires along each direction. The wires used were made of copper and insulated.

3.2.3.2 Optics for laser cooling

The optical setup for distributing the coooler beams in the MOT setup in shown in Figure 3.7
and Figure 3.9. The cooler beam is distributed into six beams each having equal power. Four of
these beams are in a horizontal plane, intersecting the nanofiber waist at roughly 45 degrees. The
remaining two are vertical counterpropagating beam. All beams intersect each other at a point
coinciding with the centre of the nanofiber waist. All counterpropagating beams have circular
polarization such that the atoms experience orthogonally polarized optical fields from the beams
constituting the counterpropagating pair. The intensity of the beams is chosen to be close to the
saturation intensity for the Cesium atoms at rest in free space. The beams are expanded and
collimated in two stages using appropriate telescopes to have a final beam diameter of around
one inch. In this way we increase the volume in which the atoms are laser cooled.

We first laser cool the Cs atoms via Doppler cooling in a magneto-optical trap. For this we
use a cooler beam which is roughly 15 MHz red-detuned from the 6S1/2, F = 4 to 6P3/2, F

′ =
5 cycling transition. The intensity of the beams corresponds roughly to an on-resonance sat-
uration parameter of one. At times, with a very low probability, the cooling beams excite a
detuned transition 6S1/2, F = 4 to 6P3/2, F

′ = 4, and pumps the atom into the ground state
6S1/2, F = 3, which is a dark state for the cooler beam. To sustain further laser cooling of the
atoms in the dark state, we need to bring them back to the other ground state. For this we require
an additional field, which repumps the atoms in dark state back to the 6S1/2, F = 4 ground state.
To this end, we use a repumper field which excites transition 6S1/2, F = 3 to 6P1/2, F

′ = 4 on
the D1 line of Cs, thereby shifting the population back to the 6S1/2, F = 4 ground state. The
excitation into the dark state is unlikely because the cooler is far-detuned from F ′ = 4 hyperfine
manifold. This means that the transfer into the dark state is much slower than the scattering
from the cycling transition. Therefore, the power required for the repumper is not as high as that
of the cooler beam. We use has a few milliwatts of power for the repumper. The repumper is
spatially mode-matched with the cooler beams.

The MOT cooling is followed by a Molasses cooling. The repumper field intensity remains
the same as in the MOT phase. The cooler is further red-detuned from the cycling transition
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yielding the total detuning around 60 MHz ≈ 12Γ. Both the lasers are derived from Toptica
tapered amplifiers (TA pro). The optical power of the cooler and repumper is controlled using
an acousto optic modulator (AOM) in a double pass configuration [80]. The power (of the RF
signal, up to 2 W) sent to the AOMs is controlled by a programmable RF synthesizer from
Moglabs which, in turn, is controlled by the ADwin based experiment control.

3.2.3.3 Alignment of optical fields

The first step of MOT alignment is the mode-matching of the counter propagating beam pair.
Using irises after the beam expanding telescopes shown in Figure 3.9, we clip the beams into
smaller-diameter beams. As a second step, we raise the dispenser current so as to have a high Cs
vapor pressure inside the chamber and set the cooler beam to be on resonance for the duration
of alignment. After this step, the path of the cooler beams inside the optical chamber fluoresces
due to scattering of light from the background Cs atoms. This allows one to align the beams
with respect to the nanofiber waist using the CCD camera in the vertical and horizontal direction
(top left and right insets in Figure 3.9)).

First, we make sure that the counterpropagating beams in the horizontal plane are mode-
matched such that the intersection is roughly overlapping with the nanofiber axis. The top left
inset in Figure 3.9 shows the view from the vertical direction after alignment. Next, we make
sure that one of the vertical beams passes perfectly well through this crossing. This appears as
the bright circular spot in the left inset. To make sure that the fiber is centred with respect to this
beam, we maximize the light scattered from the fiber surface using the horizontal camera (top
right inset). Once this is done, we modematch the second vertical beam to the first one. At the
end of the procedure, we get a MOT.

The next step is to balance the radiation pressure from counterpropagating beams. There
could be two reasons for uneven radiation pressure - unequal power or residual non-orthogonality
in polarization of the counterpropagating beam pair [79]. To solve this, we run a Molasses op-
timization procedure as follows. First, we must ensure that the opposite beams have roughly
orthogonal polarizations and similar intensities. We use a free space polarimeter for adjusting
the polarization. To balance the power, we measure the powers of each beam in a pair and make
sure that they are equal. After this is done, we check for any residual mismatch of polarizations.
We run a sequence, where we ramp the quadrupole gradient from a high to low value with a
frequency of 2 Hz. If the radiation pressure is not balanced, the position of the MOT cloud
changes (observed via a camera) as the quadrupole field is ramped down. At low magnetic field
gradient, the position is dominated by radiation pressure. To balance it, we adjust the polariza-
tion of the counterpropagating beams such that the shift is minimized and the cloud is almost
stationary when going from high to low quadrupole field.

3.2.3.4 Absorption imaging

Absorption imaging is a well-known technique [81] for obtaining the temperature of the atomic
cloud based on expansion rate of the cloud. The schematics of our optical setup for absorption
imaging is shown in Figure 3.10(left). A resonant light beam is sent through a cold cloud of
Cs atoms. The atoms absorb the resonant light field and scatter it out of the cloud in all direc-
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Figure 3.9: (bottom) MOT setup as seen from the top. The green paths indicate the beam path
for four horizontal beams. The blue beam indicates the path of the resonant probing beam for
absorption imaging (see section 3.2.3.4 for more details). The four beam expanding telescopes
are marked. (inset, top left) Fluorescence induced by the MOT beams from the background
Cs atoms as seen from the top. The horizontal beams intersect at a point overlapping with the
vertical beam. The bright spot in the centre is from one of the vertical beam. (inset, top right)
Fluorescence due to resonant cooling light scattering from the background Cs atoms as seen
from the side camera (the absorption imaging beam is off). The nanofiber waist (between the
two white lines) is illuminated more where it overlaps with the vertical MOT beams. This view
allows us to centre the vertical beam with respect to the nanofiber waist.
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Figure 3.10: (left) Setup for absorption imaging, (right) an absorption image of the cold atomic
cloud after the molasses cooling. Blue region corresponds to no atoms and red corresponds to
maximum atomic density. The fiber image which was taken separately is superimposed with the
image of the cloud.

tions. The transmitted light field is attenuated proportional to the number of atoms along the
direction of propagation. This attenuation can be measured as the optical depth which is defined
as:− ln[T ], where T is the transmission. Since the transmitted light is imaged on a camera, we
are able to convert transmission per pixel into effective OD per pixel. The array of pixels in the
camera sensor resolve the image spatially. One pixel corresponds to light propgating through a
column with cross-section of dimension 15 µm × 15 µm. The transmission in every pixel is
related to the number of atoms (ni), in the spatial mode of the light defined by the ith pixel [82]
as: T = e−niσ0 , where σ0 is the on-resonance scattering cross-section. Therefore, dividing the
OD for each pixel via the on-resonance scattering cross-section (σ0) for a single Cs atom yields
the number of atoms that were present in column. Integrating this value over pixels gives us
the total number of atoms that the beam encountered. More details about the implementation
of absorption imaging and temperature measurement using it can be found in Reference [75,83].

Figure 3.10(right) shows one such an absorption image for an optimized MOT cloud. The
nanofiber waist image was acquired separately and superimposed with the absorption image for
the sake of illustrating the fiber position with respect to the cloud of cold Cs atoms. We have two
absorption imaging setups through which we are able to see the cloud from two perpendicular
directions, normal to the fiber axis. Using absorption images form the two cameras, we can also
align the atomic cloud with respect to the the nanofiber waist. The design and construction of
the absorption imaging setup was done in conjunction with a master student [83].
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3.2.3.5 B field calibration: Microwave spectroscopy
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Figure 3.11: (a) Level scheme of Cs 6S1/2 hyperfine manifold in the presence of a magnetic
field. ν0 denotes the so called clock transition in Cs [59] (b) The blue curve corresponds to a
MW spectrum for a free space cold Cs atom cloud in a magnetic field of roughly 1.8 G. Each
peak corresponds to a transition between the Zeeman manifolds of the hyperfine ground states.
The zero on the x-axis corresponds to the clock transition indicated by ν0 [59] in (a). The green
curve in the inset of (b) corresponds to a MW spectrum with background limited magnetic field
∼ 10 mG achieved after zeroing the magnetic field using the calibrated magnetic field coils.
(see the text for details)

Principle of MW spectroscopy: The hyperfine levels corresponding to the 6S1/2, F = {3, 4}
ground state of Cs show a Zeeman splitting in the presence of a magnetic field as shown in
Figure 3.11(a). Using a MW source, one can transfer atoms from one Zeeman level mF in the
F = 3 state to m′F in the F ′ = 4 ground state. Large coherence times of the ground state [38]
allow one to use MW to perform quantum state generation or manipulation in the ground state
Zeeman manifolds of Cs atoms. To be able to perform this, one needs a MW source which can
address the Cs atoms near the energy separation of the hyperfine levels in the ground state which
is v0 ∼ 9.2 GHz. In addition, one needs to calibrate the magnetic fields to be able to achieve
a control over the Zeeman-splitting. In particular, a separate calibration of magnetic field for
each coil is necessary, to have full control over the field direction and strength. In this section, I
will describe our MW setup, the procedure for calibration of the magnetic field and show some
sample MW spectra for non-zero and background limited magnetic field.

Source: We developed a microwave (MW) setup in conjunction with a bachelor student who
assembled and tested the electronics. It involves generating a 2.3 GHz signal by a vector signal
generator (Keysight technologies), frequency doubling it twice and then sending it, after ampli-
fication, to a MW antenna placed close to the trapped atoms. This frequency is chosen to match
the ground state splitting of Cesium atoms in zero magnetic field which is ∼ 9.2 GHz. Such a
MW source offers a convenient tool to probe and manipulate Cs atoms in the electronic ground
state, 6S1/2. We used this tool to zero down the magnetic field at the centre of the MOT cloud
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and in-situ calibrate the magnetic field coils discussed in section 3.2.3.1.

Experimental sequence for measuring a MW spectrum: We laser cool the Cs atoms with
a MOT and molasses phase. Next, we optically pump all the atoms from 6S1/2, F = 4 to
6S1/2, F = 3 which is achieved by turning the repumper off while leaving the cooler beam
on. After the optical pumping step, the magnetic field coils are then turned on and allowed to
stabilize (∼ 10 ms). Then we send a short (∼ µs) weak MW pulse at a frequency ν such that
when resonant with any of the allowed transitions, some of the atomic population is transferred
from the relevant Zeeman levels from the 6S1/2, F = 3 to the 6S1/2, F = 4 state. We then
measure the population of the atoms in the 6S1/2, F = 4 state by means of absorption imaging
of the cold atoms. By scanning the MW frequency and measuring the population via absorption
imaging, one can obtain a MW spectrum as shown as a blue line in Figure 3.11(b).

Calibrating magnetic fields: The frequency for a transition between {F = 3,mF } to {F ′ =
4,mF ′} in presence of magnetic field ~B is linearly5 proportional to the strength of the field as :

νmF→mF ′ = ν0 + µB| ~B|(gF ′mF ′ − gFmF )/h (3.3)

where µB is a constant (Bohr-magneton), gF and gF ′ are the Landé-g factor for the two hyper-
fine levels constituting the transition and mF −mF ′ = {0,±1}. For the transitions considered
here, gF = −gF ′ = 1/4. Therefore, there are 15 distinct values of ν, hence, 15 different peaks
in the MW spectrum for the transitions allowed by the selection rules. The frequency separation
between peaks in the MW spectrum thus gives us the value of the magnetic field. We choose the
duration of the pulses appropriately such that we are able to resolve all the peaks independently.
The width of the peak corresponding to each transition is ideally Fourier limited due to the finite
pulse duration of the MW field. There could be dephasing/decay of the transition or spurious
magnetic field gradients that can further broaden the peak [84]. To obtain the calibration curve
for a given coil, we vary the voltage applied to it. This translates to changing the current flowing
through the coil. For each voltage setting, we obtain the MW spectrum and find the splitting
between two peaks (say the pair of transitions with two lowest frequency, ν1 and ν2). This peak
separation (∆ν = ν1 − ν2) as a function of the voltage applied to the coil gives us the required
calibration.

Zeroing magnetic fields: The higher the magnetic field, the greater is the distance between the
individual peaks and the wider is the resulting MW spectrum. To reduce the net magnetic field
to zero at the position of the atoms, we therefore supply the coils with voltage corresponding to
the minimum spitting, as was obtained from the calibration. We make this separation extremely
small such that the separation between the outermost peaks is limited by the background mag-
netic field fluctuations (see green plot see Figure 3.11(inset)). In our case, the total MW spectrum
spread at lowest magnetic field is < 75 kHz as can be seen from the inset. From equation 3.3
and values from reference [59], one can find that the separation between the outermost peaks per
Gauss of B-field is (ν3→4 − ν−3→−4) ∼ 4.9 MHz. Therefore, 75 kHz correspond to a residual

5for small | ~B|, the dependence is linear
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magnetic field of tens of milligauss which is at least as good as what has also been achieved
in other groups [85]. Since we perform this procedure using a free space MOT as opposed
to nanofiber trapped atoms, we do not have to be concerned additionally about any fictitious
magnetic fields (see section 2.4) that could be present around the nanofiber surface due to the
trapping light fields.

3.2.4 Experiment control and data acquisition
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Figure 3.12: Schematic of experimental flow-control where the flow is denoted by red colored
one-sided arrow. The red color rectangles represent scripts that run either on the PC, namely,
Main control, Data acquisition and absorption imaging or on the ADwin, namely, Run seq.,
Trig seq., and Out sequence. The ADwin computer is divided into CPU, memory and input-
output (I/O) sections. The CPU runs the pre-compiled ADbasic programs. The memory stores
the voltage output sequence and other fixed variables used by the CPU programs to track the
number of repetitions. The I/O modules send out the analog and digital outputs (32 digital, 24
analog) to the various equipments required for carrying out an experiment with co-axial cables.
The scan counter and repetition counter corresponds to accessible memory locations in ADwin
CPU which the scripts running on the PCs use for data-synchronization or for the generation of
a new output sequence. (more details in section 3.2.4.

Adwin-Pro II controller:

To perform our experiments we use various analog and digital devices which rely on ana-
log/digital inputs as their control signals. We generate these signals using an ADwin pro II
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computer6. The ADwin device consists of three main blocks - central processing unit (CPU)
(300 MHz clock rate, 768 kB local memory), read/write memory (256 MB), and input/output
(I/O) modules that govern the output of 24 analog outputs, 32 digital channels input/outputs, and
8 analog input channels (we do not use them). The CPU is responsible for interfacing all the
components and executing tasks such as controlling the output of the I/O modules. The memory
locations store values which can be accessed and edited internally via ADwin or externally by a
computer. We use these memory locations to store the output voltages for each channel for the
duration of an experimental run, i.e., the experimental sequence, as well as to keep track of how
many times a sequence must be executed.

The processes running inside the CPU that execute the experiment sequence is programmed
in a high-level programming language called ADBasic. A dedicated compiler converts the AD-
basic code to machine level instructions. This pre-compiled object code (a binary file) is loaded
onto the ADwin CPU through the PC via an ethernet connection. Each code has three main
attributes: a priority number, process delay and an event section. The event section contains the
I/O instructions and is executed periodically with the period defined by the variable ’processde-
lay’. A program terminates only when the event section meets an exit condition. The priority
number helps ADwin distribute times to different tasks running in a time-sharing mode. Since
we do tasks sequentially, we assign all processes the highest priority. Network communications
is assigned a lower priority by default.

Flow of control:

The experimental control flowchart is shown in Figure 3.12 with the red single sided arrows
showing the flow of control. A typical experiment involves scanning a parameter and perform-
ing certain number of repetitions for each value of the scan parameter. The PC generates the
sequence corresponding to one value of the scan parameter and uploads it along with other pa-
rameters such as number of repetitions on to the ADwin memory. Inside the ADwin CPU there
are three inter-dependent processes that executes the sequence a desired number of times. The
first out of three processes running on the ADwin tracks the number of experimental repetitions.
If the desired number of repetitions has not been achieved yet, it triggers the second program
which waits for the rising edge of the AC power supply of the lab at 50 Hz). The TTL trigger
signal corresponding to the AC supply is generated from a homebuilt device and is supplied
to the event-in port of the main processor. Triggering the execution of a single run on the AC
power line ensures that the electronic setup is identical for all runs of the experiment. Upon the
receipt of the trigger signal, the second program starts the third program which carries out an
experimental sequence. The latter involves iterating the event section such that each run sets all
output ports to their programmed voltages for that run. Once the event section has gone through
all the time steps of the experimental sequence, it increments the internal variable which tracks
the number of repetitions and the control goes back to the first program. The process is repeated
until a given sequence is run a desired number of times. After that the first program exits. For
a given scan parameter (such as an analog output voltage), the PC (main control program) then

6https://www.adwin.de/us/produkte/proII.html
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generates a new sequence with a new value of the scan parameter and uploads this sequence to
the ADwin memory. This repeats until all the values of the scan parameter are entirely scanned.

Sequence generation and data acquisition:

The experimental sequence is an array of voltages corresponding to discrete time steps. I wrote
a python program where we define the voltage versus time steps for each channel. We then pack
the values in a single array which can be transferred onto the ADwin. The array is read sequen-
tially inside ADwin. So we pack the output levels of all 24 analog channels in a row for every
timestep and then concatenate all the rows such that the adwin can load 24 values at a time and
output it via the I/O modules and then move to the adjacent block in the array. All the voltage
values are 12 bit binary numbers corresponding to the 12 bit resolution of the digital-to-analog
converters that output the signal. The digital values are packed as a single array where each
element is a 32 bit binary number containing the status (0 or 1) of each digital channel.

The minimum duration of a time bin is defined by the settling time of the A/D converters
for the analog outputs of ADwin which, in our case, is slightly more than 1 µs. The rise time
of the digital signals was measured to be 22 ns. The output from the ADwin I/O modules are
sent to the various controllers and devices that change the experiment conditions depending
upon the analog or digital signals provided. The output from the experiment is recorded by
means of devices such as SPCMs, oscilloscopes, spectrum analyzers, FPGAs and cameras. All
of these devices are programmed to store the raw data within them or in the PC. For processing
the photon timetags and storing it, we have a tool (python frontend and Visual C++ backend)
developed by one of our postdocs. Once we have the time-tags we are able to perform analyses.
Devices such as the cameras recieve TTL signals from ADwin as a trigger to take images, while
our self-developed python scripts acquire and process the image at each shot. The oscilloscopes
or digital spectrum analyzers can be programmed manually to save the data in a desired format
in a desired location.

3.3 Trapping atoms

In the previous sections, I have described our methods to install a clean nanofiber into an ultra-
high vacuum chamber. In addition, I described the procedure to cool Cs atoms using a magneto-
optical trap followed by a molasses cooling. I will now discuss how we load cold atoms from
the MOT cloud into the optical dipole trap lattice in the evanescent field of the nanofiber as was
discussed theoretically in the previous chapter.

3.3.1 Experimental sequence for trapping atoms

A typical experimental sequence that we use for characterizing the optical depth of the trapped
atomic ensemble is shown in Figure 3.13. The different phases of such an experiment is indicated
at the top, namely, MOT, molasses, waiting time, probing with atoms, push out and probing
without atoms. The values ’set’ and ’0’ on the y-axis correspond to the optimum set point and
off position of the channel. In the MOT phase, the cooler and quadrupole magnetic fields are
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Figure 3.13: A typical experimental sequence to measure the optical depth of the trapped atomic
ensemble. 0 and Set on the y-axis correspond to the channels being off and set to a certain level.
Other details are self-explanatory. More description in section 3.3.1

on, which leads to Doppler cooling of the atoms. In the molasses phase, the magnetic fields
are switched off, and the red-detuning of the cooling beam is increased. At the same time, the
red-detuned trap laser field is turned on. We keep the blue-detuned trap laser always on. Due
to the sysiphus cooling in the molasses phase the atoms lose kinetic energy. As some of these
atoms move through the optical dipole trapping potential created due to the trapping fields, it
gets trapped due to lack of sufficient kinetic energy to escape the potential barrier created by the
trapping fields. Due to the collision blockade effect, every trapping site can have at most one
trapped atom. After the trapping sites are loaded with atoms, the molasses cooling is turned off.
One can probe the trapped atoms that remain after a certain delay. Usually, it is of interest to
quantify the number of atoms by measuring the optical depth which we discuss in the following
section.

