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Abstract

Cold atom-nanophotonic systems constitute a powerful research platform for the exploration of
new regimes of light-matter interaction. The guided light in nanophotonic systems are tightly
confined, and often used to trap and manipulate cold atoms at subwavelength distance away
from the surface. While the initialization of atomic internal degrees of freedom in these systems
has been achieved, a full control of the atomic quantum state also requires manipulating and
preparing the atomic motional state at the quantum level.

In this thesis, we explore and characterize the coupling between motional and spin degrees
of freedom in nanofiber-trapped atoms. This coupling originates from the strong polarization
gradient which occurs naturally in spatially confined light fields, i.e., the guided light field in
a nanophotonic system. We demonstrate that the spin-motion coupling can be utilized to im-
plement degenerate Raman cooling and prepare atoms close to the three-dimensional motional
ground state. We obtain mean numbers of motional quanta of nanofiber-trapped atoms using he-
terodyne fluorescence spectroscopy. Building on this work, we then use the spin-motion coup-
ling for nanofiber-trapped atoms to realize a mechanical analogue of the Dicke model. We infer
the energy spectrum of the system from transitions observed in the fluorescence spectrum. We
show that our system reaches the ultrastrong coupling regime. Moreover, we demonstrate that
the coupling strength can be readily tuned using an additional nanofiber-guided light field.

Furthermore, we achieve imaging of single nanofiber-trapped atoms. Taking advantage of
degenerate Raman cooling, we cool atoms near the motional ground state while collecting atom-
scattered light using a camera. We show single atoms can be detected by imaging at an integra-
tion time far less than the trapping lifetime. To demonstrate the potential of this technique, we
perform two proof of principle experiments. First, we measure the extinction of a nanofiber-
guided light atom by atom, and verify the Beer-Lambert Law in the few atoms regime. Second,
we detect the atom-scattered light that is coupled to the nanofiber. We observe interference of
scattered light fields as a function of the distance between two trapped atoms.

By controlling atomic motional states and imaging single atoms, our work in this thesis adds
to the toolbox for manipulating and detecting cold atoms interfaced to nanophotonic systems,
and paves the way for realizing the bottom-up approach to explore new regimes of light-matter
interaction atom by atom.
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CHAPTER 1
Introduction

In the past few decades, the field of cold atoms has undergone a tremendous development that
enables unprecedented control over complex quantum systems [1–7]. Almost in parallel, the
field of nanophotonics, i.e., the study of the behavior of light on the nanometer scale and the
interaction between light and nanometer-scale objects, has benefited from the increasing indus-
trial and research capabilities to provide evermore control of light fields at the subwavelength
level [8–10]. Nanophotonics-based cold atom systems represent a natural marriage between
these two fields [11–16], and constitutes as a promising platform for engineering strong light-
matter coupling and realizing potentially scalable systems for quantum information process-
ing [17–20]. Such systems utilize the unique properties of light in nanophotonic devices to
interact with localized atoms on the quantum level. In particular, by engineering the nanopho-
tonic mode structure, e.g., by introducing bandgaps or reducing the mode volume, the interaction
between the atoms and the mode can be modified and enhanced [21].

Nanophotonics-based cold atom systems have flourished in the last decade, and one of the
primary examples is the nanofiber-based atom trap. The nanofiber-based atom trap was proposed
in the works by Fam [22], and was first experimentally demonstrated in our group [11]. Here,
atoms are interfaced using the evanescent field of the nanofiber-guided light. The atoms can be
trapped ∼300 nm away from the fiber surface. The nanofiber-interfaced atoms form two one-
dimensional arrays parallel to the nanofiber. The coupling of individual atoms and the nanofiber-
guided light is largely constant at different trap positions on the fiber, thereby thousands of atoms
can be homogeneously coupled to the nanofiber-guided light. The coherence properties of the
trapped atoms have been investigated using Ramsey spectroscopy. The ground state coherence
time of the trapped atoms can reach on the order of milliseconds [23]. The nanofiber is realized
as the waist of a tapered optical fiber. The guided light fields in a standard optical fiber can be
efficiently coupled into and out of the nanofiber section.