3.3.2 Measurement of optical depth

The on-resonance optical depth is a measurement of the attenuation of a resonant light-field
when propagating through an ensemble of emitters. The emitters tend to scattered light out from
the propagating mode thereby effectively attenuating the light field. Due to the linear nature of
this dissipation, the optical depth is related to the transmission at resonance as OD = − lnT .
To measure the optical depth from a trapped atomic ensemble, we first trap the atoms using the
sequence described above and shown in Figure 3.13. The OD measurement procedure is de-
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scribed below.

We send an optical probing pulse at wavelength of 852 nm. We use a probe field with a
small a small on-resonance saturation parameter, s0 � 1, for a duration of around a millisecond.
During the pulse duration, we scan uniformly the detuning δ of the probe beam with respect to
the Cs D2 transition (F = 4 → F ′ = 5) by using an acousto-optic modulator and record
output photon counts in the presence of atoms (Catoms) (orange solid line in Figure 3.14). After
the scan is completed, the red-detuned trap laser is switched off such that the atoms are lost
from the trapping sites. After some amount of waiting, we turn on the red-detuned trap laser
again, and record the transmitted photon count (Cwithout atoms) without atoms (blue solid line
in Figure 3.14). After that, the red-detuned trap laser is turned off and the background-counts
(Cbkg) is recorded. These counts comprise room light contamination and the SPCM dark counts.
We repeat the whole measurement N times to get 1/

√
N reduction in the photon number noise

assuming no technical noise. From the average value of these three counts, we are able to extract
the on-resonance optical depth (OD) as:

T (δ) =
C̄atoms(δ)− C̄bkg

C̄without atoms(δ)− C̄bkg
= e−OD/(1+4(δ−δ0)2/Γ2) (3.4)
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Figure 3.14: Example optical depth measurement using an absorption trace with (left) and
without atoms (right). The transmission obtained from left figure is shown in green and the fit
using equation 3.4 is shown in dashed orange. The bin size used is 10 µs. The measured OD
determined from the fit is 59± 1 and the light-shift of the resonance is δ0 = 2.4± 0.16 MHz.

where the bar over the counts represents averaging over N runs of the experiment, Γ is the atomic
linewidth, OD represents the on-resonance optical depth where resonance is defined with respect
to a light-shifted transition, shift being δ0. The expression in the exponential takes into account
the Lorentzian lineshape of a transmission profile [79]. The above expression is also called the
Beer-lambert’s law. Figure 3.14 dashed orange line shows the fit to a transmission profile corre-
sponding to the above expression.

46



3.3. Trapping atoms

So far, we have ignored any heating of the atoms and the fact that the probe field can apply
a force on the atom when it is detuned. For probe scan durations comparable to the lifetime of
the trapped ensemble, the OD can change over the duration of probing due to the heating of the
atoms, therefore potentially, giving an erroneous estimate of the optical depth. To overcome this,
we measure the average transmission of the ensemble for a probe pulse with fixed detuning, and
duration much smaller than the lifetime of the trapped atoms. We measure the average trans-
mission for each value of the the detuning to obtain the full transmission profile for the atomic
ensemble.

Measurement of OD from the transmission spectrum can be difficult for large atomic en-
sembles. At very high ODs, the transmission around resonance gets limited by the background
photon counts. Therefore, one needs to scan a very large frequency range, and the resulting
curve incorporates multiple optical transitions. Alternatively, one can measure transmission
curves after longer waiting times (delay phase) of atom storage in the nanofiber based trap and
then extrapolate the OD for shorter waiting times as shown in section 3.3.6).

3.3.3 Estimation of the number of atoms
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Figure 3.15: Atom number measurement by means of optical depumping with the probing field
on the Cs D2 transition F = 4 → F ′ = 4 . (left) The transmitted photon count trace with
and without atoms. (right) The absorption trace for the trapped atoms. The bin size is 2 µs.
In this case, the number of trapped atoms was estimated to be 885 ± 8 atoms (more details see
section 3.3.3).

We use the technique of optical depumping suggested in Reference [86] where we infer
the atom number from the number of photons required to pump the entire ensemble to a dark
state. We send a pumping light field at the transition 6S1/2, F = 4 to 6P3/2, F

′ = 4. Upon
absorbing a photon, the excited state has the possibility of decaying to either the ground state
6S1/2, F = 4 or 6S1/2, F = 3. The spontaneous emission branching ratio for these two
transitions is ΓF ′=4→F=4/ΓF ′=4→F=3 = 7/5, which means that, on an average, an atom will
scatter 2.4 photons before it decays to the F = 3 dark state. Therefore, by counting the number
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of photons needed to pump all the trapped atoms to the dark state, one can estimate the number of
atoms. Figure 3.15 (right) shows a typical absorption trace (averaged over 100 runs) as a function
of probing time for an ensemble of trapped atoms. This trace is calculated from the difference of
the transmitted trace with (orange) and without atoms (blue) as shown in the Figure 3.15 (left).
One limitation of the technique arises when the lifetime of the trapped atoms is low. In this
case, the depumping probe pulse (with atoms) is very shortly after the molasses phase (see
experimental sequence template in section 3.3.1 where the frequency scanned probing pulse
will be replaced with a fixed frequency depumping pulse). This leads to absorption of the fiber-
guided probe beam by the MOT atoms which could still be around the fiber. If unaccounted,
this leads to over estimation of the number of trapped atoms. A workaround is to record a
reference trace for absorption from MOT atoms and remove this background absorption to obtain
a better estimate for the number of nanofiber trapped atoms. Another option is to perform an
atom number measurement via saturating the trapped atoms with a resonant probe and infer the
number of atoms from the probe power needed to saturate the ensemble [64] (see also section
5.1.3).

3.3.4 Optimum trapping configuration
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Figure 3.16: An example OD distribution, recorded 30 ms after the molasses phase, for different
powers of the blue-detuned and single beam of red-detuned trap lasers. Such a measurement is
crucial to finding the optimum trapping configuration for achieving the best optical depth.

This method is important to find out the values of optimum trapping laser powers. This step
is usually performed after the step where the fiber overlap with the cold atomic cloud (resulting
from MOT and molasses cooling phase) is optimized. At this point, one is usually able to see
absorption from the MOT atoms around the fiber even without turning on the trapping fields. To
start trapping the atoms, we turn on all the trapping fields during the molasses cooling. To op-
timize the trapping configuration with respect to a parameter like OD or atom-number, we scan
the power of the red-detuned trap laser and blue-detuned trap laser and then measure the value
of the parameter at a fixed delay after molasses phase. We then choose a configuration which
gives the best value of the parameter being optimized. Figure 3.16 shows an outcome of such an

48



3.3. Trapping atoms

experiment which optimizes the OD at a time delay of 30 ms from the end of molasses cooling.
On the x− and y-axis one can see the powers of the red and blue-detuned trap laser, respectively.
The color scale indicates the OD of the trapped atomic ensemble. The best configuration here,
corresponds not to the maximum blue and red-detuned trap laser powers, but to some interme-
diate value. One reason for this is that at higher trap laser powers, the fiber gets heated more,
leading to larger heating-induced mechanical vibrations in the nanofiber which in turn deforms
trap potential such that the atoms can escape from the trap. This effectively reduces the optical
depth at high trap-powers.

3.3.5 Measuring filling factor

To measure the filling factor we employ a fluorescence measurement as done in [64, 72]. We
employ the Andor IXon-897 EMCCD (electron-multiplying charged coupled device) camera
from Oxford instruments to collect the fluorescence from the atoms. For measuring the position
along the fiber waist, we need a calibrated imaging system. For this purpose, we use the absorp-
tion imaging setup (see section 3.2.3.4) and replace the CCD camera with the EMCCD camera,
thereby using the calibration (magnification factor) from before. For acquiring the fluorescence
image we send a short intense resonant pulse (on-resonance saturation parameter ∼ 100 for the
first atom) through the fiber and expose the camera for the same duration which is roughly a
few µs. After all the atoms are lost because of heating from resonance-fluorescence, we wait for
some time and then acquire the background image. We average the signal over 5000 background
subtracted fluorescence images to obtain the average signal which is shown in Figure 3.17 (top).
We can estimate the number of trapping sites from the fact that we use λred = 1064 nm laser
(for this particular measurement) as the red-detuned trap laser and that we trap atoms in two
one-dimensional arrays with a spatial periodicity of λred/2neff. Knowing the actual spatial dis-
tance along the nanofiber waist corresponding to a single pixel size on the camera, we calculate
the number of trapping sites per pixel and hence the total number of trapping sites along the
waist section imaged by the camera. We measure the atom number via the method outlined in
section 3.3.3. For Figure 3.17 this was calculated to be 2500 atoms. We distribute the mea-
sured atom number corresponding to each pixel (here ∼ 2500) according to the normalized
fluorescence per pixel along the direction of the fiber axis (the line density, see bottom panel left
y-axis). The ratio of the total number of atoms in a pixel to the number of trapping sites in that
pixel gives us the filling factor.

We plot the filling factor along the length of the fiber (Figure 3.17 (bottom, right y-axis)). In
this case, the maximum filling factor achieved was around∼ 0.1. The line density of atoms is not
a flat top profile but is higher on the left. One reason is that the probe field, when propagating
from left to right side, has a non-uniform intensity distribution owing to the scattering from
the atoms. The intensity decays exponentially with the number of atoms. Therefore, on the
right, the atoms scatter less than that on the left. Another reason is overlap of the MOT cloud
with the fiber [72]. In the example shown in Figure 3.17, the cloud was compressed by using
strong quadrupole magnetic field gradients during the MOT phase. The overlap of the resulting
ellipsoidal shaped MOT cloud of atoms with the fiber waist results in a non-uniform loading
along the fiber axis.
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Figure 3.17: Data from a measurement of the filling factor along the fiber. The top plot shows
an average of 5000 background subtracted fluorescence images of the fiber-trapped atoms. The
bottom panel shows the line density of fluorescence (left) and filling factor per unit length (right)
for different positions of the fiber waist.

3.3.6 Lifetime of trapped atoms

The atoms trapped around the nanofiber get heated due to several mechanisms [87] and are even-
tually lost from the trap. It is therefore interesting to measure the total number of atoms trapped,
or the corresponding optical depth of the ensemble, at a certain time after the trapping sites were
loaded. Since the loss rate is proportional to the number of atoms, the optical depth or atom
number decays exponentially with time. We call the 1/e decay time the lifetime of the trapped
atomic ensemble. Higher lifetime indicates more stable trapping conditions. Hence, lifetime is
one of the most important diagnostic measurements. In addition, for optically dense ensembles,
lifetime measurement serve as an alternate way to infer high ODs through extrapolation of the
OD decay curve. Fig. 3.18(a) shows OD measured at different time delays (τ ) after the trap
loading. This particular measurement corresponds to an OD of roughly 1000 at 4 milliseconds
after loading the trapping sites. The fit shown by the orange dashed line gives us a trapping
lifetime of 77± 3.6 ms. I must mention that this is on the of the best OD that we achieved with
our system.

We also measured the lifetime of the total number of trapped atoms (for the same conditions
of trapping as for figure a) via the optical depumping technique discussed in section 3.3.3. The
result is shown in Figure 3.18(b). The 1/e decay lifetime for the number of atoms trapped was
104 ± 4 ms. One important observation which one can make is that the OD decays faster than
the atom number. This is because the mean energy of the atoms increases with increasing time
delays due to heating. This implies that with increasing time delays, the trapped atoms are on
average further away from the fiber surface due to anharmonicity of the radial trapping profile,
which leads lower atom-light coupling strength. Since the optical depth is directly proportional
(see section 4.3.2) to the atom-light coupling strength and the number of atoms, therefore, it
decays faster than atom number.

Achieving such high OD, as shown in Figure 3.18, was realized in several steps. First the
optimum trapping configuration was achieved via scanning the trapping powers of the red- and
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Figure 3.18: (a) On resonance optical depth, (b) total number of trapped atoms, as a function of
time delay after loading the trap. The OD is measured from a transmission scan across the Cs
D2 line (F = 4 to F’ = 5 transition) according to the procedure discussed in section 3.3.2. The
atom number is measured by the method discussed in section 3.3.3. Each point corresponds to
averaging over 10 shots of the experiment.

blue-detuned dipole trap lasers as discussed in section 3.3.4. Then, we stretched the cloud evenly
along the entire nanofiber waist by increasing the ratio of transverse to longitudinal magnetic
field gradient. Next, we aligned the fiber waist with the cloud such that the overlap between
the two was maximized. The MOT reshaping and nanofiber alignment to the reshaped cloud
was done iteratively. The optimization was done by using atom number as the benchmark. In
addition, we used a MOT loading time of ∼ 2 s to maximize the loading of the trapping sites.
As a side note, the above measurement setting lasted for a few days but with gradual decrease in
the stability of the system. We speculate the reason for this degradation to be Cs deposition on
the fiber surface. However, concrete reasons for the change are unknown.
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CHAPTER 4
Theory: Correlated Photon transport

in nanofibers

4.1 Introduction

Photons are inherently noninteracting in free space. However, in the field of quantum infor-
mation where the information is encoded in photons [24], it is essential that photons interact
with each other in order to implement quantum gates [88–90] An effective photon-photon in-
teraction can be realized by interacting photons with matter such that presence of one photon
changes how the medium reacts to the other photon. In recent years, significant advances have
been made towards achieving strong interactions between optical photons by employing strong
coupling between light and quantum emitters and exploiting the latter’s inherently nonlinear re-
sponse to mediate the interaction [91,92]. There have been a number of approaches towards this
goal using high finesse optical cavities [93–97], strongly interacting Rydberg atoms [98–105] or
atoms strongly coupled to waveguides [106–108]. Much effort has gone into enhancing the con-
trol and fidelity of photon-photon interactions by increasing light-matter coupling or by reducing
dissipation in the system. However, the implementation of strong, low-loss interaction between
individual photons remains an elusive goal for many-body systems at optical frequencies.

It turns out that optical nanofiber-based atom-light interfaces are well suited for implementing
strong optical nonlinearities using the neutral atoms trapped around the nanofibers. A resonant
light field propagating through the nanofiber is confined to dimensions smaller than the wave-
length of the light. Most of the energy propagates in the evanescent field of the nanofiber which
leads to a comparable overlap between light and atomic scattering cross-section as achievable
in free-space. The atoms trapped in the evanescent field of the nanofiber are able to absorb and
scatter out a significant fraction of the propagating light field leading to a sizable on-resonance
optical depth per atom. An atom can absorb only one photon at a time. Due to this nonlinear
nature of the optical response of atoms, nanofibers-based atom-light interfaces can help facilitate
complex many-body interactions between photons. This then can generate correlated states of
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light that exhibit non-classical photon statistics. It opens up avenues to study complex quantum
many-body physics of photons in out-of-equilibrium systems [109].
In this chapter, I will summarize the relevant theory on photon transport through optical waveg-
uides coupled to one or more quantum emitters. I will start with discussing some of the basic
concepts underlying the study of photon statistics in quantum optics. In particular, I will explain
when the light field is said to exhibit nonclassical properties, and what is defined as bunched
or anti-bunched light based on the time-intensity correlations. After presenting the basic defini-
tions, I will review the basic physics of single photon scattering across quantum emitters coupled
to waveguide and calculate the expressions for optical depth exhibited by a single atom coupled
to a nanofiber waveguide. Then, I will briefly introduce the scattering matrix formalism which
is useful for extending the scattering theory to multiple emitters coupled to a waveguide. Along
these lines, I will summarize the recent work [51] of photon transport in waveguides which ap-
plies exactly to our experimental system. This theory work, done by our collaborators, will lay
down the basis for the next chapter where I will describe how the corresponding experiment
was performed in our laboratory and discuss how well the results obtained compare with the
theoretical predictions from the current chapter.

4.2 Correlation functions

In this section, I will introduce basic concepts and definitions from quantum optics theory crucial
for the rest of the thesis. Correlation functions are used to study the fluctuations of a stochastic
process. In general, they are not limited to a single spatial or temporal point and can be used to
study the temporal or spatial dependence of the fluctuations. In the following sections, we shall
restrict the discussion of correlation function to the time-domain.

4.2.1 First-order correlation function

The first-order correlation function for a light field measures the correlations between the electric
field at a given position for different points in time. For a time separation of τ , the first-order
correlation function of a light field is defined as

g(1)(τ) =
〈E∗(t)E(t+ τ)〉

[〈|E(t)|2〉〈|E(t+ τ)|2〉]1/2
(4.1)

where 〈X〉 = 1
T

∫ T/2
−T/2Xdt represents the time average over a very long time duration T . A

field radiated from a chaotic light source such as a discharge lamp or a blackbody consists of
contributions from excited atoms decaying independently at different times. Consequently, the
electric field for time delays, τ � τc, 1 are completely uncorrelated. One can show [110] that in
such a case, the average of the product of the electric fields (the numerator of 4.1) at two distant
times is zero. Therefore, they exhibit a g(1)(|τ | � τc) of zero where τc is the coherence time.
For smaller times, g(1)(t) lies in between 0 and 1 which defines partial coherence.

1For time delays of much smaller than the coherence time, τc ∝ 1/(spectral linewidth), even chaotic light
sources can show non-zero first order correlations.
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The coherence time defines the coherence length which is the path length traversed by the
propagating light field during the coherence time. For path difference much longer than the
coherence length, the electric fields derived from the same light source lose phase correlation
and hence the ability to interfere. Since the coherence time, τc ∝ 1/∆ν where ∆ν is the
spectral width of the source, light from spectrally broadened light sources is often not suited for
observing interference. On the other hand, laser light which is spectrally quite narrow, exhibits
interference for very large values of τ . An ideal laser source has g(1)(τ) = 1 for all τ .

4.2.2 Second-order correlation function

The second order correlation function in quantum optics quantifies the temporal dependence of
intensity correlations of an electromagnetic field. It can be defined as

g(2)(t, t+ τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉

(4.2)

where 〈X〉 = 1
T

∫ T/2
−T/2Xdt for a classical function X and the time-averaged quantum mechan-

ical expectation value, 〈X̂〉 = limT→∞
1
T

∫ T/2
−T/2〈X̂〉dt, for a quantum operator X̂ and I(t)

represents the intensity of the light field. For a narrow linewidth quantized laser light, one can
express the electric field at a given point in time as a sum of negative and positive frequency
components as:

Ê(t) = Ê+(t) + Ê−(t) ∝
(

~ω0

2ε0V

)1/2

[â(t) + â†(t)] (4.3)

where, + and − indicate the positive and negative frequency components respectively and â(t)
is the annihilation operator at time t and ω0 is the central frequency of the light spectrum and V
is the mode volume [110, 111]. It turns out 2 that the intensity can be written as:

I(t) ∝ 〈Ê−(t)Ê+(t)〉 (4.4)

, where 〈. . .〉 now represents the time-averaged expectation value of the quantum operator inside
the angle bracket. Using, equation 4.4, 4.3, and 4.2, one can obtain to obtain the definition of
second-order coherence function as a function of the temporal delay τ as [110]:

g(2)(τ) =
〈Ê−(t)Ê−(t+ τ)Ê+(t+ τ)Ê+(t)〉
〈Ê−(t)Ê+(t)〉 〈Ê−(t+ τ)Ê+(t+ τ)〉

=
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉
〈â†(t)â(t)〉 〈â†(t+ τ)â(t+ τ)〉

(4.5)

where 〈. . .〉 is the time-averaged quantum mechanical expectation value of the operator inside
the angle brackets for a given quantized light field. Assuming the light field to be in a stationary
state (for averaging over large times), we get:

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2
(4.6)

2The intensity can be obtained from the definition of the Pyonting vector for the quantized electromagnetic field
as I = ε0c

2 〈(Ê− × B̂+ + B̂− × Ê+)〉. For more details see ref [110]
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4. THEORY: CORRELATED PHOTON TRANSPORT IN NANOFIBERS

Note that the normal ordering of operators, i.e., the creation (annihilation) operators are on
the left (right), comes as a result of photon detection being modeled as an absorptive process
[110, 112].

4.2.2.1 Classical light

Imagine a classical light field such as from a light bulb the intensity of which is kept constant
subject to random fluctuations about the mean value. This can be expressed as

Iclassical(t) = i0 + δi(t) (4.7)

Substituting the above expression into equation 4.2, one obtains:

g
(2)
classical(τ) =

〈i20 + i0(δi(t) + δi(t+ τ)) + δi(t) δi(t+ τ)〉
(〈i0 + δi(t)〉)(〈i0 + δi(t+ τ)〉)

The intensity fluctuations are random and average to zero, therefore the second and third term in
the numerator disappears. Since the mean intensity is constant, the denominator is equivalent to
square of the mean intensity. This leads to

g
(2)
classical(τ) = 1 +

〈δi(t)δi(t+ τ)〉
i20

For large time scales, the fluctuations are uncorrelated, therefore the numerator of the second
term, 〈δi(t)δi(t+τ)〉τ�τc → 0. This gives g(2)

classical(τ) the lower limit of 1. For time delays much
smaller than the coherence time of the classical light source, the fluctuations can be correlated.
In the limit of zero-time delay, 〈δi(t)δi(t+ τ)〉τ=0 = 〈(δi(t))2〉 ≥ 0. In general, one can write
that correlation function for a classical field obeys the following inequalities [110]:

g
(2)
classical(0) ≥ g(2)

classical(τ) (4.8a)

g
(2)
classical(0) ≥ 1 (4.8b)

A light field whose second-order correlation measurement does not fulfill the above criteria is
said to be non-classical.

4.2.2.2 Single mode light field as non-classical light

Often a single mode plane wave light field with a well defined frequency and polarization is
used as an example of nonclassical light. For a single frequency mode at ω, the electric field at
a given point in space evolves with time as:

Ê(t) = Ê+(t) + Ê−(t)

=

(
~ω

2ε0V

)1/2

[âe−iθ + â†eiθ] (4.9)
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where, θ = ωt, and â, â† are the annihilation and creation operator for that mode at time t = 0.
Using this in equation 4.5, we obtain:

g(2)(τ) = g(2)(0) =
〈â†â†ââ〉
〈â†â〉2

(4.10)

It must be noted that the right hand side of the above equation is independent of τ only for a
single mode state. The basis states of a quantized single mode light field - the so called Fock
states exhibit non-classical g(2). To show that, we re-arrange equation 4.10 using commutation
relation [â, â†] = 1 to get:

g(2)(0) =
〈â†(ââ† − 1)â〉
〈â†â〉2

(n̂ = â†â)
=

〈n̂2 − n̂〉
〈n̂〉2

= 1 +
〈(∆n̂)2〉 − 〈n̂〉

〈n̂〉2
(4.11)

where we used the definition of variance 〈(∆n̂)2〉 = 〈n̂2〉 − 〈n̂〉2 in the last step. Using the fact
that Fock states are eigenstates of the number operator n̂ with eigenvalue n and variance of zero
3, the g(2)(τ) for a Fock state |n〉 corresponding to a single mode field is:

g(2)(0) = 1− 1

n
(4.12)

where n ≥ 1. For n > 1, it violates the inequality in equation 4.8 in section 4.2.2.1. The
photon statistics observed for Fock state of light can therefore not be explained by a classical
description of propagating light field. The usual classical light fields mostly show Poissionian
(like laser light) or thermal distribution (incandescent light, light from blackbodies like sun etc)
of photons when subject to photon counting [13]. On the other hand, Fock states show zero
variance in photon number unlike the thermal states or Poission distributed states where the
photon number variance is greater than or equal to mean. In general, equation 4.11 makes it
clear that when 〈(∆n̂)2〉 < 〈n̂〉, the inequality observed by classical fields is violated. This is
encapsulated in the Mandel Q-parameter [114] which is defined as

Q =
〈(∆n̂)2〉 − 〈n̂〉

〈n̂〉
(4.13)

Here, −1 ≤ Q < 0, implies sub-Poissionian statistics i.e., the variance of photon number is less
than the mean. This is also often called the non-classicality criterion.

4.2.2.3 Antibunched and bunched light

If one measures the number of photon detection events in a given time interval for light field
coming out from a laser source, the resulting photon number statistics will be Poission dis-
tributed. The photons arrive randomly in time in an uncorrelated fashion, and the normalized

3Fock states are defined as the eigenstates of a quantized light field mode. Fock state |n〉, contains n quanta of
energy or equivalently as many photonic excitations in the spatiotemporal mode of the light field. For more details on
spatiotemporal mode of a light field, please see my master’s thesis [113] and for a detailed description on quantization
of light, see a textbook reference [110].
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4. THEORY: CORRELATED PHOTON TRANSPORT IN NANOFIBERS

second-order correlation function for such a source is equal to one. This means that the photons
do not have a preference of being together or far apart, i.e., on average the probability of two
photons arriving with a certain time delay is constant. If the photons tend to stay far apart from
one another, then they are said to be anti-correlated or anti-bunched. The opposite to this is
bunched photons where the photons tend to be grouped together. For very large delays, all cor-
relation between arrival times of the photons is lost. Therefore, all sources show a g(2)(∞) = 1.
Mathematically, the definition can be summarized as :

g(2)(τ) = 1 ∀ τ =⇒ (uncorrelated) (4.14a)

g(2)(τ) > g(2)(0) =⇒ (antibunched) (4.14b)

g(2)(τ) < g(2)(0) =⇒ (bunched) (4.14c)

Comparing the definition of antibunching in equation 4.14(b) to the criteria in equation 4.8(a),
one can easily see that antibunching is a nonclassical phenomena. Having said that, both
antibunching (g(2)(τ) > g(2)(0)) as well as sub-Poissonian statistics (g(2)(0) < 1, see sec-
tion 4.2.2.2) correspond to non-classical light fields. Both phenomena may occur together but
they are not the same. Sub-Poissionian statistics does not imply antibunching [115, 116]. While
antibunching and sub-Poissionian statistics both can be obtained only for a non-classical light
field, the absence of antibunching or sub-Poissionian statistics does not necessarily mean that
a light field is classical. Reference [115] shows that photons from resonance fluorescence pho-
tons, which exhibit antibunching, can show sub- or super-poissionian statistics depending on the
interval over which the photon statistics is drawn and the bandwidth of the detector used.

Typical examples of antibunched light is resonance fluorescence from an atom [48,117,118]
or light emitted from a quantum dot [119] or an ion [120]. The former was the first experimen-
tal demonstration of the quantum nature of spontaneously emitted photon. In the experiment
sodium atoms were excited by a resonant light field, and the photons collected from the result-
ing spontaneous emission were subject to a HBT type experiment (see section 4.2.2.4) which
then revealed a distinct antibunching. Examples of classical bunched light sources are incandes-
cent light source where the occupancy of the higher photon number falls off exponentially with
the number of photons [121].

4.2.2.4 Measuring second-order intensity correlations

Measuring second order correlation function, g(2)(τ) defined in equation 4.6, in principle, needs
only a single fast photon number resolving detector, to record the photon arrival times and extract
the intensity a two time points separated by τ . However, in realistic scenarios the detectors used
in the laboratory are not fast enough. The detection mechanism (usually avalanche photodiodes
4) requires a certain time for the detector to recover from a photon detection event. Due to this,
a single detector setup cannot detect multiple events within this detector’s dead time. For low
photon fuxes, the solution to this problem is to divide the beam such that one can detect the
second click on a second detector despite the first detector’s dead-time.

4This discussion does not include transition edge detectors, which unlike avalanche photodiodes, are able to
detect photon numbers.
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Figure 4.1: Schematics of a Hanbury Brown-Twiss type of setup for measuring temporal corre-
lations in intensity.

Hanbury, Brown and Twiss first came up with the experiment on measuring the spatial corre-
lations between photons emitted from a mercury lamp [122]. The idea was motivated from an
earlier work [123], where they introduce the concept of intensity interferometry for measuring
the tiny angular size of stars. Following from their works, the schematic shown in Figure 4.1
is known as the Hanbury, Brown and Twiss setup for measuring intensity correlations in a light
beam. The beam is incident on one of the input ports of a 50:50 beam-splitter. Two single photon
counting modules (SPCMs) are placed in the two output ports which generate a TTL pulse upon
detection of a photon. The output pulse of each detector is sent to a timetagger which records
the timestamp whenever it receives a pulse. This setup allows one to record the photon arrival
times on the detectors and from there extract a correlation function defined as:

g(2)(τ) =
〈â†1(t)â†2(t+ τ)â2(t+ τ)â1(t)〉
〈â†1(t)â1(t)〉 〈â†2(t+ τ)â2(t+ τ)〉

(4.15)

where â1(t) and â2(t + τ) are the annihilation operators in the two modes at time t and t + τ
respectively. One can prove that the expression 4.15 is equivalent to the g(2)(τ) for the input
beam. For this, we use the beam-splitter transformation â1 = (â − b̂)/

√
2 and â2 = (â +

b̂)/
√

2, and calculate the expectation values in the numerator and denominator of the RHS of
equation 4.15 for the input two-mode state |ψ〉 = |ψa〉⊗|0〉, where the input |ψa〉 corresponds to
mode â and the vacuum state |0〉 corresponds to the mode b̂. For brevity, I shall use the notation
t′ = t + τ and â, b̂ and â′, b̂′ for operators at time t and t′ respectively. Each factor in the RHS
of equation 4.15, can be rewritten as following:

〈â†1(t)â1(t)〉 = 〈ψa, 0|â†â− â†b̂− b̂†â+ b̂†b̂|ψa, 0〉 /2
b̂|0〉=〈0|b̂†=0

= 〈ψa|â†â|ψa〉 /2 (4.16a)

〈â†2(t′)â2(t′)〉 = 〈ψa, 0|â′
†
â′ + â′

†
b̂′ + b̂′

†
â′ + b̂′

†
b̂′|ψa, 0〉 /2

b̂|0〉=〈0|b̂†=0
= 〈ψa|â′

†
â′|ψa〉 /2 (4.16b)

〈â†1(t)â†2(t′)â2(t′)â1(t)〉 = 〈ψa, 0|(â† − b̂†)(â′
†

+ b̂′
†
)(â′ + b̂′)(â− b̂)|ψa, 0〉 /4

b̂|0〉=〈0|b̂†=0
= 〈ψa|â†â′

†
â′â|ψa〉 /4 (4.16c)
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Using equations 4.16 and equation 4.15, one obtains the expression for second-order correlation
function for the input, as defined in equation 4.5. Therefore, using the HBT scheme shown in
Figure 4.1, one can measure the second-order correlation function for a given input state despite
the dead time of the detector.

4.3 Photon transport across coupled emitters

The observation of discrete lines in the Hydrogen and Helium spectrum [124] sparked among
the scientists in the early 20th century an interest to study light-matter interaction in depth [5, 8,
9,125]. The discovery of lasers in the mid-half of the 20th century provided scientist a coherent,
quasi-monochromatic light source with well-defined photon statistics [13]. Since then there have
been numerous research papers about studying the phenomena of photon scattering by a single or
multiple atomic emitters coupled to a resonant laser light field [117,126,127]. This has motivated
the broad field of achieving efficient light-matter interactions for a wide variety of purposes.
One of the ways to do this is to have a strong coupling of the photons from the light field to the
two-level quantum emitters constituting the material. An obvious instrument for increasing the
latter beyond free-space coupling strength is using a cavity or a strongly confining waveguide
as a tool to enhance the coupling [41, 64, 128–132]. The latter approach is a convenient tool
owing to its size, feasibility of implementation and fabrication. The theoretical study of the
phenomenon of photon scattering from quantum emitters has gathered attention few decades ago
[127, 133, 134]. Since then, there have been several detailed studies on expanding the physical
understanding of photon scattering, and to control it, especially through waveguide-coupled
quantum emitters [41,49,51,135–139]. To get an understanding of photon transport in complex
quantum systems with multiple photons or emitters, it is essential to understand the most basic
scheme of a single photon scattering across a waveguide coupled to number of quantum emitters
as in reference [135, 139]. Therefore, in the following section, I will discuss in full detail the
respective theory.

4.3.1 One-photon scattering across a waveguide coupled to a single emitter

In this section I will derive a model for the problem of single photon scattering by a two-level
quantum impurity coupled to the waveguide through which the photon is propagating. The steps
here, follow the approach outlined in references [135, 136, 139]. In the following, we consider
a single photonic excitation travelling inside a waveguide which is coupled to a two level atom
(see Figure 4.2). For this system, one can write the Hamiltonian as

Ĥ

~
=

∫
dx

[
ĉ†R(x)(ωarb − ivg

∂

∂x
)ĉR(x) + ĉ†L(x)(ωarb + ivg

∂

∂x
)ĉL(x)

]
+VR

∫
dx δ(x)

[
Ŝ+ĉR(x) + ĉ†R(x)Ŝ−

]
+ VL

∫
dx δ(x)

[
Ŝ+ĉL(x) + ĉ†L(x)Ŝ−

]
+(ωe − iγe/2)â†eâe + ωgâ

†
gâg (4.17)

where, the operators ĉ†R(x), ĉ†L(x) correspond to the bosonic operator creating a right- and left-
propagating photon respectively, Ŝ− = Ŝ†+ = â†gâe = |g〉 〈e|, where the letters e and g, corre-
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4.3. Photon transport across coupled emitters

spond to the exited and ground state of the two-level emitter, |e〉 and |g〉, with energies ωe and
ωg respectively, VL and VR are the dipole interaction terms, and γe accounts for the spontaneous
emission of the excited state into other modes different from the waveguide mode (free space),
ω is the frequency of the input light field and δ(x) in the interaction term is a delta function. We
linearize the dispersion of the waveguide such that ω = ωarb + vgQ, where Q is the wavevector
of the input light field at the frequency ω, vg is the group velocity of the guided light field and
ωarb is an arbitrarily chosen frequency away from the cutoff of the dispersion and around which
the dispersion is linear. The first line of the equation corresponds to the energy of a single pho-
tonic excitation in the right and left propagating modes of the waveguide. The first and second
brackets on the second line of equation 4.17 corresponds to the interaction of the right and left
propagating photon with the atom that is located at position x = 0. In the following, we consider
a photon incident from the left. The atom may absorb this photon, get excited and then decay by
emitting a photon. A photon emission into the environment is described by the non-Hermitian
damping term, −i(γe/2)â†â, of the Hamiltonian. The emitted photon can also couple into the
right or left propagating mode as described by the second line. The coupling constant to the left
and right propagating mode, VL/R, is related to the decay rates into the left and right propagating
waveguide modes, Γαwg = V 2

α /vg for α ∈ {L,R } and, in general, VL 6= VR indicates chiral
atom-light interaction [140]. In the following, we will derive a steady state solution of 4.17. The
steady state solution will consist of a superposition of the photon in the left and right propagat-
ing mode and the atom being in excited state with a certain probability. This can be represented
mathematically as

|Ψ(t)〉 = e−iω
′t

(∫
dx
[
φR(x)ĉ†R(x) + φL(x)ĉ†L(x)

]
+ φaâ

†
eâg

)
|φ〉 = e−iω

′t |ψ〉 (4.18)

where |φ〉 = |0, g〉 represents zero photons and atom in the ground state and ω′ = ω + ωg is the
energy of the steady state solution which is equal to the energy of the single photonic excitation
which interacts with the atom and the energy of the atom in the ground state.We can write the
Schrödinger equation Ĥ |Ψ(t)〉 = i~∂/∂t |Ψ(t)〉 which translates to Ĥ |ψ〉 = ~ω′ |ψ〉 for the
for the steady-state case. By using equation 4.18 and 4.17, we obtain :

Ĥ

~
|ψ〉 =

∫
dx
(
ωarbφR(x)− ivgφ′R(x)

)
ĉ†R(x) |φ〉

+

∫
dx
(
ωarbφL(x) + ivgφ

′
L(x)

)
ĉ†L(x) |φ〉

+VR

∫
dx δ(x)

(
Ŝ+ĉR

∫
dx′φR(x′)ĉ†R(x′) + ĉ†R(x)Ŝ−φaŜ+

)
|φ〉

+VL

∫
dx δ(x)

(
Ŝ+ĉL(x)

∫
dx′φL(x′)ĉ†L(x′) + ĉ†L(x)Ŝ−φaŜ+

)
|φ〉

+ (ωe − iγe/2)â†eâeφaâ
†
eâg |φ〉+ ωgφaâ

†
gâg |φ〉 (4.19)

where, φ′i = ∂φi/∂x. In the following, we consider, without loss of generality, the situation
where the photon is initially incident from the left (right propagating). The third interaction
term of the form Ŝ+ĉL, describes a process where the photon is incident from the right (left pro-
pagating) and excites the atom. Therefore, for a single excitation case we ignore this term. Using
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Figure 4.2: Schematics of a single two-level quantum emitter coupled to a nanofiber-like wave-
guide with the left (right) propagating modes denoted by the subscript R and L. The emitter sits
at x = 0 with decay rates into free-space as γe and into left and right propagating waveguide
modes as ΓLwg and ΓRwg, respectively. The input light field is at frequency ω detuned from the
atomic transition frequency (ωe − ωg) by δ.

the commutation relation [ĉ(x), ĉ†(x′)] = δ(x− x′), as well as, Ô |φ〉 = 0 ∀Ô ∈ {Ŝ−, ĉR, ĉL},
one arrives at the eigenvalue equation

Ĥ

~
|ψ〉 =

∫
dx
(
ωarbφR(x)− ivgφ′R(x)

)
ĉ†R |φ〉

+

∫
dx
(
ωarbφL(x) + ivgφ

′
L(x)

)
ĉ†L |φ〉

+VR

∫
dx δ(x)

(
φR(x)Ŝ+ + φaĉ

†
R

)
+ VL

∫
dx δ(x)

(
φaĉ
†
L

)
|φ〉

+ (ωe − iγe/2)φaŜ+ |φ〉+ ωg

∫
dx
(
φR(x)ĉ†R + φL(x)ĉ†L

)
|φ〉

= (ω + ωg) |ψ〉 (4.20)

Comparing equation 4.18 and 4.20, one can see that the equations contains terms corresponding
to the states

∫
dxĉ†R(x) |φ〉,

∫
dxĉ†L(x) |φ〉, and â†eâg |φ〉. Equating the probability amplitudes,

gives us the following set of coupled equations.