The nanofiber-guided light is strongly confined in the transverse direction, resulting in an
efficient coupling between trapped atoms and the nanofiber-guided light, i.e., an optical density
on the order of 10 can be realized with just a few hundred atoms. Another consequence of
this confinement is the direction-dependent polarization of the nanofiber-guided field. Taking
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1. INTRODUCTION

advantage of this property, chiral coupling between light and nanofiber-guided modes has been
observed [24, 25]. As an application, the chiral coupling has been used to realize an optical
diode [26].

The nanofiber-based light-atom interface can enable observation of collective phenomena.
The heralded creation of a single collective spin excitation of atom arrays coupled to a nanofiber
has been demonstrated [27]. Furthermore, under the Bragg condition, nanofiber-trapped atoms
can be used as an atomic mirror for a fiber-guided light [28–30]. Moreover, if an external light
field fulfills the Bragg condition, the nanofiber-trapped atoms can be used to efficiently scatter
light into the nanofiber-guided mode.

In recent years, there have been increasing interests to control nanofiber-guided atom’s mo-
tional states. Besides the fundamental interest to gain access to the atom’s full quantum state,
understanding and manipulating the atomic motional state can add extra degrees of freedom for
certain quantum protocols. The heating rate in the nanofiber-based trap has typically been ex-
ceeding those in comparable free-space optical microtraps by ∼3 orders of magnitude. Due to
the excessive heating, the trapping lifetime is only ∼50ms, far shorter than the limit imposed
by the collision rate with the background gas. Both the high heating rate and short lifetime are
roadblocks for the implementation of certain protocols and devices. In particular, the thermal
motion of atoms in the trapping potential leads to fluctuation of the coupling strength between
the atoms and the nanofiber-guided light. The inhomogeneity of the atom-waveguide coupling
is detrimental to the performance of experiments which utilize the collective excitation of atoms,
e.g., atomic Bragg mirrors, quantum memories [28, 29, 31, 32]. In this thesis, we will address
this problem by preparing atoms close to the motional ground state using degenerate Raman
cooling. Our cooling scheme relies on the coupling between motion and spin degrees of free-
dom of the trapped atoms, which arises from the properties of the nanofiber-guided trapping
light fields. This coupling enables control of the atom’s motional states through manipulation of
its spin states. We utilize fluorescence spectroscopy to measure the atomic temperature in three
motional degrees of freedom.

In addition, we show that the Hamiltonian describing the spin-motion coupling in nanofiber-
trapped atoms matches that of the Dicke model. In particular, the bosonic mode in the Dicke
model is represented by the motional states of the trapped atoms. We show that the eigenen-
ergy of the Hamiltonian can be read out using fluorescence spectroscopy, and the corresponding
parameters in the Dicke model are readily tunable in the ultrastrong coupling regime.

Finally, we demonstrate imaging of single trapped atoms by collecting the atom-scattered
light in the degenerate Raman cooling scheme. Atom imaging is an enabling technique in cold-
atom systems that allows the possibility of postselection and possible feedback schemes. Com-
pared to free space atom traps, imaging atoms interfaced to a nanophotonic device presents
different challenges, e.g., high background signal due to scattering of the excitation light by the
nearby nanophotonic structure. Hence, until now imaging of single atoms has been elusive for
such systems. The degenerate Raman cooling scheme extends the trapping lifetime of atoms and
thereby allows us to perform imaging of single atoms with a sufficient signal to noise ratio. To
demonstrate the versatility enabled by imaging single atoms in the nanofiber-based trap, we carry
out two proof-of-principle experiments: First, we measure the extinction of a nanofiber-guided
probe light as a function of number of atoms detected by imaging. In this measurement, we test
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the Beer-Lambert’s law in the few-atoms regime. Second, we study the scattering of light by
atoms into the nanofiber-guided mode. Conditioned on the imaging detection of two atoms, we
observe the interference of atom-scattered light fields as a function of the inter-atomic distance
determined by atom images.