−ivgφ′R(x) + δ(x)VRφa = (ω − ωarb)φR(x) (4.21a)

ivgφ
′
L(x) + δ(x)VLφa = (ω − ωarb)φL(x) (4.21b)

(ωe − iγe/2)φa + VRφR(0) = (ω + ωg)φa (4.21c)
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To solve the above set of differential equations, we use the ansatz:

φR(x) = eiQx [θ(−x) + t θ(x)] (4.22a)

φL(x) = e−iQxrθ(−x) (4.22b)

From this, we can calculate the derivatives as:

φ′R(x) = iQφR(x) + eiQx
[
θ′(−x) + t θ′(x)

]
(4.22c)

φ′L(x) = −iQφL(x) + e−iQxrθ′(−x) (4.22d)

where θ(x) is the Heaviside step function with the value 1/2 at x = 0 and derivatives lim
x→0

θ′(±x) =

δ(x), Q is the wave-vector of the input photon with frequency ω and t and r are the field trans-
mission and reflection coefficients, respectively. Using this Ansatz for the coupled equations
4.23, we obtain for x = 0

−ivgφ′R(0) + VRφa = (ω − ωarb)φR(0) (4.23a)

ivgφ
′
L(0) + VLφa = (ω − ωarb)φL(0) (4.23b)

(ωe − iγe/2)φa + VRφR(0) = (ω + ωg)φa (4.23c)

Substituting from 4.22, we obtain:

(ω − ωarb)(1 + t)− i2vg(t− 1) + 2VRφa = (ω − ωarb)(1 + t) (4.24a)

(ω − ωarb)r − i2vgr + 2VLφa = (ω − ωarb)r (4.24b)

2(ωe − iγe/2)φa + VR(1 + t) = 2(ω + ωg)φa (4.24c)

Solving the above set of equations yields the field reflection and transmission coefficients for the
general case as:

t =
γe − V 2

R/vg − i2δ
γe + V 2

R/vg − i2δ
=
γe − ΓRwg − i2δ
γe + ΓRwg − i2δ

(4.25a)

r =
−2VLVR

vg(γe + V 2
R/vg − i2δ)

=
−2
√

ΓRwgΓ
L
wg

γe + ΓRwg − i2δ
(4.25b)

where, in the last step, we have introduced the detuning δ = ω − (ωe − ωg) and substituted
V 2
L/R/vg = Γ

L/R
wg . However, we are interested in the chiral case, where, VR � VL and hence the

ΓRwg � ΓLwg. Therefore, in the chiral limit, we substitute VL → 0. Setting V 2
R/vg = ΓRwg = Γwg,

and obtain the field transmission amplitude for the chiral case as

t =
γe − Γwg − i2δ
γe + Γwg − i2δ

(4.26)

The same result can be obtained by input-output formalism as discussed in reference [138].
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4.3.2 Optical depth due to a single waveguide-coupled atom

We can define the coupling constant, β, as the ratio of light scattered into the guided mode versus
the light scattered into all possible channels by the atom, Γtot = γe+Γwg. This can be expressed
as

β =
Γwg
Γtot

(4.27)

In this way, equation 4.26 simplifies to

t(δ) = 1− 2β

1− i2δ/Γtot
(4.28)

For on-resonance light (δ = 0), and in the limit of weak coupling (β � 1), the power trans-
mission is given by T = |t|2. In the linear absorption regime, optical depth is related to the
transmission as − ln[T ], therefore, for a single atom the on-resonance (δ = 0), we can define
the optical depth per atom is given as:

OD/atom = ln[Tatom,δ=0] = ln[|t(δ = 0)|2] = ln[(1− 2β)2] ≈ 4β (4.29)

The on-resonance transmission for N atoms is given as TN (δ = 0) = (1− 2β)2N as is also used
in the reference [141].

4.3.3 Two-photons scattering across single emitter: Scattering matrix formalism

In section 4.3.1 we looked at a single photon propagating in a waveguide chirally coupled to
a single quantum emitter. To understand the physics of photon transport in a nanofiber based
atomic ensemble, we need to consider the case where more than one photon interacts with quan-
tum emitter, which is a non-trivial task. Reference [49, 138, 141] have solved this problem by
introducing the scattering matrix formalism for a single emitter problem and extending it to
the case of multiple coupled quantum emitters. They use a weak coherent state as the input
limiting their calculations to the situation of at most two photons. The scattering process is
represented as a matrix, Ŝmn, corresponding to a projective operator in the Fock-basis, |m〉 〈n|,
where (m,n) ≤ 2. The wavefunction of the eigenstates of the scattering matrix is expressed
in the position basis. The total scattering process of photons on a quantum emitter can then be
written as a sum of individual scattering processes as:

Ŝ = Ŝ11 + Ŝ22 + Ŝ12 (4.30)

The three matrices, Ŝ11, Ŝ22, and Ŝ12 describe the single photon, the two-photon scattering
process and the two-photon scattering process where one photon is lost.

Ŝ11 matrix:

The basis state for the Ŝ11 matrix is a single photon Fock state defined by the bosonic annihila-
tion operator â†δ where δ is the detuning from the transition frequency of the quantum emitter.
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4.3. Photon transport across coupled emitters

The transformation of single photon, described by the Ŝ11 matrixis given by

â†δ
Ŝ11−−→ tδâ

†(δ) (4.31)

where tδ is the complex transmission factor defined in 4.26.

Ŝ22 matrix:

The two photon scattering process is more complicated as it may lead to energy exchange be-
tween the photons. Reference [49] has used the Bethe-ansatz approach to derive the analytical
form of the two-photon wavefunctions that can be used as an orthonormal basis for describing
the input and output two-photon state and hence the two photon scattering matrix. Another al-
ternative approach utilizing the input-output formalism also arrives at the same result [138]. In
the basis of so called bound and unbound states, one can express the Ŝ22 operator as [49, 141]:

Ŝ22 =
∑
δ1,δ2

t̄δ1 t̄δ2 |Wδ1,δ2〉 〈Wδ1,δ2 |+
∑
E

t̃E |BE〉 〈BE | (4.32)

where we have followed the notation of reference [51], where the waveguide dispersion is lin-
earized and the group velocity is set to 1 such that time separation can be equivalently expressed
by position separation and the dimensions of wave-number, frequency as well as distance and
time are the same, and δ1 and δ2 are photon detunings such thatE = δ1+δ2 is the two photon de-
tuning and ∆ = (δ1 − δ2)/2 is half the energy difference of the two photons. The state |Wδ1,δ2〉
is the so called Weigmann Andrei States and the |BE〉 are called the bound-states. Mapping
{δ1, δ2} to {E, ∆} and switching to continuous variable, we can re-write the equation 4.32 as

Ŝ22 =
1

2

∫∫
dEd∆ t̄E/2+∆t̄E/2−∆ |WE,∆〉 〈WE,∆|+

∫
dEt̃E |BE〉 〈BE | (4.33)

where the two-photon basis states can be expressed as:

|WE,∆〉 =
1√
2

∫∫
dx1dx2â

†(x1)â†(x2)WE,∆(xc, x) |0〉 (4.34a)

|BE〉 =
1√
2

∫∫
dx1dx2â

†(x1)â†(x2)BE(xc, x) |0〉 (4.34b)

and the real-space representation of the basis states is written as:

WE,∆(xc, x) =
1√

4∆2 + Γ2

√
2

2π
eiExc [2∆ cos(∆x)− Γsgn(x) sin(∆x)] (4.34c)

BE(xc, x) =

√
Γ

4π
eiExce−

Γ
2
|x| (4.34d)
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4. THEORY: CORRELATED PHOTON TRANSPORT IN NANOFIBERS

where, xc = (x1 + x2)/2 is the centre-of-mass coordinate and x = x1 − x2 is the position
difference. The transmission amplitudes defined in equation 4.32 can be written as

t̄e =
e+ iΓ(1− 2β)/(2β)

e+ iΓ/(2β)
, e ∈ {δ1, δ2} (4.35a)

t̃E =
E + iΓ(1− 3β)/β

E + iΓ(1 + β)/β
(4.35b)

Ŝ21 matrix:

There can be a scattering event where one photon from the two incident photons gets lost to the
environment via scattering into the radiative mode from the atomic emitter. Reference [141] has
modeled the radiative loss as being equivalent to a emission in the backward direction. The chiral
approximation [41], does not allow for coupling of the forward and backward propagating modes
as the treatment does not consider backward propagating photons (see section 4.3.1 for details).
Therefore, a photon emitted into the backward propagating mode is effectively lost, similar to
the photon being scattered into the radiative modes. The scattering matrix that gives the output
state corresponding to this process for an arbitrary two-photon wavefunction, f(δ1, δ2), is given
by (taken from Reference [51]):

Ŝ21

∫∫
dδ1dδ2â

†(δ1)â†(δ2) |0〉 f(δ1, δ2) =∫∫
dδ1dδ2â

†
R(δ1)â†loss(−δ2) |0〉

[
2r̄−δ2 t̄δ1f(δ1,−δ2)

+
iβ
√

Γ(1− β)

π
s̄δ1 s̄−δ2

∫
dδ̄1dδ̄2(s̄δ̄1 + s̄δ̄2)δ(δ1 − δ2 − δ̄1 − δ̄2)f(δ̄1, δ̄2)

]
(4.36)

where â†R(δ) creates a forward propagating photon and and â†loss(δ) creates a backward pro-
pagating photon (with negative wavevector), r̄δ = −2i

√
β(1− β)/(1 − 2iδ/Γtot), and s̄δ =√

Γtot/(δ + iΓtot/2), and t̄δ is the transmission coefficient (defined in equation 4.35) for detun-
ing δ , and the delta followed with parenthesis, δ(· · · ), in the second term is a delta function for
conserving the energy in case of an inelastically scattered photon pair. The first term accounts
for elastic scattering and subsequent loss of one of the photons. Note that the detunings, δ1 and
δ2, in this term are interchangeable. Also, it is implicit that the annihilation operators on the left
hand side of the equation, correspond to a forward propagating photons. In case that there is
more than one emitter, such a one-photon loss scattering process can happen only once in the
limit of a two-photon input state.

4.3.4 Scattering matrix with multiple emitters

Extention of the scattering matrix toN emitters is simply obtained from the single emitter matrix
(see equation 4.33) taken to theN th power. The single photon scattering matrix, Ŝ11, contributes
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4.3. Photon transport across coupled emitters

as:
ŜN11 = tNδ â

†
δ |1〉 〈1| (4.37)

where tδ is the transmission given by equation 4.28 and N is the number of atoms. The two
photon scattering matrix, Ŝ22, for transmission through N atoms similarly obtained by applying
the scattering matrix consecutively for each atom. This translates to taking the N th power of the
transmission coefficients

ŜN22 =
1

2

∫
dEd∆ (t̄E/2+∆)N (t̄E/2−∆)N |WE,∆〉 〈WE,∆|+

∫
dEt̃NE |BE〉 〈BE | (4.38)

The scattering process denoted by Ŝ21 can happen only once in a chain of N emitters. As-
suming that for the first M emitters the two photon scattering, denoted by Ŝ22, happens and that
at the (M + 1)th emitter the process Ŝ21 happens, then because one photon is lost, for the re-
maining N −M − 1 emitters only the process denoted by Ŝ11 can happen. The output after N
emitters will be given by applying the matrix

∑N−1
M=0 Ŝ

N−M−1
11 Ŝ12Ŝ

M
22 where the scattering pro-

cess before and after the (M + 1)th atom is constrained to 2 and 1 incident photons respectively.
In general, for an input with at most 2 photons through N quantum emitters, the net scattering
process can be calculated from a sum of all possible scattering events in the mutually orthogonal
one- and two-photon subspace:

ŜN = ŜN11 + ŜN22 +
N−1∑
M=0

ŜN−M−1
11 Ŝ12Ŝ

M
22 (4.39)

4.3.5 Total transmission

In many experiments, the typical input state can be considered a single-mode coherent state,
which in the low power/weak saturation limit can be approximated by:

|αin〉 = e−
|α|2

2 e
αâ†δ0 |0〉

∼ e−
|α|2

2

[
1 + αâ†(δ0) +

α2

2
â†(δ0)â†(δ0)

]
|0〉 (4.40)

where â†δ0creates a photon in the waveguide at detuning δ0. The input power can then be defined
as Pin ≈ α2 with real α. We can use the scattering matrices from the previous section and apply
them to the single and two-photon components of the input state. The output state |out〉 then
consists of transmitted single photons and two photon components as

|out〉 = ŜN |αin〉
= |out〉1 + |out〉2 (4.41)
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Figure 4.3: Predicted transmission for different number of atoms (N) or correspond optical depth
assuming β = 0.01. The three different curve correspond to different values of the incident
probe power. The dashed line corresponds to the exponential decay of the transmission with
atom number as predicted by the Beer-Lambert’s law (see equation 4.29).

where the output one- and two-photon states represented by |out〉1 and |out〉2 respectively can
be expressed in terms of the scattering matrices as:

|out〉1 = |out〉11 + |out〉12

= ŜN11 〈1|αin〉 |1〉+
N−1∑
M=0

ŜN−M−1
11 Ŝ12Ŝ

M
22 〈2|αin〉 |2〉 (4.42a)

|out〉2 = ŜN22 〈2|αin〉 |2〉 (4.42b)

In the asymtotic limit of low β and weak saturation with large number of atoms, one can derive
a simplified expression for the on-resonance power transmission [51]:

T =
Pout
Pin

= (1− 2β)2N︸ ︷︷ ︸
∝ 〈â†â〉11 ∝ t2Nδ0=0

+
Pin

8Psat

β

4
√
π(Nβ(1− β))3/2

3− 2β(1− β)

1− 2β(1− β)︸ ︷︷ ︸
∝ 〈â†â〉21 + 〈â†â〉22

(4.43)

where the first term is the proportional to the output single photon flux due to single photon
scattering (Ŝ11), whereas the second term has contributions from two-photon scattering process
(Ŝ12 and Ŝ22) and Psat = ~ωΓ/8β.

Figure 4.3 shows the asymtotic limit of the transmission (solid lines) as compared with the
transmission for a linear absorber (dashed line) predicted by equation 4.29. The three solid lines
show the transmission for different incident powers. The on-resonance saturation parameter
experienced by the first atom in the chain, s0, is indicated by the values in the legend of the
figure. There are a couple of interesting features observable in transmission. First and foremost,
the transmission from the atomic ensemble deviates from the transmission of a linear absorbing
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4.3. Photon transport across coupled emitters

ensemble for large values of N . For a linear absorber, the transmission decays exponentially
with the number of absorbers (here atoms). The first term, which is a consequence of linear
absorption, has vanishing contribution for large number of atoms, thus the second term defines
the transmission in this regime and yields a power-law dependence on the number of atoms. In
the limit of largeN , the second term of the equation 4.43 dominates. Therefore, the transmission
decays as N−3/2 instead of the exponential decay, (1 − 2β)2N , as predicted by the dashed
black line. Also, from the figure, we see that with increasing saturation, the deviation of the
transmission (solid lines) from that of a linearly absorbing medium (dashed line) is stronger,
indicating increasing nonlinear effects for higher saturation. In the following section, we shall
look at how one can get an even better understanding of the nonlinear phenomena by focusing
on the correlated photon pairs generated as a result of two-photon scattering process (Ŝ22).

4.3.6 Two-photon output in transmitted light

It is interesting to consider the physics of the two-photon scattering process so as to understand
why photon transport through nanofiber based ensemble gives rise to correlated photons. One
can do a very simple treatment where only a single emitter is considered and then look at it in
the limit of large number of emitters. Let us consider a two photon state:

|ψk,p〉 =

∫∫
dx1dx2 g(x1, x2)

1√
2
ĉ†(x1)ĉ†(x2) |0, g〉 (4.44a)

where the Bethe-Ansatz dictates that the two photon wavefunction g(x1, x2) can, in general, be
represented by a superposition of plane waves as:

g(x1, x2) = Aeikx1+ipx2 +Beipx1+ikx2 (4.44b)

where, A andB are two constants, and k and p are wavevectors corresponding to the plane wave
solution to the free propagating photon.Wavevectors k and p are linearly related to the photon
detunings δk and δp from the resonance frequency of the emitter. Let the input |ψk1,p1〉 undergo
a two-photon scattering process, such that the output state, |out〉 = Ŝ22ψk1,p1 . The overlap of
the output state with a plane wave-basis state is given as [49]:

〈ψk2,p2 |Ŝ22|ψk1,p1〉 = tk1tp1 [δ(k1 − k2)δ(p1 − p2) + δ(k1 − p2)δ(k2 − p1)]

+Fδ(E1 − E2) (4.45)

where F is a function of k1, p1, k2 and p2 and Ei/~ = δki + δpi is the total energy of the photon
pair. Equation 4.45 gives us hint towards the presence of energy correlations in the output pho-
ton pair. The first and second term in equation 4.45 describe an uncorrelated two-photon state.
The incident photons are transmitted directly (first term) or with momentum exchange (second
term). The input two-photon component remains energetically uncorrelated i.e., the outgoing
photons have the same individual energies as the incident photons. It can be verified [49] that
the contribution to the uncorrelated part comes entirely from the |Wk,p〉 part of the scattering
matrix operator (see equation 4.32). In contrast, the last term, which can also be written as
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4. THEORY: CORRELATED PHOTON TRANSPORT IN NANOFIBERS

∝ δ(δk1 + δp1 − δk2 − δp2), amounts to conservation of total energy but the individual energies
of the outgoing photons can be different from that of the incident photons. This describes an
output state where the two photons are highly correlated in their energies.

For our discussions in this chapter, where we are interested in scattering of photons resonant to
the atomic transition, the generation of energetically correlated photon pairs is of special sig-
nificance. It implies that an incident resonant photon pair, may after a two-photon scattering
event emerge as a photon pair where each photon is detuned equally but in opposite directions
from the atomic resonance frequency. Owing to this detuning, such a photon pair suffers lesser
attenuation (see equation 4.28) and is more likely to pass through the ensemble unabsorbed. In
the following, we will see how generation of such correlated pair of photons combined with
exponential attenuation of the single photons leads to deviation from the Beer-Lambert’s law in
the limit of large number of emitters.

4.3.7 Photon statistics in the output

One can see from section 4.3.5, that for a weakly saturating resonant field propagating through
the nanofiber, the single photon component is attenuated (first term in equation 4.43) and scales
exponentially with the number of coupled emitters. Meanwhile, the two-photon transmission
probability amplitude can be obtained from equation 4.42 as [51]:

〈xc, x|out〉2 = ψN (xc, x) = e2iδ0xc/vg
[
t2Nδ0 − φN (x)

]
(4.46)

where, xc is the centre-of-mass coordinate and x is the relative coordinate of the two photons
as was used in equation 4.34. The first term, e2iδ0xc/vg t2Nδ0 , represents the uncorrelated photon
pair wavefunction, which is extended in both x1 and x2 space similar to the input, but subject
to attenuation by the factor t2N , where N is the atom number, as we saw in equation 4.45.
The value of tδ0 can be obtained from equation 4.35(a) by substituting single-photon detuning,
δ = δ0 = 0. The second term represents the correlated part with the spatial extent of the two-
photon wavefunction being modified now by φN (x). There is a phase shift of π which can be
explained by the quantum nature of absorption. The atom can absorb only one photon at a time.
The second photon of the correlated pair can be seen as causing a stimulated emission of the first
photon which gives a phase shift of π with respect to the incident light. A general expression
for φN (x) is cumbersome and can be found in reference [51]. Nevertheless, for resonant drive
and in the limit of small coupling strength β, one can write expressions for the asymtotic limit
of small and large optical depths as:

φN (x) ≈ 4Nβ2e−Γ|x|/(2vg) (Nβ � 1, small OD) (4.47a)

φN (x) ≈ βΓ

2π

∫
dδ cos(δx/vg)e

−ξ2
NΓ/δ2

/δ2 (Nβ � 1, large OD) (4.47b)
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where ξ2
N = Nβ(1− β). One can notice an interesting trend for small coupling strength β. For

a resonant drive, equations 4.35, 4.46, 4.47(a) give:

ψN (0, 0) = (1− 2β)2N − 4Nβ2 (4.48)

where the first term originates from the transmitted uncorrelated part of the two-photon wave-
function, whereas the second term originates from the linearly growing scattered two-photon
component. For small N and β, ψN (0, 0) ≈ 1−N(4β) +O

[
β2
]
, which is a linearly decreas-

ing function with N but greater than zero. This originates from the fact that for small number
of atoms (N � 1/β), the uncorrelated two-photon amplitude dominates. Moreover as N is
increased the uncorrelated part goes down exponentially where as the correlated part grows lin-
early 5. At a certain number of atoms, when φN (x) equals t2Nk0 , they cancel each other out
making two photon contribution in the output go to zero. When N is increased further, the
correlated part of the 2-photon probability amplitude becomes larger than the uncorrelated part
until in the limit of N � 1/β, ψN (0, x) ≈ −φN (x). For large N , the single-photon component
and uncorrelated two-photon component undergo exponential attenuation such that the output
photons has a relatively higher fraction of the correlated two-photon component.

Figure 4.4 depicts schematically the variation of the second-order correlation function for
the light transmitted as it propagates through the ensemble. On the left bottom, where the light
just enters into the waveguide, the photons correspond to the narrow-linewidth coherent laser
beam and hence show a flat g(2)(τ). After encountering a few atoms, there is small fraction
of detuned correlated photon pairs which contibutes to the two-photon probability amplitude, π
out of phase, with the mostly unattenuated uncorrelated component. Consequently, destructive
quantum interference of two-photon probability amplitudes leads to reduced two-photon conin-
cidences at the output which leads to slight anti-bunching dip (bottom, second plot) for a few
atoms. With more scattering possibilities, more of these correlated photon pairs are generated.
At a critical number of atoms, the destructive quantum interference of the correlated and uncor-
related two-photon probability amplitude (see equation 4.46) leads to perfect cancellation of the
two-photon probability amplitude at zero time delay. In the limit of weak saturation, the output
must then consist only of a stream of isolated photons that exhibit strong antibunching at time
scales comparable to inverse atomic linewidth (bottom third plot). When increasing the num-
ber of emitters further, the correlated photon pair dominates6 over the transmitted uncorrelated
single photons and two-photon pairs. This shows up in the form of monotonously increasing
bunching with increasing atom number. Since the output consist mostly of transmitted photons
from the detuned photon pairs, the power spectrum of the output light must have surviving red-
and blue-detuned regions while the central region consisting of resonant photons is heavily re-
duced. This is sketched in the top right of the figure 4.4 where the central resonant peak is
attenuated exponentially while distinct sidebands emerge due to scattering from a large number
of emitters.

5One can also verify this alternatively by showing that D(t2Nδ0 ) < 0 whereas D(φN (x) > 0 from equa-
tion 4.47(a) where D := (∂/∂N), and tδ0 = (1 − 2β) for low coupling strength β (see equation 4.29), and
number of atoms is N where 1 ≤ N � 1/β.

6By dominates, we mean that the occurence of correlated pair is much higher than predicted by Poissonian
statistics as would be the case for an otherwise attenuated coherent state
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Figure 4.4: Two-photon transport dynamics of guided resonant light field (probe) interacting
with multiple two-level atoms interfaced with the nanofiber (grey cylinder). The blue circles
depicting a 2-photon Raman scattering process denote the atoms with two probe photons as
the input and the correlated photon pair as the output. The colored arrows in brown show the
resonant probe photons whereas in red and blue show the red- and blue-detuned photons from
the correlated pair resulting from the two-photon scattering process. The curly arrows that point
away from the nanofiber represent the photons lost to the radiative modes. Increasing arrow
sizes show the increasing probability amplitudes. The three atoms shown have many atoms in
between them represented by the blue ellipsis. The top left and right show the power spectrum
of the input and output light field respectively. The bottom plots show the expected correlation
function of the transmitted field when sampled without atoms, after passing a few atoms, after
passing the critical number of atoms where the two-photon probability amplitude at zero time
delay is zero, and after a large number of atoms where the correlated photons dominate the
output (see main text).

4.3.8 Quantitative prediction

In the previous section, we saw that with increase in the number of atomic emitters coupled to
the nanofiber waveguide, we increase the fraction of correlated photon pairs relative to the un-
correlated photons which should first lead to strong antibunching and then transition to bunching
with increase in atom number. To quantify it, one can compute the normalized second-order cor-
relation function from equation 4.6. The numerator comes only from the two-photon component
at the output, and is hence proportional to |ψN (xc, x)|2 whereas the denominator is dependent
on the total output flux. From the authors of reference [51], we obtained the code for numerical
evaluation of g(2)(τ = 0) up to zeroth order in Pin/Psat, as a function of N and β. The resulting
trend of g(2)(0) with number of atoms N for a constant coupling strength β = 0.01 is shown in
figure 4.5.

As was discussed in the previous section 4.3.6, for small optical depths (or, equivalently,
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Figure 4.5: Value of the second-order correlation function at time delay τ = 0 expected for
varying number of atoms trapped around a nanofiber. The value of the coupling strength (β)
used for the above curve is 1%.

for small N) one sees a decreasing two-photon amplitude as the number of emitters is increased.
This is because of the increasing destructive interference of the two-photon probability ampli-
tude at zero time delay of the correlated and uncorrelated photons as the correlated two-photon
amplitude grows. The lowest value of g(2)(0) is equal to zero, and corresponds to an atom num-
ber where there is a complete cancellation of the two-photon amplitude at zero-time delay for the
transmitted field. Increasing N further enhances the two-photon component from the correlated
part further, as a result of which the total two photon probability amplitude becomes larger and
the two photon probability at the output becomes higher than the Poissonian statistics predicted
for an attenuated coherent state. Therefore, the g(2)(0) starts rising and grows beyond 1 at some
point, showing bunching at the output. As the dissipation is further increased by increasing num-
ber of atoms, transmitted photons that originally issue from correlated photon pairs constitute
most of the output intensity which leads to increasing bunching.

In the next chapter, we shall show the experiment that we performed to analyze photon trans-
port across atomic ensembles weakly coupled to the nanofiber guided mode. In particular, we
measure experimentally the curve shown in figure 4.5 and compare the experimentally obtained
results with corresponding theoretical predictions.
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CHAPTER 5
Observation of correlated photon

transport in nanofibers

In the present chapter, we shall look at how we studied experimentally the phenomena of corre-
lated photon transport through an atomic ensemble trapped around a nanofiber-based waveguide.
I will first explain our experimental setup and sequence design which allows us to probe atoms
coupled to the nanofiber-guided light field. This will be followed by details on data taking and
analysis. In the end, I will list the main results of our experimental study and discuss possible
applications.

5.1 Experimental Methods

5.1.1 Setup

We trap laser-cooled cesium (Cs) atoms using a nanofiber-based two-color optical dipole trap [32,
64] as was described in detail in chapter 2 and chapter 3. The schematics of the experimental
setup is outlined in Fig 5.1. The power of the blue-detuned light field (blue trap) at λ = 685 nm
is ∼ 14 mW. The pair of counter-propagating red-detuned fiber-guided light fields (red trap) at
λ = 935 nm has ∼ 0.18 mW per beam. Both trapping fields are at magic wavelength of Cs.
All light fields are quasi-linearly polarised such that the plane of the quasi-linear polarization
of the blue-detuned trapping light field is perpendicular to that of the red-detuned trapping field
and the probe field. In this configuration, the minima of the optical trap potential are located at a
distance of∼ 250 nm from the surface of the 400-nm diameter nanofiber as shown in figure 5.3.

5.1.1.1 Detection

The input light field after transmission through the nanofiber-trapped atomic ensemble also con-
tains photons from other light fields such as the trap laser induced Raman scattered photons from
the optical fibers, residual trapping light that remain after reflection from the dichroic mirrors
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Figure 5.1: Experimental setup for trapping atoms and measuring photon correlations in the
transmission. The two color optical dipole trap uses light fields at 935 nm and 685 nm, repre-
sented by the red and blue arrows and called the red-trap and blue-trap respectively. The probe
light field depicted with brown colored arrows is sent in from one side into the nanofiber. After
passing through the atomic ensemble, the transmitted probe at the nanofiber output is separated
from the trapping fields using dichroic mirrors, and filtered further using a optical lens cavity and
a volume bragg grating. It is then sent to a Hanbury-Brown Twiss (HBT) setup for coincidence
detection using SPCMs connected to FPGA based time-tagging electronics.

and broadband amplified spontaneous emission from the lasers used in the experiment. Due
to the high power (∼ 14 mW) of the 685 nm blue-detuned trapping field, the resulting Ra-
man scattered photons flux is high and contributes the most to the background photons around
852 nm. For this reason, the light transmitted through the nanofiber-coupled atomic ensemble
is, first, sent to a spectral filtering stage consisting of a Fabry-Pérot cavity (from Quantaser,
spectral width: ∼ 100 MHz linewidth, FSR ∼ 20 GHz) and volume Bragg grating filter (from
Optigrate) with a∼ 0.1 nm filtering window. Altogether, the total background counts is reduced
from about ∼ 50 KHz without filters to around < 300 Hz.

After the volume Bragg grating filter, the light is sent onto a Hanbury-Brown-Twiss setup
that consists of a beam splitter with a single photon counting module (SPCM) in each output.
The light after the beam-splitter is coupled into a multimode fiber and then guided to the SPCM.
Before each fiber, we place a 852 nm bandpass filter (LL01-852-25 Semrock Maxline, not shown
in figure 5.1) with ∼ 3.5 nm transmission window to block any spurious photons from light
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emission during photon detection in the avalanche silicon photodiodes in the SPCMs (Excellitas,
spcm-aqrh-15). The SPCMs are connected to a field-gate programmable array (FPGA) based
time tagger which records the photon detection events with a timing resolution of better than one
nanosecond. We make sure that the cable lengths and the optical path lengths are the same in
both arms so as to avoid introducing any time delay in one of the arms. A self written program
records the time stamps of every single count registered by the SPCMs and stores this data
automatically after every half an hour of experimental run.

5.1.2 Experimental Sequence
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Figure 5.2: Experimental sequence for the measurement of photon correlations. The vari-
ous steps of the experiment are represented by boxes numbered from i to x, and the duration
of the steps is mentioned above the boxes. In step (i), we laser cool the Cs atoms (MOT)
and load them into the trapping sites (molasses). Then we bring the atoms slightly closer
to the nanofiber surface by gradually ramping up the power of the red-detuned trap laser in
step (ii). The second molasses in step (iii) is to cool the atoms remaining in the trap, before
measuring the transmission spectrum in step (iv). The main part of the experiment is car-
ried out in step (v), where we do cooling and then resonant probing of the atoms 350 times
(tcool, tprobe, tidle = 200 µs, 10 µs, 5 µs). After the experiment, we measure the transmission
spectrum with remaining atoms (step (vi)), and without any atoms (step (viii)). Step (ix) and (x)
are used for measuring the photon counts due to the cooling beam scattered into the nanofiber
via the impurities in the nanofiber waist and due to the resonant probing pulse in absence of any
atoms respectively.

The step-wise timeline of one single run of the experiment is shown in figure 5.2. A single
run comprises of three main stages: preparation and characterization of the atomic ensemble
before and after the run (steps i-iv, vi-viii), interleaved cooling and probing (step v) and reference
measurements (steps ix and x). The details of the three stages of the experiment are described in
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5. OBSERVATION OF CORRELATED PHOTON TRANSPORT IN NANOFIBERS

the following subsections. This experimental sequence, with a single run duration of ∼ 300 ms,
was constantly repeated during a measurement campaign of more than 8 days duration that
consists of in total around 2.5 million runs.

5.1.2.1 Ensemble preparation

The ensemble preparation and characterization is done in step (i -iv) of the experiment sequence
shown in Figure 5.2.

(i) MOT and molasses: In this step, the atoms are loaded into the optical dipole trap from a
cigar-shaped cloud of cold Cs atoms. The atom cloud is created using a magneto-optical trap
(MOT) with elongated magnetic coils. The MOT phase is followed by a molasses cooling stage
where the atoms are cooled down to sub-Doppler temperature and loaded into the trap.

(ii) Ramp of the dipole trap depth: After the first molasses stage, the cooling light field and
the MOT magnetic fields are turned off, and the red-trap power is adiabatically ramped up over
a time of 15 ms. During this time, the cloud of cold untrapped atoms from step (i) of the
sequence expands and falls down leaving only the trapped atoms around the fiber which was
verified by making an OD measurement. The adiabatic ramp-up of the red trap power moves the
potential minimum of the trap closer to the fiber surface. This leads to a better overlap between
the evanescent field of the nanofiber-guided probe field and the atomic scattering cross section,
thereby increasing the coupling strength. To prepare different atom numbers, we change the
time duration of the adiabatic ramp. As our trapping duration is 6 ms, changing the ramping
time, thus, allows us to obtain different number of trapped atoms in the ensemble at the end of
the ramp.

(iii) Second molasses: After the power ramp, a second molasses phase cools the remaining
trapped atoms. This is necessary to compensate for the heating during the ramp which would
otherwise lead to a larger distance of the atoms from the fiber surface due to the anharmonicity
of the trap.

(iv) Transmission sweep: To measure the OD of the ensemble at this point, we record the trans-
mission (C̄atoms(δ)) of the probe field as a function of the probe detuning, as indicated by step
(iv). Using equation 3.4, we infer the OD in conjunction with the reference and by measure-
ments in step (viii) and (x), where we measure C̄without atoms(δ) and C̄bkg respectively.

5.1.2.2 Interleaved probing:

The time duration of the resonant probing of the atomic ensemble is limited by the heating of
the atoms in the trap which results in a reduction of the average coupling strength over time.
However, to get enough statistics in the limit of weakly saturating probe light field and for large
optical depths, one needs to probe the atomic ensemble for a sufficiently long duration. More-
over, to make a systematic study of the dependence of photon correlations on the number of
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atoms, a stable average atom-light coupling strength is required for the entire probing duration.
To achieve this, we implement an interleaved probing and cooling sequence discussed in the
following.

Probe pulse power and duration:The probe light field is resonant with the D2 (6S1/2, F =
4 → 6P3/2, F

′ = 5) transition and launched as a travelling wave into the nanofiber. It is
quasi-linearly polarised with the transverse polarization in the plane of the trapped atoms, i.e.,
it coincides with that of the red-detuned trapping light fields. The probe power is ∼ 2.35 pW,
which corresponds to an on-resonance saturation parameter of s0 = 0.02 for the first trapped
atom. At this power, the atoms scatterR = s0/(1+s0)·(Γ/2) ≈ 0.65 photons per microsecond,
where we assumed Γ = 2π × 5.22 MHz for the Cs D2-line cycling transition [59]. In order to
keep the momentum transfer to the atoms due to the photon recoil small, we limit the probing
duration to 10 µs. For this duration, the first atom will scatter around nsc = 7 photons. As the
probe duration is comparable to the oscillation period of the atoms in the trap, we now make the
constant case assumption that all the recoil momenta add up along the same direction. In this
case, the atom will acquire an additional kinetic energy given byE = (nsc~k)2/2mCs = n2

scEr,
where Er = 0.2 µK is the recoil energy for Cs [59]. For nsc = 7, the total increase of energy
or the heating is ∼ 72 × Er = 10 µK which is far less than the trap depth of ∼ 100 µK (see
Fig 5.3). Longer probe durations should be avoided as the atoms will quickly heat up and, due to
anharmonic trapping potential, the average atom-fiber distance would increase. Hence, a longer
probing duration will progressively lower the coupling strength.
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Figure 5.3: The potential (black line) of the two-color dipole trap as a function of the radial
distance from the nanofiber axis where the nanofiber is assumed to have a radius of 200 nm.
For our experimental parameters, we obtain a trap-depth of ∼ 100 µK. The red and blue lines
denote the attractive and repulsive optical potential generated from the red- and blue-detuned
trapping light fields (935 nm and 685 nm) respectively.

Cooling pulse: To compensate for the heating during the 10 µs of probing, we incorporated
a molasses cooling pulse with a duration of 200 µs after every probing pulse. In view of the
rise time of the AOM pulses and the timing resolution available to us from the experimental
control, we separated the probe pulse from the cooling pulse by an idle time of 5 µs. We used
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350 resonant probe pulses interleaved with molasses cooling pulses. An exemplary SPCM trace
is shown in Fig 5.4(a) to elucidate the time separation. In order to select the duration of cooling
pulse which allows us to maintain a constant optical depth of the ensemble during the interleaved
probing sequence, we varied the number of probing and cooling pulses for a given duration of
cooling pulse, and measured the OD before and after the pulse sequence. We found that for
a cooling pulse duration of 200 µs, the ratio of OD before and after the pulse sequence was
close to one for the entire duration of 350 pulses. Fig 5.4(b) shows the result. Constant OD
implies uniform transmission across all the probing pulses throughout the interleaved cooling
and probing. This allows us to sort the correlations in the transmitted photons according to the
OD extracted from the transmission.

Region of interest during resonant probing: We want to remove effects of transient rise and
fall of the transmission at the beginning and end of each probe pulse, originating, e.g., from the
finite rise and fall time of the acousto-optical modulator that controls the optical pulse. Such ris-
ing edges and power spikes can lead to unnecessary bunching features. Thus, we only consider
detection event that fall into the probing interval between 1 µs and 9 µs for each probe pulse
into account as shown in the inset of Fig 5.4(a).
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Figure 5.4: (a) Measured photon count rates from one of the SPCMs during part of the in-
terleaved probing sequence averaged over 5000 runs of the experiment. The photon counts in
region between the red dashed lines mostly originate from the transmitted resonant probe pulse
whereas the photons in the region between the two green dashed lines originate from atomic
fluorescence scattered into the nanofiber from the red-detuned molasses cooling beams. (b) De-
pendence of the OD, as obtained from the off-resonance transmission, of the atomic ensemble
on the pulse number.

Stable transmission: Figure 5.5(a) shows transmission per probe pulse with respect to the prob-
ing pulse number averaged over∼ 5000 runs for a particular setting. It follows an exponentially
decaying profile with a 1/e decay time, n0, of around 11 pulses. We attribute the initial high
transmission to the scattering induced heating of the atoms in step iv of the experimental se-
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quence where we measure the transmission spectrum of the atomic ensemble. The first few
cooling pulses of the interleaved probing sequence allow us to cool the atomic ensemble such
that we are able to attain a steady state with a higher coupling constant. Figure 5.5(b) shows the
distribution of the number of cooling pulses (n0) required for the transmission change to reach
1/e of its initial value for all the data sets recorded over 8 days. The orange dashed line shows a
Gaussian fit to the distribution with {µ, σ} of {7.5, 2.1} pulses. There could be several reasons
for the variation of n0 which also includes the temperature and humidity changes in the lab. To
work with a constant transmission, we ignore the first 20 pulses from each run.
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Figure 5.5: (a) Transmission as a function of the number of probing pulses in the interleaved
probing sequence. The orange line is an exponential fit where Tset and n0 are the steady state
transmission and 1/e decay constant (n0 = 11 for this data set) respectively. (b) Histogram
of 1/e decay times, n0, for all the data recorded over 8 days (2.5 million runs). Each point
corresponds to transmission averaging over ∼ 5000 experimental runs. Most of the points have
a transient transmission time much less than 20 pulses.

5.1.2.3 After the interleaved probing

After the interleaved probing sequence we perform the following measurements in each run of
the experiment corresponding to steps vi - x of the experimental sequence shown in Figure 5.2).

(vi) Transmission sweep: This step is similar to step (iv). We measure the probe transmission
(C̄atoms(δ) in equation 3.4) through the atomic ensemble as a function of the probe detuning δ,
from δ ∈ [−18, 18] MHz.

(vii - viii) Reference measurement for OD measurement: In step vii of the sequence we turn
off the red trap for around 5 ms to remove the atoms from the trap. Then, we scan the probe
pulse in frequency (similar to in step iv and vi), but without atoms. Together with (vi) and using
this as a reference (C̄without atoms in equation 3.4) allows us obtain the transmission spectrum of
the atomic ensemble and hence estimate the OD as mentioned in section 3.3.2.
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(ix) Reference measurement for cooler: We record the clicks from the cooler being scattered
into the nanofiber in the absence of any atoms. The reason for recording it is as follows. In the
interleaved cooling pulse, the atoms are cooled down using the free-space cooling beams from
the MOT/Molasses setup. In this process, a fraction of the photons scattered by the atoms are
coupled into the nanofiber. Due to their large detuning from the atom resonance (∼ −12Γ),
the photons that are emitted into the guided mode of the nanofiber can propagate with low loss.
Since the number of scattered photons is proportional to the number of atoms, they can serve
as an alternative means to estimate the number of atoms. However, the impurities on the fiber
surface can also scatter a non-negligible number of photons into the fiber giving rise to a photon
background. This background may show long-term (over several hundred experimental cycles)
drifts in cooling laser power. Therefore, to estimate correctly the number of cooler fluorescence
photons scattered into the fiber from the trapped atoms, we also record this background.