The thesis is structured in the following way: In chapter 2, the nanofiber-based atom-light
interface will be introduced. The properties of the nanofiber-guided mode will be described, in
particular, the intensity and polarization pattern of its evanescent field. In addition, the trapping
potential formed by nanofiber-guided light will be introduced. In chapter 3, we will introduce the
fictitious magnetic field and show how it enables the coupling of the spin and motional degrees
of freedom. In chapter 4, fluorescence spectroscopy of trapped cold atoms will be introduced.
We will show how this technique can be implemented in the nanofiber-atom interface and how
it enables the detection of atomic motional states. In chapter 5, we will describe the cooling
of nanofiber-trapped atoms close to the motional ground state using a degenerate Raman cool-
ing scheme. We will characterize the cooling efficiency using fluorescence spectroscopy and
trapping lifetime measurements. In chapter 6, we will show that the spin-motion coupling for
nanofiber-guided atoms can be used to simulate the Dicke model in the ultrastrong coupling
regime. We will demonstrate that the coupling strength can be read out through fluorescence
spectroscopy. In chapter 7, we will demonstrate imaging of single trapped atoms. We will
characterize the atom detection efficiency based on imaging. Finally, we will demonstrate two
textbook-like experiments: one tests Beer-Lambert’s law in the few-atoms regime, and one stud-
ies the interference between two atom-scattered light fields as a function of the inter-atomic
distance.
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CHAPTER 2
Optical nanofiber based light-atom

interface

The invention of optical fibers has revolutionized communication on a global scale [33]. In-
formation can be encoded into pulses of light and transmitted through optical fibers across the
globe. Most common optical fibers are made from silica glass, and are consist essentially of
a cylindrical core surrounded by a cladding layer with a lower refractive index. Due to the
change in the refractive index at the boundary between core and cladding, the fiber-guided light
propagates along the path defined by the fiber via total internal reflection in the fiber core. For a
high-quality single-mode fiber, the loss rate can be as low as 0.2 dB per kilometer in the 1550 nm
wavelength region [34].

In contrast to a conventional optical fiber, a nanofiber has a core diameter of less than a
micrometer. In addition, a nanofiber has no cladding layer, and the nanofiber-guided light is
directly exposed to the environment. For the light fields involved in our experiment, their wave-
lengths are comparable to the typical diameter of a nanofiber, thereby a large portion of the
nanofiber-guided light’s intensity is in the evanescent component. Using a red-detuned light
field and a blue-detuned light field that are nanofiber-guided, trapping of atoms near a nanofiber
can be realized.

The nanofiber-guided light is continuously focused while propagating in the nanofiber sec-
tion, which typically has a length on the order of 1 cm. In conjunction with the tight confinement
and low transmission loss, nanofiber-guided light can be used to interact homogeneously and ef-
ficiently with an ensemble of trapped atoms.

In this chapter, we describe the experimental setup for the nanofiber-based light-matter inter-
face. In particular, we discuss the properties of the nanofiber-guided mode, i.e., its polarization
and intensity pattern. Moreover, we describe the interaction between a far-detuned nanofiber-
guided light field and a cesium atom in the electronic ground state. We show how trapping
potential can be formed using the configuration of two-color guided light fields. Furthermore,
We explain a nanofiber-based transmission measurement which is routinely used for probing and
monitoring the trapped atom’s optical density.
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2. OPTICAL NANOFIBER BASED LIGHT-ATOM INTERFACE

Figure 2.1: Illustration of a nanofiber-based atom trap. The blue arrow represents the blue-
detuned light field at 783 nm which is quasi-linearly polarized along the y-axis. The red arrows
represent the red-detuned light fields at 1064 nm which are quasi-linearly polarized along the
x-axis. The two counter-propagating red-detuned light fields form a standing wave, resulting in
two lattices of trapping potentials at two sides of the nanofiber. The trapped atoms are depicted
by yellow circles.

2.1 Experimental setting for nanofiber-based optical dipole trap

To interface atoms with nanofiber-guided light at a constant coupling strength, atoms need to be
spatially confined near the nanofiber. For this purpose, we utilize the nanofiber-guided light’s
evanescent fields to trap atoms at a sub-wavelength distance away from the nanofiber surface.
The trapping light consist of two components: A red-detuned standing light field and a blue-
detuned running light field. We choose trapping light fields that are far detuned, i.e., of a fre-
quency that is more than ∼30THz away from the D1 and D2 transitions of a neutral cesium
atom. Hence, the occupation of the electronic excited state is negligible. For the experiments
shown in chapters 5 and 6, the wavelengths of the red and blue-detuned light fields are 1064 nm
and 783 nm, respectively. The blue- and red-detuned trapping light fields have mutually orthog-
onal quasi-linear polarizations. They form two diametric one-dimensional lattices of trapping
potentials along the nanofiber, see Fig. 2.1. We describe the expected trapping potential in sec-
tion 2.2.

The nanofiber is realized as a waist region of an adiabatically-tapered optical fiber. The
nanofiber was produced in a heat-and-pull process [35]. The final diameter of the fiber waist
is ∼500 nm and the single-mode transmission is ∼ 97% for the wavelengths of 1064 nm and
783 nm used for trapping [11]. To minimize the loss of trapped atoms due to collision with the
background gas, we place the nanofiber in a high vacuum environment, i.e., a vacuum chamber
evacuated by a turbo-molecular pump and an ion getter pump. The pressure inside the vacuum
chamber is kept at ∼ 3× 10−9 mbar [24], corresponding to a collision-limited trapping lifetime
of ∼1 s. The nanofiber-guided light fields enter the vacuum chamber through a Teflon feed-
through. We apply an electric current between 3A and 7A to a cesium dispenser to heat out
cesium atoms into the vacuum chamber.

We first prepare a cold atom cloud in the vicinity of the nanofiber using a magnetic optical
trap (MOT). The magnetic field for the MOT is in the anti-Helmholtz configuration and is pro-
vided by two main coils, one placed above and one below the vacuum chamber. The vacuum
chamber is made from stainless steel and does not shield the experiment from stray magnetic

6



2.2. Nanofiber-guided mode

Figure 2.2: Energy level diagram for a cesium atom. The two main transitions are D1

(62S1/2 → 62P1/2) and D2 (62S1/2 → 62P3/2). The splitting between the two hyperfine states
F = 4 and F = 3 of the 62S1/2 electronic ground state is 9.2GHz.

fields and Earth’s magnetic field. Moreover, stainless steel might even be the source of a stray
magnetic field. We use two additional pairs of magnetic coils to compensate magnetic fields
orthogonal to the one generated by the main coil pair. The atoms are cooled by three pairs of
counter-propagating light fields red-detuned to the D2-cycling transition of the cesium atom.
We denote these light fields as the cooling light in this section. We use a pair of D2 light on the
F = 3 to F � = 4 hyperfine transition to pump atoms out of the F = 3 hyperfine state which is a
dark state for the cooling light. The cesium D2 transition hyperfine structure is shown in Fig. 2.2.
During the MOT stage, the cesium atoms in the vacuum chamber form a cold atom cloud near
the nanofiber. In the experiments described in this thesis, the MOT stage lasts between 1 s and
2 s. In order to load atoms into the nanofiber-based optical trap, we perform polarization gra-
dient cooling and to further reduce atoms’ motional energy. For polarization gradient cooling,
we ramp down the magnetic field to 0G and gradually sweep the frequency of the cooling light
further away from the atomic resonance. Once the atom’s kinetic energy is less than the depth
of the trapping potential, atoms are gradually loaded into the nanofiber-based optical traps. Due
to the collisional blockage effect, each trapping site contains at most one atom and the filling
factor of all trapping sites is lower than 0.5.

2.2 Nanofiber-guided mode

For the experiments described in this thesis, we use a nanofiber with a diameter of 500 nm.
As the nanofiber is mounted in a high vacuum environment, the refractive index drops to 1 at
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2. OPTICAL NANOFIBER BASED LIGHT-ATOM INTERFACE

the glass-vacuum boundary of the waveguide. The wave equation for the electric field in this
configuration can be derived from Maxwell’s equation. The detailed derivation of the nanofiber-
guided mode can be found in the literature [36,37]. For the nanofiber in our experimental setup,
only the fundamental HE11 mode is guided at wavelengths between 780 nm and 1064 nm.