(x) Reference measurement for resonant probe: In addition to the above reference measure-
ments, we also record the transmission of the resonant probe without atoms for the duration equal
to the total integrated duration of probing in the step v of the experimental sequence (= 3.5 ms).
After this step, we also acquire the background counts when all the light fields, except for the
dipole trap lasers, are off. This allows us, using equation 3.4 with detuning δ = 0 to extract the
on resonance OD of the atomic ensemble from transmission. The background counts originate
from the dark count of the detector plus any residual trapping-laser induced Raman scattered
photons from the fiber that passed the filters.

5.1.3 Estimation of coupling strength (β)

In order to estimate the coupling strength β of a single atom to the waveguide (defined by
equation 4.27), we carry out a saturation measurement as described in Ref. [64, 70, 142]. The
basic principle of a saturation measurement can be summarized as follows. We assume we have
an ensemble of N atoms that are equally strongly coupled to the nanofiber mode. According to
generalized Beer-Lambert law the change in power of light propagating through the fiber along
z- direction over a distance dz can be written as:

dP = −
n(z)σ0/Aeff

1 + P (z)/Psat
P (z)dz (5.1)

where, n(z) is the local atom number density such that
∫
n(z) = N gives the total number of

atoms, σ0 = ~ωΓ/2Isat is the effective on-resonance scattering cross section of the atoms, and
Psat = IsatAeff = ~ωΓ/8β is the saturation power, and Isat = πhc/3λ3Γ is the saturation
intensity and Aeff is the position dependent effective optical mode area of the evanescent field.
Separating the variables into P (z) and n(z) and integrating on both sides we get:

∫ Pout

Pin

(
1

P (z)
+

1

Psat

)
dP (z) = −

∫ L

0

n(z)σ0

Aeff
dz

⇔ ln

(
Pout
Pin

)
+
Pout − Pin

Psat
= −Nσ0

Aeff
(5.2)
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Figure 5.6: Saturation measurement: The graph shows the power transmission as a function of
the input power (x-axis) in terms of the saturation power Psat for three different atomic ensembles
but with the same trap configuration. The dashed line shows the fit according to the modified
Beer-Lambert’s law as discussed in section 5.1.3. The estimated atom numbers corresponding
to the colors blue, orange and green are N = { 60, 61, 66 } ± 3 atoms. The average coupling
strength was obtained to be β = 0.83%± 0.03%.

Substituting, T = Pout/Pin (equivalent to transmission), and s0 = Pin/Psat (equivalent of
on-resonance saturation parameter), the above equation can be expressed as:

ln(T ) + s0(T − 1) + c = 0 (5.3)

and has the solution T = W [s0e
(s0−c)]/s0, where W [. . .] represents the Lambert W function

and c =Nσ0/Aeff . In the limit, s0 → 0, equation 5.3 gives, c = − ln(T ), which by definition is
the optical depth. Using the definition of optical depth from equation 4.29, we get c = − ln[T ] =
4Nβ. Therefore, one can rewrite equation 5.3 as

T =
W
[
s0 e

(s0−4Nβ)
]

s0
(5.4)

To extract the coupling strength (β), we record T as a function of s0 and fit the data points
using equation 5.4 using N and β as the fit parameter. For this, we prepare an optical ensemble
as described in section 5.1.2.1 using a MOT and molasses phase followed by a ramp up of the
dipole-trap field and a second molasses. Then, we measure the transmission of a resonant probe
pulse of duration of 10 µs for different powers of the probe pulse. For the trap configuration
used in this chapter, we obtain an average value of β = 0.0083 ± 0.0003 from three different
saturation measurements with different atom numbers. The data from one of the saturation
measurements is shown in Figure 5.6.
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5.2 Data processing

For the data used in the following, the experiment ran over a total of 8 days. The photon arrival
times were saved into a file every half an hour. Parameters such as optical depth, laser powers and
frequency were continuously monitored. A field gate programmable array based fast electronic
time-tagger records the time stamps of the photons detected by the two SPCMs at the output
of the nanofiber. Using these timetags, we are able to calculate the transmission and cross-
correlations.

5.2.1 Sorting runs based on OD from transmission

As we saw in 5.1.2.2, the transmission of the atomic ensemble during the resonant pulsing in
step (v) gives us the OD of the atomic ensemble. Alternatively, the OD could also be measured
from step (iv) and (vi), which is however not a reliable measure of OD in a single shot because
of two reasons. First, the probe-induced heating caused during this step modifies the OD the
ensemble. Secondly, due to low probe powers the transmission spectrum is very noisy and two
fit parameters: OD and Γ (see equation 3.4) are susceptible to photon shot noise. Therefore, for a
single shot measurement of the on-resonance optical depth, we choose the average transmission
during the resonant probing as means to infer the OD.

Calculating transmission: For every run, we count all the timestamps during the region of
interest from all but the first 20 pulses. We represent this set as Nmeas

p , where the subscript stands
for probe photons. From the reference probe pulse (without atoms), we calculate the number of
photon clicks expected in the effective probing duration. We call this Nmeas

r , where the subscript
stands for reference pulse. Both the numbers are background corrected. We calculate the OD in
a single run as:

OD = − ln[T ] = − ln

[
Nmeas
p

Nmeas
r

]
(5.5)

Fig 5.7 shows the distribution of photon counts acquired during each experimental run (left) and
the corresponding distribution of ODs acquired (right) from all 2.5 million runs of the experi-
ment.

Binning the OD: For our analysis, we sort the runs according to their OD using a binsize of
0.1, 0.25 and 0.5 for ODs in the lying in the intervals [0, 4.0], [4, 5] and [5, 8], respectively.
For larger ODs, we increased the binsize so as to compensate for the reduced transmission and
the concomitant reduction of the signal to noise ratio at higher ODs. For the same reason, we
require more number of experimental runs at larger OD as seen in Figure 5.7 (b).

Uncertainty in OD: The OD calculated from the transmission using equation 5.6 has an un-
certainty because of the shot noise associated with photon counting. Because of this, the data
sorted based on this OD features an uncertainty range larger than the OD bin size defined. Here,
we estimate this uncertainty in terms of the OD as well as in terms of atom number for a given
value of the coupling strength β.
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Figure 5.7: Measurement statistics: (a) Histogram of the number of photons transmitted in a
single run for the probe beam during the probing interval with atoms (blue) and without atoms
(orange). (b) Histogram of ODs during all the experimental runs.

We start with the fact that OD and the number of atoms in the ensemble, Na, is linearly related
for small β (see equation 4.29) as:

Na =
OD

4β
= − 1

4β
ln
Np

Nr
(5.6)

where, Np and Nr are the number of photons in the probing and reference pulse. If Na denotes
the set of all atom numbers that correspond to a given OD bin [ODa,ODb], then assuming a
given β,

Na = {Na : (ODa/4β) ≤ Na < (ODb/4β), Na ∈ Z } (5.7)

The photon and atom numbers are integers. For a given atom number, Na ∈ Na, and input
photons, Nr, the subset of mean transmitted photon counts, Np, can be obtained as:

Np =
{
Np ∈ Z : Nre

4β(Na−1) ≥ Np > Nre
4βNa

}
(5.8)

Having defined the notations, our target is to calculate the uncertainty in the atom number
distribution realized in the experiment, given the set of reference photons count, Nmeas

r , and the
transmitted probe photon counts, Nmeas

p , as measured in the experiment. Since each measured
count, Nmeas

r/p is a sample from a Poission distribution with meanNr/p, therefore, the probability
of generating a given mean transmitted probe photon count depends on the measured photon
distribution as:

p(Np) =
∑

Nmeas
p

p(Np|Nmeas
p )p(Nmeas

p )

=
∑

Nmeas
p

(Np)
Nmeas
p e−Np

(Nmeas
p )!

p(Nmeas
p ) (5.9)

where, p(Nmeas
p ) is the measured probability distribution as shown in blue in Figure 5.7(a) and

p(Np|Nmeas
p ) is the probability of mean Np photons when Nmeas

p photons were observed. This
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arises due to the Poissonian shot noise associated with photon counting [143]. The probability
p(Nr) can also be expressed similarly. However, in our case the mean reference count is high
enough (〈Nr〉 ∼ 4000) such that the signal to noise (∼ 〈Nr〉 /

√
〈Nr〉 � 1) is much greater

than one. Therefore, we ignore the noise in the reference pulse and use the p(Nr) = p(Nmeas
r )

which is represented by the orange curve in Figure 5.7.

Summing up over all measured combinations of reference and transmitted probe photon
counts, we can find the probability of realizing a certain atom number in our experiment as:

p(Na) =
∑

Nr∈Nmeas
r

p(Nr)
∑

Np∈Np

p(Np) (5.10)

Substituting equation5.9 into equation 5.10 one can obtain the probability distribution of each
atom number corresponding to the OD bin as realized by the experiment. For this distribution
of {Na, p(Na)}, we find the mean and variance as N̄a and ∆Na. The error bar in the OD mea-
surement for a given bin corresponds to the variance of the underlying atom number distribution
and hence is expressed as ∆OD = 4 · β ·

√
〈∆N2

a 〉.

5.2.2 Obtaining normalized second order correlations

In the following section, we shall see how to extract the second order correlation, g(2)(τ) from
the coincidences in photon detection events at the output of the nanofiber.

5.2.2.1 Obtaining the coincidence histogram, (C(τ))
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Figure 5.8: An exemplary coincidence histogram recorded for OD = 3.15. The y-axis shows the
number of coincidences C(τ) at time delay τ . The triangular shape originates from the finite
probing duration of 8 µs which gives [−8µs, 8µs] as the possible range of τ . For displaying
purpose, the time bin size has been adjusted to 5 ns. The inset shows a zoom of the region
corresponding to the red rectangle in the center.
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Based on the sorting criteria mentioned in the section 5.2.1 above, we obtain the correlations
for different optical depths. For every run, we select all the timestamps recorded during the
region of interest from all the 330 probe pulses (see section 5.1.2.2). We then generate a his-
togram of all the time differences (∆t) between the photon detection events in the two detectors
to obtain the coincidence histogram for a single run. We use a binsize of 1 ns, which is much
shorter than the characteristic time scale of the variation of the expected second order correlation
function which is on the order of Γ−1 ∼ 30 ns. Based on the OD of the atomic ensemble for the
run considered, we sort and accumulate the coincidences from each run into one out of 54 such
histograms, C(τ).

5.2.2.2 Normalization
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Figure 5.9: Obtaining g(2)(τ) from the coincidence histogram: The top panel shows the co-
incidence histogram (C(τ), blue) for OD = 3.15 and the corresponding reference histogram
(Cref(τ), orange). The y-axis shows the number of coincidences at time delay τ . The bottom
panel shows the corresponding g(2)(τ). The time bin size used for displaying the data is 5 ns.

The atoms introduce the correlations between otherwise uncorrelated photons if the time
delay between the photons, τ � Γ−1 [51] Therefore, correlations recorded for large time delays
are essentially equivalent to that of the coherent state and can serve as a reference for obtaining
the g(2)(τ). We obtain this reference by fitting the coincidence histogram, C(τ � Γ−1) to an
inverted symmetric triangle, Cref(τ) = (m|τ |+c), wherem and c refer to the slope and intercept
of the triangle. The inverted triangular shape is due to the finite duration of the rectangular
probe pulse. Since two photons from the same pulse cannot be separated by more than the pulse
duration, this triangle approaches zero as shown in Figure5.8. The corresponding g(2)(τ) is
obtained as C(τ)/Cref(τ). To find {m, c} for the Cref(τ) from C(τ), we first define a range
|τ | ∈ [200 ns, 600 ns], which is much greater than Γ−1, but sufficiently smaller than the time
scales of some other mechanisms such as optical pumping of the atomic ensemble, which we do
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not want to consider here. The normalized second order correlations for all the 54 coincidence
histogram for the different ODs is shown in Figure 5.13. The Appendix B shows the coincidence
histograms, C(τ), for all the OD bins side-by-side with the normalized second order correlations
as obtained by the procedure described in this section.

5.2.3 Estimating g(2)(0) from coincidence histograms

From our discussion in chapter 4, we are interested in analyzing the change in g(2)(0) with
optical depth. Due to low counts, especially at higher optical depths, the measured value of
g(2)(0) is susceptible to noise. Therefore, we adopt a heuristic fit function which reasonably
approximates the shape of our g(2)(τ) for small delays, τ . Γ−1, where Γ is the excited state
linewidth. Based on the fact that the transmission spectrum has a Lorentzian shape [144], which
in the time domain transforms to a decaying exponential, we can write:

g(2)(|τ |) ≈ K(1 +Ae−|τ |/τ0) for |τ | . Γ−1 (5.11)

where, τ0, A, and K are the free parameters for the decaying exponential. The ratio A and τ0

determine the shape of the correlations. Since the expected correlation function is symmetric,
g(2)(−τ) = g(2)(τ), we perform analysis on the folded coincidence histogramC(|τ |) def

= C(τ)+
C(−τ). For completeness, Figure 5.10 shows the triangular fit (dashed orange lines) to the
folded coincidence histogram (blue). The observed coincidence counts scales the reference,
Cref , as:

Cmodel(|τ |) = CrefK(1 +Ae−|τ |/τ0), if τ . Γ−1 (5.12)
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Figure 5.10: Example of fitting the folded histogram C(|τ |) (blue) for two different ODs (left:
2.15, right: 7.25), to a line, C(|τ |) = m|τ | + c, (orange) in the region [200 ns, 600 ns], where
{m, c} are the fit parameters. The time bin size used for displaying the coincidences is 5 ns.

Next, we need to fit the observed correlation statistics in a small region around zero time de-
lay using equation 5.12. Due to the low coincidence counts for high ODs, the usual least square
fitting method is not suited. Instead, we resort to a maximum likelihood estimation (MLE) of
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g(2)(0). In our case, MLE searches for the unknown parameters, Θ = {A, τ0}, of Cmodel(|τ |),
which maximizes the total probability to observe the measured coincidence histogram C(|τ |).
The probability that a coincidence count that lies in the window [0, T ], leads to a coincidence
click at time delay, τ , is given by the probability distribution function

p(τ |Θ) =
Cmodel(|τ |)∫ T

0 Cmodel(|τ |) dτ

=
(m|τ |+ c)× (1 +Ae−τ/τ0)

cT +mT 2/2 +Acτ0 +Amτ2
0 −Aτ0(c+m(T + τ0))e−(T/τ0)

(5.13)

The probability to obtain ci coincidence events at time-bin τi is given as (p(τi,Θ))ci . The joint
probability of obtaining a measured coincidence histogram, C(|τ |), given parameter set Θ is
defined as the likelihood L [Θ] expressed as

L [Θ] =

n∏
i=1

(p(τi,Θ))C(τi) (5.14)

We vary the parameter set, Θ = {A, τ0}, and try to maximize the likelihood for observing the
coincidence histogram, C(|τ |), for a given OD. We do so for all 54 coincidence histograms
and find the respective parameters Θfit = {Afit, τ0fit} for which our model best describes the
measured coincidence histograms. For larger optical depths where we expect bunching, the ap-
proximation in equation 5.11 is valid over a small range. Therefore, we limit the fit region to
the characteristic time scale of the expected correlation functions to T ≈ Γ−1/2 ≈ 15 ns for the
datasets with OD > 6 as compared to 30 ns otherwise.

To find the remaining unknown,K, in equation 5.12, we normalizeCmodel(|τ |) by comparing
its integral to the integrated number of coincidences C(τ) in the region where the MLE was
applied in the previous step. Mathematically this can be expressed as:

K =

∫ T
0 C(τ)dτ∫ T

0 Cmodel(τ |mfit, cfit, Afit, τ0fit)dτ
(5.15)

Therefore, corresponding to the coincidence histogram observed for each OD, the respective
g(2)(0) = K(1 +Afit) as given by equation 5.11.

Error estimation of g(2)(0): We estimate the error in the value of g(2)(0) by means of a
bootstrapping method. For each OD in Figure 5.11, we generate 50 artificial coincidence data
samples,{C ′(τ)}, with the photon statistics given by p(τ |Θ = Θfit), where Θfit is the parame-
ter set [Afit, τ0fit] of the MLE fit which maximizes the likelihood of observing the experimen-
tally recorded coincidences for that OD. For each of these samples generated, we again perform
a MLE which yields the new fit result [A′fit, τ

′
0fit]. We also perform the normalization (step 4)

and obtain the K ′ for each sample. From the set of {A′fit,K ′}, one can find the estimates of
g(2)(0) as g′ = K ′(1 + A′fit). The standard deviation of the resulting distribution of g′ is then
used as an estimation of the error in g(2)(0). Fig. 5.11 shows the value of g(2)(0) (blue) and its
standard deviation obtained in this way for each OD bin.
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Figure 5.11: Correlations at zero time delay vs. number of trapped atoms The blue data
points show the zero time delay value g2(0) of the measured second order correlation functions
as a function of the optical depth of the atomic ensemble (lower x-axis) or average number of
trapped atoms (upper x-axis). For better visibility, we plot the same data using a linear (a) and
a logarithmic (b) scale for the y-axis. The values g(2)(0) and their errors are obtained from
maximum likelihood fits to the individual correlation functions (see section 5.2.3 for details).
The solid red line is the theory prediction taking into account the experimental uncertainty in
OD estimation with the coupling strength β as only fit parameter (see section 5.2.4 for details).
For comparison, we also show the theory curve without uncertainty in atom number for the same
value of β (dashed green curve). The number of trapped atoms on the upper x-axis is determined
from the measured OD using the measured value of β. The error bars in x-direction indicate the
spread in atom numbers that enter in the measured correlation function.
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5.2.4 Theoretical prediction of (g(2)(0) vs OD)

In order to understand if the measured dependence of the g(2)(0) vs OD fits to our theoretical
model, we have to use the exact theory to calculate a curve similar to Figure 4.5, taking into
account the factors like photon shot noise and uncertainty of atom number (uncertainty of OD,
see section 5.2.1). Using this model, we employ a least squared error minimization [145, 146]
to obtain the fit parameter, β. As a first step, we precalculate 1 the value of g(2)

exact(0, Na, β)
in the ideal case for different atom numbers (Na ∈ [1, 2, . . . , 700]) and coupling strengths
(β ∈ [.01%, 0.02%, . . . , 0.2%]) using the results from Reference [51]. To calculate g(2)

th,OD(0, β)
for a given value of β, we average the ideal case theory over the the underlying atom number
distribution found in equation 5.10 as

g
(2)
th,OD(0, β) =

∑
{Na}

g
(2)
exact(0, Na, β) · p(Na) (5.16)

where, {Na} is the set of atoms numbers corresponding to each OD bin taking into account the
shot noise in photon counting (see section 5.2.1 for more details). For every β, we calculated,
χ(2)(β) as:

χ(2)(β) =
∑
OD

(g
(2)
th,OD(0, β)− g(2)

exp,OD(0))2

(∆g
(2)
exp,OD(0))2

(5.17)

where the numerator is the difference of the theoretically estimated and experimentally inferred
value of g(2)(τ) for each OD bin, and the denominator is the error bar for the experimentally
inferred value (see previous section 5.2.3. We vary the fit parameter, β so as to minimize the
value of the error, χ(2)(β), as given by equation 5.17. We obtained the best fit corresponding
to βfit = 0.82% ± 0.02% which corresponds to the orange line in Figure 5.11. This value of
coupling strength agrees well with the value obtained via the saturation measurement in section
5.1.3 of 0.83%±0.03%. Using βfit, we now calculate the theory prediction g(2)

th,OD(τ, βfit) for all
OD settings. The corresponding theory curve is shown in orange in Figure 5.13 and Figure 5.12.