A simple expression of the mode profile function can be found for quasi-circularly polar-
ized guided light. Here we provide the expression for the evanescent field part of the electric
field mode, i.e., when the radial distance r from the center of the nanofiber is larger than the
nanofiber’s radius a:

er = i [(1− s)K0(qr) + (1 + s)K2(qr)] ,

eϕ = − [(1− s)K0(qr)− (1 + s)K2(qr)] ,

ez =
2q

β
K1(qr), (2.1)

where K0, K1, and K2 are modified Bessel functions of the second kind, β is the longitudinal
propagation constant of the nanofiber-guided mode, and s is defined as:

s = (
1

h2a2
+

1

q2a2
)(

J
�
1(ha)

haJ1(ha)
+

K
�
1(qa)

qaK1(qa)
)−1, (2.2)

where J1 is a Bessel function of the first kind, and h and q are defined as:

h = (n2
1k

2 − β2)1/2, (2.3)

q = (β2 − n2
2k

2)1/2. (2.4)

The parameter h depends on the refractive index of the core, n1, and q depends on the
refractive index of outside the nanofiber which is vacuum, i.e., n2 = 1. We show the effective
refractive indices for the nanofiber-guided light in Fig. 2.3.

Now we show the solution for a nanofiber-guided light that is quasi-linearly polarized along
the y-axis. The solution equals to the superposition of two quasi-circularly polarized light fields
of opposite rotation. For convenience, the electric field is expressed in the Cartesian components
whereas its position is written in the cylindrical coordinate:

E1 = A1[êx(er + ieϕ) sin(ϕ) cos(ϕ) + êy(er sin
2(ϕ)− ieϕ cos2(ϕ))

+ êzez sinϕ]e
i(βz−ωt) + c.c., (2.5)

where ϕ is the azimuthal angle with respect to the x-axis (see Fig. 2.4(a)), A1 is the electric
field amplitude, êx, êy, and êz are unit vectors in the direction along the x, y, and z axes,
respectively.

In Fig. 2.4, we show the intensity distribution of the evanescent part of a nanofiber-guided
light that is quasi-linearly polarized. The nanofiber orients along the z-axis and the light has
a main direction of polarization along the y-axis. We show in panel (a) the cross-section of
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2.2. Nanofiber-guided mode

700 750 800 850 900 950 1000 1050 1100
Wavelength in vacuum (nm)

1.10

1.15

1.20
n

eff

783 nm (’blue’) 852.35 nm (D2) 880.25 nm 1064 nm (’red’)

neff 1.453617 1.452462 1.45204 1.449631

Figure 2.3: Effective refractive index for the nanofiber-guided light, neff, as a function of wave-
length in vacuum.

the intensity distribution in the xy-plane. Due to the quasi-linear polarization, the intensity
distribution breaks the rotation symmetry and the intensity is stronger along the polarization
axis. We plot the intensity of the evanescent field at 1 nm from the nanofiber surface in panel
(b). The highest intensity occurs along the polarization axis or ϕ = 90◦, which is 4.8 times
compared to the minimum at ϕ = 0◦. For this calculation, we use a nanofiber diameter of
500 nm, a nanofiber-guided light with wavelength of 783 nm and power of 1mW.

The nanofiber-guided light has a longitudinal component that is π
2 out of phase with re-

spect to the transverse component. As a result, the electric field of the evanescent field has a
large component of circular polarization, see Fig. 2.5. The photon associated with this circular
polarization has a transverse spin angular momentum, i.e., the direction of the spin angular mo-
mentum is perpendicular to the propagation direction. This is a direct consequence of the tight
confinement of nanofiber-guided light in the transverse direction. The green arrow in Fig. 2.5
represents a nanofiber-guided light field that is quasi-linearly polarized along the x-axis. Since
the gradient of the electric field has opposite signs at the two sides of the nanofiber, a quasi-
linearly polarized nanofiber-guided light has opposite transverse circular polarization at the two
sides of the nanofiber.