5.3 Results and Interpretation

Figure 5.11 is the main result of the investigation. It shows the observed variation of g(2)(0) with
respect to increasing optical depth (lower axis) or atom number (upper axis). As expected, for
low atom numbers, the photons statistics of the input light remains unmodified and the output
second-order correlation function is approximately flat with g(2)(0) ≈ 1. With increasing aver-
age number of atoms, one observes that the g(2)(0) starts to fall below 1. This originates from
the destructive quantum interference of two-photon probability amplitudes of the correlated and
uncorrelated parts (see section 4.3.6 and 4.3.7 for theory). When further increasing the OD, one
observes that g(2)(0) decreases further until, for an OD of 5.12, or for a mean number of atoms
of N̄ = 156, it reaches its smallest value of g(2)(0) = 0.37 ± 0.12. Ideally, the theory predicts

1We thank Sahand Mahmoodian for supplying us with the numerical code for the exact theory [51].
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Figure 5.12: A set of four exemplary second-order correlation functions obtained for different
optical depths (a) 3.15, (b) 5.13, (c) 5.88, (d) 6.75. The blue lines show the experimental data
(with 2 ns binning) whereas the orange line is the theoretical prediction. The four plots help
us to see a general trend in the correlations introduced between the photons. For small atom
numbers, a: N̄ = 96, we see antibunching. For an increased atom number, b: N̄ = 156, we
observe the best antibunching. As the atom number is increase further, c: N̄ = 179, we see a
rise of bunching by the peak at τ = 0. For large atom number, d: N̄ = 206, we observe a strong
photon bunching. The corresponding curves for all the OD bins is shown in Figure 5.13.

that g(2)(0) should go down to zero, which happens when the ratio of correlated to uncorre-
lated two-photon amplitude is−1. However, in the experimental situation, the uncertainty in the
atom number distribution leads to an averaging over different atom numbers (see section 5.2.1)
and, thus, g(2)(0) remains finite. For even higher mean atom numbers, the contribution from
correlated photon pairs to the two-photon output becomes larger such that g(2)(0) starts to rise
and increases above 1 at around N̄ ∼ 180 atoms. At very high OD, most of transmitted photons
originate from nonlinear interaction with the atoms, and the bunching increases indefinitely. The
highest bunching that we observed is g(2)(0) = 24 ± 6.5 corresponding to mean atom number
of N̄ = 237.

Figure 5.12 shows four exemplary second-order correlations for different regimes of the ex-
periment as discussed above. The blue curve shows the observed g(2)(τ) whereas the orange
curve is the theory prediction calculated for β = βfit assuming the expected atom number vari-
ation for the respective bins. Panel (a), which corresponds to an average atom number N̄ = 96,
shows weak antibunching as expected for low atom numbers which gradually increase until it
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becomes the maximum for N̄ = 156 atoms. At this point, one can see an oscillatory behavior
of g(2)(τ) for larger time delay, τ which can be attributed to the mutual frequency difference
of the two photons of the correlated photon pair [147]. In panel (c), one can see a peak near
τ = 0 for a mean atom number of N̄ = 179. Around this point, two-photon pairs are more
likely than predicted by the Poissonian statistics, which changes the output photon statistics to
bunching. This photon-bunching becomes stronger with increasing atom numbers. Panel (d)
shows an exemplary bunched photon statistics observed at the output for mean atom number,
N̄ = 206 atoms. Figure 5.13 shows all the normalized second order correlations g(2)(τ) (blue)
obtained experimentally for the different optical depths. For each OD, the theoretically expected
g

(2)
th,OD(τ, βfit) (orange) is also shown.

5.4 Conclusion and Outlook

The results presented in this chapter show that atomic ensembles can be used to realize strongly
correlated many-body states of photons despite weak light-matter coupling and dissipation. In
particular, our system enables tuning the second-order correlations of the transmitted light by
changing the number of emitters coupled to the light. On one hand, for low atom numbers,
we observe antibunched photons, while on the other hand, for larger optical depths, we observe
bunched photons. Both regimes have a range of possible applications, in particular in the realm
of quantum information science. Our approach lifts the restriction of having a strong optical
driving fields to enhance the optical non-linearity, which have so far been used for generating
non-trivial states of light. Our results show that one can collectively enhance [25, 30] the non-
linearities by using an ensemble of emitters weakly coupled to the optical mode of the nanofiber.

Our system offers a novel method for generating antibunched photons. Around the point of
lowest antibunching at OD∼5.4, see orange line in Figure 5.11, we measured an output photon
flux of ∼ 45 Kcounts/s for our input light intensity corresponding to an on-resonance satura-
tion parameter of s0 = 0.02. In order to know how far can one increase the flux of antibunched
photons and, thus, to gauge the performance of this new type of source, we calculate the output
flux, n(s0, β) as a function of saturation intensity and β. We compare it against the maximum
output flux from a perfect source of antibunched photons, such as spontaneously emitted pho-
tons from a single atom. For this, we first determine the configuration, {Nβ, β }, for lowest
g(2)(0) numerically similar to Figure 4.5. We then calculate the transmission T{Nβ ,β} for this
configuration, up to first order in Γ/β using the formalism outlined in [51]. The transmission at
the point of best antibunching is plotted against the respective coupling strength in Figure 5.14
in blue and can be approximated well with a fit 2 T fit

{Nβ ,β} ≈ β
1.15, for β < 0.1, which is relevant

for most systems. For an input power corresponding to s0 = Pin/Psat, where Psat = ~ω0Γ/(8β)

2Since transmission of the input is found up to the first order in Γ/β, changing the input power can modify the
value of the exponent of the fit T fit

{Nβ ,β}. For example, for a different s0 ∼ 0.8, where the first order approximation

still holds, T fit
{Nβ ,β} ≈ β1.17. The fit gives us a conservative estimate on the transmission as can be seen from

Figure 5.14.
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Figure 5.13: Normalized second order correlations, g(2)(τ), (blue) obtained for different av-
erage optical depths (ŌD) (corresponding mean atom number given by N̄ ) stated in respective
panels. The orange line is the theoretically expected curve (see section 5.2.4). The time bin size
used for the plot is 5 ns.
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is the saturation power, the output photon flux is then given as:

nout(s0, β) =
Pout

~ω0
=
T{Nβ ,β} · Pin

~ω0
=
T{Nβ ,β} · s0Psat

~ω0
=
T{Nβ ,β}s0Γ

8β
(5.18)

0.00 0.01 0.02 0.03 0.04 0.05
β

10−3

10−2

10−1

T
N
β
,β

Figure 5.14: Transmission at the point of lowest g(2)(0) for different values of single atom-
photon coupling strength β. The transmission was numerically computed using the expressions
from reference [51]. The dashed orange line is a fit of the form βx over the range [0.003, 0.03].

For our experiment with parameters {s0, β,Γ} = [2%, 0.8%, 2π · 5.2MHz], the above expres-
sion gives, nout = s0Γβ0.15 ≈ 39 KHz, which agrees well with the experimentally observed
value. In the ideal case, the best antibunching is expected at around OD of 6, see dashed green
line in Figure 5.11, in which case the output rate would be lower. The ratio η = n(s0, β)/nmax ≈
s0T{Nβ ,β}/β gives a relative figure of merit of our source against a perfect single photon source,
where, nmax = Γ/2, is the maximum output photon flux that can in principle be collected from
a single emitter source. We plot η in Figure 5.15 as a function of the input power and the single
atom-light coupling strength β. Increasing the input power, the output flux of the antibunched
photons reaches up to almost 40% of the rate theoretically achievable with a perfectly coupled
single atom. In addition, the underlying physics is independent of the type of the emitter or spe-
cific optical mode or frequency used and this method can be used for all frequencies spanning
the electromagnetic spectrum without the need for controlling the individual emitters and their
coupling strengths. These features makes the observed effects highly promising for realizing
new sources of nonclassical light, such as single photon sources, in particular for wavelengths
where it is not possible to achieve strong coupling of individual atoms or emitters to an optical
mode.
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Figure 5.15: Expected photon output at the point of perfect anti-bunching of our scheme as
a function of input power and β in units of the maximum photon rate Γ/2 achievable with a
perfect single emitter source.
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CHAPTER 6
Outlook and conclusion

6.1 Summary

In my thesis, the nonlinear photon transport through an array of weakly coupled atomic emitters
was studied. For this purpose, we trap neutral Cesium atoms around a sub-wavelength diameter
optical glass fiber with a novel experimental setup. I contributed to building the setup from the
scratch. In my thesis, some of the key features of our setup have been explained, namely, a large
cigar shaped MOT, scalar light shift compensated trapping, highly tunable magnetic-field, good
optical access, long nanofiber waist and fiber translation capabilities. I have theoretically de-
scribed the non-trivial features of light propagation in nanofibers and calculated values of light
shifts from the trapping and probing light fields that are used in our experiments. I showed ex-
perimental results where we have achieved high optical depths of about 1000 from the nanofiber
trapped atomic ensembles despite weak single atom-light coupling. The experimental techniques
for generating and characterizing the atomic ensembles were explained.

In the following, I focus on the physics of photon scattering through waveguides coupled
weakly to one or many quantum emitters. First, a theoretical foundation is laid for understanding
the role of temporal correlations in the intensity of a light field. Then, the simplest case of
a single photon scattering via a quantum emitter coupled to a waveguide is studied, followed
by introduction of the scattering-matrix formalism, with up to two input photons, following
which the theoretical results in the limit of many weakly coupled emitters are summarized [51].
Based on the theory, I explain how our system can show a complex interplay between nonlinear
processes and disspation to generate nonclassical photon statistics at the output. In particular,
I explain how by changing the number of atoms one can control the ratio of the correlated and
uncorrelated two-photon components and how their destructive interference leads to a stream of
perfectly anticorrelated photons. Following it, I explained why increasing the number of emitters
further led to higher chance of photon pair production at the output than predicted by Poissonian
statistics, thereby generating photon bunching.

Following it, I have demonstrated an experimental technique to study such strong photon-
photon interactions in a nanofiber-trapped atomic ensemble. First, I explained the experimental

97



6. OUTLOOK AND CONCLUSION

setup where we studied the output photon correlations via a Hanbury Brown and Twiss setup.
I explained in detail the experimental sequence that allow us to prepare an atomic ensemble
with varying atom numbers and probe it with a weak coherent field for long enough duration
without changing much the single-atom light coupling strength. We sorted each run according
to the OD and obtained photon coincidence histograms corresponding to 54 different ODs. For
each coincidence histogram, the second-order correlation function, g(2)(τ), was calculated and
its value at photon time delay of zero was estimated via a maximum likelihood estimation.

Our results confirm strong photon-photon interactions despite the weak single atom-light
coupling and the inherent dissipation in the system. It shows in particular that by optimizing
the balance between nonlinear and linear transmission (dissipative) one goes from generating
anti-bunched to bunched light. From the second-order correlation function for different op-
tical depths, we see that by increasing the atom number we can monotonously decrease the
g(2)(0) until it reached a minimum value. Increasing the number of atoms further we can tune
the “effective” photon-photon interaction from repulsive to attractive and the g(2)(0) increases
monotonously as predicted. In our measurements, especially at higher optical depths, we were
mostly limited by the background noise of the detection process. Our analysis taking into ac-
count the OD averaging and atom-number fluctuations associated with each OD bin shows that
the observed crossover in g(2) from uncorrelated to antibunched to bunched behavior for growing
atom number is in very good agreement with the theoretical expectations, and gives convincing
evidence for the physics of interacting photons for quantum emitters chirally coupled coupled to
a waveguide.

The research presented in my thesis demonstrates a many-body non-equilibrium phenomenon
that makes photons interact with the help of just a few weakly coupled atoms. Furthermore, in
contrast to other protocols for the generation of non-classical states of light that rely on strong
driving fields to enhance the nonlinear effect, we work in a weak saturation limit but yet see an
enhancement of the nonlinearity owing to the collective response of the atoms. Our results show
the possibility of creating a source of anticorrelated photons with a photon flux comparable to
that of a perfectly coupled fully saturated single emitter even in the limit of weak coupling.

6.2 Outlook

Having summarized the results, I would like to motivate the readers towards other possible lines
of investigation.

Photon-pair generation and anticorrelated photons

Our setup is in principle capable of generating correlated photons pairs as we saw in sec-
tion 4.3.6. A possible study would be to herald the single photons and perform a second-order
correlation measurement on the heralded photon. Since increasing the number of emitters also
correspond to an effective attenuation for the correlated two-photon component, therefore, go-
ing to very large optical depths may not be ideal and needs to be investigated. The effect of
increasing the input pump power can be investigated as well. Lower pump powers may lower
the rate of pair generation. However, higher pump powers might increase the chances of obtain-

98



6.2. Outlook

ing photon number states with more than two photons. Therefore, the optimum pump power for
pair generation needs to be investigated.

As discussed in section 5.4, another obvious line of investigation is to find out the perfor-
mance of our system as a resource for anticorrelated single photons. It could be investigated if
it is possible to increase the flux of anticorrelated photons without compromising the antibunch-
ing. A very simple way to do so would be to increase the input power as is also evident from
Figure 5.15. A separate line of investigation could be to realize a source of antibunched photons
based on a recent proposal [148], where working near the conditions of electromagnetically in-
duced transparency of the nanofiber-trapped Cs atoms can be harnessed to generate a source of
antibunched photons. The proposed method can be effective without additional requirement of
accurate control of the number of coupled emitters, as was the case for our system.

Investigating collective effects

Bragg scattering: Nanofiber based atom trapping provides by default a periodic array of trap-
ping sites. The scattered light from atoms placed in such a periodical fashion show a well-
defined phase relationship which leads to interesting consequences for the guided mode of the
fiber [45, 46]. However, the periodicity could also modify the emission of the photons scattered
into the radiative modes such that they are preferably emitted in a direction determined by the
phase matching condition. Such an effect may provide insights into coupling radiative modes of
the atom to the fiber guided mode [149]. To this end, I have presented some preliminary classical
simulations in Appendix A, taking into account the realistic fiber, the dipolar emission pattern
of the trapped atoms and a realistic filling factor of the trapping sites.

Investigating trapping with counterpropagating blue-trap The optical setup of the experi-
ment allows one to trap the atoms in a configuration where the periodicity is determined by the
blue-detuned standing wave while the red-detuned trapping field is a running wave. By doing so
one might be able to trap more atoms as there will be more trapping sites per unit length along
the waist. Moreover, this change in separation between the trapped atoms will change the ratio
of scattering into the free space to that into the guided modes of the fiber [40]. Such an effect
will have applications in increasing the fidelity of storage and retrieval of optical excitations in
nanofiber-based atomic ensemble [40, 150]. Therefore, it could be a possibility to investigate
trapping using a configuration where the periodicity of the trapping sites is determined by the
blue-detuned trap laser.
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APPENDIX A
Bragg Scattering

Nanofiber-trapped atoms have advantageous properties for the implementation of quantum mem-
ories for light: One can obtain a very high OD, and the decoherence due to atomic motion and
collisions is highly suppressed. This is beneficial for implementations using existing quantum
memory protocols. In particular a recently proposed scheme [151] uses engineered subradiant
collective states of a periodic array of atoms coupled to a nanofiber. The result is an increase of
the storage success probability that scales exponentially with the number of atoms.

A first step towards the implementation of this specialized protocol is to prove that the experi-
mental system supports collective scattering effects. Recently, it was demonstrated that periodic
arrays of around 2000 atoms next to a nanofiber can lead to significant reflection of the fiber-
guided light [46, 152]. Here, the collective back-scattering of the periodically arranged atoms
gave rise to a Bragg resonance. In this case, both incoming and outgoing modes are fiber guided,
and the reflection is independent of non-uniformities of the fiber waist radius. We propose to
take these experiments one step further by using the atomic array to couple fiber-guided and
free-space modes using a Bragg resonance. In this case, interference of the fields scattered by
different atoms should result in a collective emission into a cone with a well-defined angle with
respect to the fiber axis. The angle θ, enclosed between the wavevector of the emitted light and
the fiber axis, is given by the condition for constructive interference,

k0Λ cos θ + βΛ = 2π (A.1)

where β and k0 are the propagation constants of the probe light in the fiber and in free-space,
respectively, and Λ is the distance between the trapping sites. The condition for constructive
interference can be easily derived form the illustration in Fig. A.1(b). The relative phase of the
light that is scattered out of the fiber by a first atom and a second atom Λ away from the first is
given by the sum of two terms in the left hand side of equation A.1. The first term corresponds to
the free-space propagation of light under an angle θ. The second term describes the propagation
of light in the fiber.
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Figure A.1: (a) A sketch of the Bragg cone shows that it will be detected as a circular ring
on a screen placed normal to the z-axis. Moreover, the vertex of the cone opens along +z
direction. The zoom-in shows the atoms trapped in the periodic trapping potential with a certain
probability called the filling factor of the trapping sites. (b) A simple scheme demonstrating the
interference of light scattered by two atoms (yellow circles) separated by a distance Λ. The light
is propagating along −z direction. (c) Two configurations where probe field is quasilinearly
polarized along the x or y axis, also called strong and weak axis, respectively. Defining the
quantization axis along y, the local polarization experienced by the atoms on the two sides of
the fiber is σ+ and σ− for strong axis configuration. For the weak axis configuration, atoms on
both sides of the fiber are π polarized.

A.1 Simulation

A.1.1 Analytical calculation of intensity distribution

When equation A.1 is fulfilled, light scattered under angle θ interferes constructively. Thus, we
expect that most of the optical power is concentrated in a cone. Such a cone with respect to the
nanofiber is shown in Fig. A.1(a). To be able to better understand the Bragg resonance-mediated
coupling of radiative and guided modes, one needs to know the exact spatial distribution of the
intensity of the radiated field in the free-space. This involves taking into account several factors
such as the lattice constant (Λ), probe field wavelength (λ = 2π/k0), variation of the nanofiber
radius and the effect of the polarization of the probe field at the position of the atoms. In this sec-
tion, I will be discussing these factors one by one. Then, I will numerically compute the realistic
intensity distribution as would be seen on a screen as shown in Fig. A.1(a) placed orthogonally
to the nanofiber axis at a macroscopic distance form the atoms.

As a first step, we start with approximating the trapped atoms as point emitters. Assuming a
collection of atoms, where the jth atom has coordinates ~rj = (xj , yj , zj), the radiated field at a
position ~r due to the jth atom, assuming it to be a pointlike scatterer emitting spherical waves,
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is given by:

Ej(~r) = Aj
ei(k0|~Rj |+βzj)

|~Rj |
(A.2)

whereAj is the amplitude of the electric field at the position, ~rj , of the jth atom and ~Rj = ~r−~rj ,
where ~r denotes the point at which the field is being observed and ~rj is the position of the jth

atom. Unless specified otherwise, I have considered the amplitude, Aj , to be constant. The
intensity due to the scattering on multiple trapped atoms can be obtained as

I(~r) ∝

∣∣∣∣∣∣
∑
j

~Ej(~r)

∣∣∣∣∣∣
2

(A.3)

A.1.2 Array of dipole emitters

In our experimental configuration, the probe field is quasi-linearly polarized such that the trans-
verse linear polarization is either in the trapping plane or perpendicular to it (see 2.2.3). There
is an azimuthal asymmetry in the probe field intensity, and the atom-light interaction is the
strongest when the probe is quasilinearly polarized in the trapping plane and hence this is called
the strong axis. For probe polarization being orthogonal to the trapping plane, the local field
intensity at the position of the trapped atoms is weaker and hence is called the weak axis. For
the configuration shown in Fig. A.1, the strong and weak axis corresponds to the probe polar-
ization along x- and y- axis, respectively. Along the strong axis, the longitudinal field of the
probe is maximum and it is ±π/2 phase shifted from that along the transverse direction where
the negative and positive phase shift correspond to azimuthally opposite sides. For more details
on the electric field distribution around the nanofiber see section 2.2.2. For a probe field that is
quasi-linearly polarized along the x-direction, the local polarization of the probe field is approx-
imately (x̂ − iẑ)/

√
2 := σ− for the atoms on one side of fiber, and it is (x̂ + iẑ)/

√
2 := σ+

for the atoms on the other side. For a probe quasi-linearly polarized along the y-direction, the
polarization for the atoms in the x-z plane corresponds to π = ŷ. Since the dipole emission pat-
tern is non-isotropic and depends on the local polarization of the probe field, we must take it into
account. Fig. A.2 shows the simulated emission pattern form a single atom which is treated as a
spherical wave emitter (left), π−polarized emitter, i.e., the dipole is polarized along y (centre),
and σ+-polarized dipole emitter (right) as seen on a screen placed 10 cm away. One can clearly
see the difference in the emission patterns for the three cases. In the case of σ+ polarized dipole,
the emitted pattern resembles quite closely to a dipole polarized along x because the contribution
from the z component of the dipole which is half of the total emission, has very weak emission
into the direction of observation. In general, Fig. A.2 leads us to a conclusion that for a precise
calculation of the spatial intensity distribution of the scattered light, we must consider the dipole
emission pattern of all the atoms that contribute to it. This is discussed in the following.

Treating the trapped atoms as dipole emitters with dipole vector ~d±j where subscript j denotes
the jth atom, and the superscript + and - refers to the atoms on opposite sides of the nanofiber
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Figure A.2: Simulated isotropic and non-isotropic emission patterns due to a single atom at z
= 0 as seen on a screen placed at z = −0.1 m at a given time instant. The atom is treated as
(a) a spherical wave emitter, (b) a π−polarized emitter (dipole along y) for probe quasilinearly
polarized along y− axis, and (c) a σ+− =polarized dipole emitter (~d = (x̂+ iẑ)/

√
2) for probe

quasilinearly polarized along x− axis.

waist, the resulting electric field at ~r, due to the jth atom at rj , can be written as:

~Ej(~r) = Aj
ei(k0|~Rj |+βzj)

|~Rj |3
(~Rj × ~dj)× ~Rj (dipole emitter) (A.4)

where, ~Rj = ~r − ~rj and Aj is amplitude of the electric field at the position of the jth atom,
which unless specified otherwise is assumed to be a constant. As the next step, I calculate using
equation A.2, A.3 and A.4, the intensity distribution due to the simplest case of a single array
of atoms trapped around a perfect nanofiber with filling factor pF = 1. For further simplicity,
we will be ignoring any reflection, refraction or diffraction effects due to the presence of the
nanofiber waist. Considering individual atoms of the array as a spherical wave emitter, a π-
polarized dipole emitter, and a σ+ polarized emitter, the collective emission pattern as seen on
a screen is calculated and shown in Fig. A.3, panels (a-c) respectively. Owing to the symmetry
of point like emitters, the resulting pattern is an azimuthally symmetric ring as shown by panel
(a). The anisotropy of the dipole emission breaks this symmetry of the ring as shown for dj = π
(panel (b)) and dj = σ+ (panel (c)). In panel (d) I have used two emitter arrays on diametrically
opposite sides of the fiber with dipole polarization σ+ and σ− respectively as will be the case
for probe field along the strong axis.

A.1.3 Incorporating imperfections

For the results in Fig. A.3 we had assumed an ideal nanofiber waist with uniform radius, a,
of 200 nm. In addition, we had assumed that all the trapping sites were filled with a filling
factor pF = 1 and comprised of an array of spherical wave emitters or dipole scatterers. In this
section, we shall have a look at more realistic scenarios corresponding to parameters from our
experimental setup.
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Figure A.3: (a-c) Collective emission pattern for an array consisting of N = 100 atoms on
one-side of the nanofiber with filling factor pf = 1. Each atom of the array is a (a) spherical
emitter (b) dipolar emitter π−polarized (c) dipolar emitter σ+-polarized. (d) Total of 200 atoms
such that there are N+ = N− = 100 atoms on each side of the nanofiber which are σ+ and
σ−-polarized respectively. The intensity shown in each panel is normalized to the total number
of emitters considered for each case. The screen is located at z = −0.1 m. All atoms are
assumed to be 250 nm away from the surface of an ideal cylindrical nanofiber with waist radius
of 200 nm.

A.1.3.1 Non-uniformities in the fiber

In a realistic scenario, the nanofiber radius is non-uniform as can be extracted from an SEM
(scanning electron microscopy) imaging of the nanofiber waist (see Fig. A.4(a)). Due to this, the
local propagation constant of the red-detuned trapping field changes according to Equation 2.1
(red line in Fig. A.4(b)) which leads to a change in the periodicity of the lattice as Λn = π/βred

n .
The radius variation also changes the propagation constant of the probe (blue line in Fig. A.4(b)).
In addition, the resulting change in the intensity distribution in the evanescent field around the
nanofiber waist changes the radial trapping potential. Hence, the radial position of the trapped
atoms (rtrap) is also modified. This changes the x−coordinate of the atoms trapped in the x-z
plane. For incorporating the resulting changes, we re-write equation A.4 and discretize the z-
axis into segments denoted by subscript j containing only a pair of trapping sites on opposite
sides of the fiber as:
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βprobe = βprobe
j (aj) (A.5a)

x±j = ±rtrap
j cos(φ

trap
j ) (A.5b)

y±j = ±rtrap
j sin(φ

trap
j ) (A.5c)

zj =

j−1∑
n=1

Λn =

j−1∑
n=1

π

βred
n

(A.5d)

where the subscript j denotes quantities at z = zj , aj is the local radius of the fiber, and
r

trap
j , φ

trap
j are the radial and azimuthal position of the trapping minima. The following sub-

section explains why the azimuthal position of the trapped atoms may show a local variation.

A.1.3.2 Rotation of trapping plane

The birefringence of the nanofiber waist causes a quasilinearly polarized light field to rotate its
polarization. Form the visibility measurement similar to the discussion in section 3.2.2.3, one
can obtain the relative orientation of the quasilinear polarization of the red-trapping field along
the section of a 20 mm long nanofiber waist. This is shown in Fig. A.4(d). The data points
corresponds to the entire length of the nanofiber waist being divided into 50 adjacent segments.
Due to smaller segment size, the signal to noise per segment is higher, which results in a higher
noise in the estimation of the angle of the trapping plane and leads to a more conservative
estimate of the directional scattering. However, it must be noted that such a noisy behavior of
the change of the trapping plane orientation is not physically expected, as can be seen for larger
segment sizes in Fig. 3.6(a). Assuming that the polarization of the counter-propagating red-trap
field matches to the first one, we can use the values plotted in the figure as a sample φtrap

j .

A.1.3.3 Position distribution of the atoms about the trapping minima

The uncertainty in the radial position of trapping minima is shown in the Fig. A.4 (c) and
has been accounted for in equation A.5. An additional uncertainty arises from the vibrational
motion of the trapped atoms about the trapping minima. The anharmonic trapping poten-
tial can be approximated by a harmonic trap centered at the trapping minimum. One can
extract the trap frequencies from the trap depth. For our case we find trapping frequencies
(ωr, ωθ, ωz) = 2π × (110, 55, 172)kHz, respectively, for ∼ 20 mW of blue-trap at 685 nm and
(0.8 + 0.4) mW of red-trap at 1064 nm for two counterpropagating red-detuned trapping fields.
We assume probing on the strong axis. Assuming a trapped atom as a quantum mechanical har-
monic oscillator, one can find out the position spread of the atom in nth excited vibration state as√

(2n+ 1)~/ωmCs where ω is the trap frequency. Unless cooled to the ground state as demon-
strated recently [39], the position uncertainty corresponding to the first excited vibrational state
gives the lower bound on the position spread. Assuming atoms to be in the first motional ground
state, gives as the average position uncertainty as (〈∆x〉 , 〈∆y〉 , 〈∆z〉) ∼ (30, 45, 25) nm. To
simulate the position uncertainty of the atoms, we shift the position of the atoms, (xj , yj , zj) in
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Figure A.4: Variation of different parameters along the waist of the fiber. (a) A sample nanofiber
radius profile as extracted by scanning electron microscopy. (b) The local propagation constant
of the probe field and the red-detuned trapping field as determined by the local nanofiber waist
radius from a. (c) The radial distance of the trapping minima, given the local fiber profile, for the
trap powers mentioned in section A.1.3.3. (d) The rotation of the trapping plane over 50 adjacent
sections on the nanofiber waist. The calculation is done from a polarization measurement similar
to the one described in section 3.2.2.3. (e) The phase difference between the light emitted from
the atom at position z when the realistic fiber shown here is used instead of an ideal nanofiber
with a perfectly cylindrical waist.
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equation A.5(b-d) to (xj + δxj , yj + δyj , zj + δzj), according to a normal distribution with the
uncertainties calculated as the standard deviation.

A.1.3.4 Filling factor

As we know from section 3.3.5, not all of the available trapping sites are occupied. We choose
a maximum filling factor of around 16 % for all our simulations. Assuming a large MOT with
a uniform overlap with the fiber waist and a uniform MOT density, all trapping sites in our
simulation have the same probability of being loaded with an atom.

A.1.3.5 Uncertainty of loading

The overlap of the MOT with the nanofiber waist is not exactly the same in every run. Due
to this, the ensembles of atoms are loaded at slightly different regions of the nanofiber waist
in different runs of the experiment. Therefore, one can try to add a position uncertainty to
the average loading position of the ensemble. This can be restricted to a small region of the
nanofiber waist. One can implement it by the shifting the z-coordinate of the first atom z0 by a
distance δ′z, such that δ′z is sampled from a normal distribution with mean of zero and standard
deviation being a fraction of the total stretch of the MOT cloud around the fiber. We choose it to
be less than a millimeter.

A.1.3.6 Scattering losses from trapped atoms

Due to the scattering of light from the nanofiber trapped atoms, the intensity of the light field
decays as it propagates further through the trapped ensemble. Assuming an OD per atom, one
can incorporate this effect as:

Aj = A0 exp

[
−
j−1∑
i=1

(α+o+
i + α−o−i )

2

]
(A.6)

where o±i is the occupancy of the site with values 1 or 0 if an atom is present or absent in the ith

trapping site and ± denotes the diametrically opposite sides, Aj is the electric field amplitude.
The factor of 2 arises because the electric field amplitude, Aj , is proportional to the square root
of the intensity. The factor α± accounts for the OD per atom on the two sides of the nanofiber.
This could be different for the two sides owing to difference in the atom-light coupling strengths
on the two sides of the fiber. For our simulations, we assume α+ = α− = 0.03. The ratio of
amplitude A0 for probing along strong (σ± dipolar emission, probe polarized along x) or weak
(π dipolar emission, probe polarized along y) axis is Astrong

0 /Aweak
0 ∼

√
2 as can be seen from

the radial intensity plots (along strong and weak axis) in Fig. 2.3.

A.1.4 Realistic intensity distribution of the cone

Based on the discussion in the previous sections, one can simulate the scattering from the atoms
and calculate the intensity distribution pattern as would be seen on a screen placed at a distance
of 0.1 m from the first atom in case of a realistic fiber shown in Fig. A.4. The probe is assumed
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Figure A.5: Average intensity pattern as expected on a screen for atoms filled in 500 pairs
of trapping sites with filling factor pF = 0.16 when probed along weak axis (a) and strong
axis (b) corresponding to π polarized and σ polarized atomic dipoles respectively. The fiber
radius, propagations constants, trap minima position and trapping plane angular deviations are
accounted for as in Fig. A.4. The averging is done over 500 ensembles which are assumed to be
within the first 1 mm section of the fiber. The averaged intensity is normalized to the number
of atoms in each case. The screen is located at z = −0.1 m. The top and side panels show the
intensity distribution as seen along the lines y = 0 and x = 0 respectively.

to propagate along −z direction. The atoms are loaded into 500 trapping sites on each side of
the nanofiber, with filling factor pF = 0.16, with the position of the first atom (z0) normally
distributed in the first 1 mm section of the fiber shown in Fig. A.4. All fiber imperfections dis-
cussed are taken into account with accordingly modified position of the trapped atom (xj , yj , zj)
and associated position uncertainties (δzj , δzj , δzj), propagation constants, trapping plane an-
gle, and filling factor. We calculate the intensity pattern as recorded on the screen averaged over
500 realizations of the atomic ensemble. The result is shown in Fig. A.5. The leftmost and right-
most plots are intensity distribution along the vertical direction, y = 0, for probing along weak
and strong axis respectively. The top left and top right plots are intensity distribution along the
x-axis of the screen for probing along the weak and strong axis. The intensity distribution on the
entire screen is shown by the two central plots. The left and right half of the figure corresponds
to a simulated collective Bragg scattering as expected to be seen on a screen for an array of π
and σ± polarized atomic dipoles, respectively.

From our calculations, we conclude that one should be able to observe the Bragg scattering
despite the imperfections in the fiber. One can compare the intensity pattern for a nonuniform
fiber Fig. A.5(b) with the case of a uniform nanofiber waist Fig. A.3(d). Both the figures have
the same probe configuration (quasilinearly polarized along x) and also equal number of σ+

and σ− polarized atoms on the two sides of the fiber. The intensity distribution along the line
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Figure A.6: Comparision of intensity distribution for the case of uniform (ideal) and nonuniform
fiber (realistic). The normalized intensity distribution along the line, y = 0, on the imaging
screen is plotted. The probe field is quasilinearly polarized along x direction in both cases, and
the position of the screen is the same. The position of the cone is indicated by the intensity
peaks. There is a significant background in the region other than the cone, and the constrast of
the cone is reduced when the realistic situation is considered (see main text).

x = 0, for both cases is shown in Fig. A.6. One can see that in the case of an imperfect fiber, the
contrast of the intensity pattern decreases at the cost of increase of the background. The fiber
imperfections causes imperfect phase matching of the light emitted from nonuniformly spaced
emitters, thereby causing only a partially constructive interference. In addition, the decrease in
the filling factor causes the atoms to be spread out further, such that the paraxial approximation
in the far-field limit (shown in Fig. A.1(b)) does not hold. In other words, the angle θ for
constructive interference of light emitted from atoms placed far apart, is no longer a constant
given by the Bragg condition in equation A.1 but changes with the position of the atoms in the
chain, which blurs the cone. In general, the biggest factor contributing to the reduction of the
cone contrast is the non-uniform fiber surface. It causes the relative phase between the light
emitted from any atom with respect to the first atom to fluctuate as shown in Fig. A.4(e). Over a
distance of a few hundred micrometers the phase change can be more than 2π. Therefore, each
small section of the fiber, creates a ring on the screen because of almost perfect phase matching.
Each of these rings is slightly displaced from one another because different sections of fiber emit
light at the angle given by the Bragg condition. However, due to imperfect filling factor, each
of these rings is broader than the ideal case and can partially overlap and destructively interfere
with the adjacent rings. As a result, for very large atomic ensemble we still expect to observe
the directed emission, but instead of a single peak, there will be multiple bright and dark fringes
at roughly the angle given by the Bragg condition in equation A.1.

A.2 Detection

To prove the existence of such a directed emission, the most direct way seems to image the
ring on a single-photon sensitive camera (Andor iXon 897) using a two lens imaging system as
shown in Fig. A.8. For that, one needs to evaluate the Bragg angle for a resonant probe field
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for a given red-trap laser wavelength using the equation A.1. Fig. A.7 (top) shows the Bragg
scattering angles for various red-trap wavelengths for a probing field at ∼ 852 nm (blue, D2
line of Cs) and ∼ 894 nm (orange, D1 line of Cs). For the simulations done in this chapter, the
red-detuned trap laser was assumed to be at 1064 nm for which most of the D2 light is scattered
out at roughly 56◦ and most of the D1 light is scattered out at 49◦.
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Figure A.7: Scattering angle for different red-trap wavelengths for D2- and D1-lines of Cs at
852.35 nm (blue) and 894.59 nm (orange), respectively.

The light emitted from the atomic ensemble along the direction of the cone has its wavevec-
tor oriented along the cone. To collect this light and image the cone, an example two-lens
imaging system is shown in Fig. A.8. The example calculation for Fig. A.8 was done using
ABCD matrix formalism by Dr. Christoph Simon in our group. The Bragg angle corresponding
to figure is 20◦ corresponds to a red-trap laser at the magic wavelength of Cs (935 nm) and prob-
ing at the D1-line of Cs at∼ 894 nm. To resolve the angular distribution of the emitted light, the
first convex lens collects the light emitted at different angles and focuses it to a point in the focal
plane. Therefore, the light from the cone is focussed to a ring shaped intensity distribution. The
closest this lens can be placed to the ensemble is∼ 11 cm, which is limited by the glass vacuum
chamber. The aperture of this lens needs to be large enough such that it can collect light from
the entire cone, with minimum spherical aberration. We propose to use a large diameter Fresnel
lens from Edmund Optics with focal length of 110 mm for this purpose. Due to the finite size
of the sensor on the camera (8.2 mm × 8.2 mm), the ring shaped image focussed behind the
first lens has a larger diameter than the sensor and has to be demagnified. Therefore, a second
convex Fresnel lens is placed at roughly 910 mm from the atoms to obtain a demagnified image
at ≈ 103 cm from the atoms, with the diameter of the ring-shaped image reduced by a factor of
roughly 6. The camera sensor would then have to be placed at this point to obtain the sharpest
image of the ring.

A.3 Outlook

The Bragg scattering process as discussed here occurs as a result of constructive interference. It
is quite obvious that by destroying the periodicity (for example by switching to a running wave
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Figure A.8: A possible imaging setup for the Bragg ring. The Bragg emission is at 20◦ corre-
sponding to a red-detuned trap field at 935 nm and resonant probe at wavelength of 894.59 nm
which corresponds to the D1-line of Cs. The camera sensor is placed at the focus of the second
lens at ≈ 1030 mm. Each lens in the setup has a focal length of 110 mm.

configuration instead of standing wave for the red-trap field) one randomizes the phase of the
light scattered out which leads to a uniform rather than directed emission. This can serve as a
negative control measurement to prove the dependence of directional emission on the ordering
of trapping array. Another possible negative control measurement to confirm directional emis-
sion will be to destroy the phase coherence of the emissions from the individual atoms so as to
prevent constructive interference. This should give a uniform emission in 4π rather than a direc-
tional emission. To do so, we propose to excite the atoms with a short (duration τpulse � Γ−1)
intense resonant light pulse such that the pulse area corresponds to π. By doing so one can
achieve a population inversion of the whole atomic ensemble. Upon decay, the photons emitted
from each excited atom will have random phases and, therefore, they will not show any pref-
erential direction of emission. In this case as well, we expect the ring to be absent. A positive
control experiment for confirmation of the Bragg scattering would be to scan the red-detuned
trap laser wavelength and verify the dependence of the scattering angle on the wavelength of
the red-detuned trap laser. The dependence is given according to the Bragg condition in equa-
tion A.1 and shown by Fig. A.7. The scattering angle in this measurement can be inferred from
the diameter of the observed ring.

The treatment here is elementary and serves as a guideline for a more thorough approach.
Other factors that could be taken into account are multi-level nature of the atoms, reflection of
light from the nanofiber waist surface (Mie-scattering) in the vicinity of the atoms, heating of
the atoms due to scattering of resonant photons, birefringence experienced by each light field as
it propagates in the nanofiber waist and any possible back-reflection of the red-detuned trapping
field. Once established experimentally, Bragg scattering opens up avenues for efficient coupling
of radiative modes to the guided modes of the nanofiber by means of the atoms. The topic in
general is a complex many-body physics problem and a thorough theoretical treatment and an
experimental verification could be a future direction of research.
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