In addition, the electric field of two counter-propagating light waves that are both quasi-
linearly polarized along the x-axis is the following:

E2 = A2{[êx(er cos2(ϕ)− ier sin
2(ϕ)) + êy(er + ieϕ) sin(ϕ) cos(ϕ)] cos(βz)

+ iêzez cos(ϕ) sin(βz)}e−iωt + c.c.. (2.6)

The two counter-propagating light fields form a standing wave. The longitudinal component
goes to zeros at nodes βz = πm, where m is an integer.
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Figure 2.4: Intensity distribution in the evanescent field of a nanofiber-guided light field
that is quasi-linearly polarized along the y-axis. (a) Intensity distribution in the xy-plane.
The power of this light field is 1mW, and it has a wavelength of 783 nm. (b) Intensity of
the evanescent field at 1 nm away from the nanofiber surface. We indicate the corresponding
positions in panel (a) by the dashed circular line.

Figure 2.5: A nanofiber-guided light field that is quasi-linearly polarized along the x-axis.
The evanescent field exhibits large component of σ− (σ+) polarization at the position with x >
0 (x < 0), i.e., above (below) the nanofiber in the illustration. Therefore, the field carries spin
angular momentum which has a transverse component. The direction of the transverse spin is
orthogonal to the propagation direction of the light. This is a feature originating from the tight
transverse confinement of the nanofiber-guided light.

2.3 Interaction between atoms and nanofiber-guided light

For light that is far detuned compared to the cesium hyperfine splitting, its interaction with a
cesium atom in the electronic ground state can be described by the light-shift operator:

V̂AL
= −1

4
αs(ω) |E|2 + i

1

8F
αv(ω)(E

∗ ×E) · F̂ , (2.7)
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2.3. Interaction between atoms and nanofiber-guided light

where F is the quantum number of the total angular momentum F̂ , αs is the scalar component
of polarizability, and αv is the vector component of polarizability.

The first term in equation 2.7 describes the scalar light shift which is proportional to the
intensity of the light field. The second term describes the vector light shift which depends
additionally on the polarization of the electric field, i.e., it is zero (maximum) when the electric
field is linearly (circularly) polarized. The vector light shift dependents on atom’s mF substates.
For our experimental setting, the light shift is on the order of kHz or MHz, which is small
compared to the hyperfine structure splitting of 9GHz for 62S1/2. Therefore, F is a good
quantum number, and in this case, the scalar and vector component of the polarizabilities are
given by:

αs =
1�

3(2J + 1)
α
(0)
nJ (2.8)

αv =− (−1)J+I+F

�
2F (2F + 1)

(F + 1)

�
F 1 F
J I J

�
α
(1)
nJ , (2.9)

where I = 7/2 and J = 1/2 for 62S1/2, the last expressions in the curly bracket denotes the

Wigner 6j symbol. The reduced dynamical scalar polarizability α
(1)
nJ and vector polarizability

α
(2)
nJ are given by:

α
(K)
nJ = (−1)K+J+1

√
2K + 1

�
n�J �

(−1)J
�
�
1 K 1
J J � J

� ���n�J �| |d| |nJ���2
× 1

�
Re

�
1

ωn�J � − ωnJ − ω − iγn�J �nJ/2
+

(−1)K

ωn�J � − ωnJ + ω + iγn�J �nJ/2

�
. (2.10)

where � is the reduced Planck constant, γn�J �nJ stands for the linewidth of the transition between
the fine-structure levels |nJ� and |nJ�, |�n�J �| |d| |nJ�| is the reduced dipole moment and is
related to the transition probability coefficients:

An�J �nJ =
(ωn�J � − ωnJ)

3

3π�0�c2
1

2J + 1

���n�J �| |d| |nJ���2 , (2.11)

where c is the speed of light, �0 is the vacuum permittivity.
The polarizability of the cesium ground state 62S 1

2
is shown in Fig. 2.6. The nanofiber-

guided trapping light fields at 783 nm and 1064 nm are blue- and red-detuned from the D1 and
D2 transitions, respectively. Therefore the scalar polarizabilities at these two wavelengths have
opposite signs. It is worth noting that at ∼880 nm, the scalar component of the polarizability
vanishes, but its vector component remains significant. Thus, we can use a light field at ∼880 nm
to add a light shift that is proportional to the mF number, which imitates the effect of a magnetic
field.
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Figure 2.6: Scalar (a) and vector (b) components of the polarizability of the ground state
62S1

2
of atomic cesium for vacuum wavelength from 700 nm to 1100 nm. The scalar polariz-

ability has a sign change near the D2 and D1 transition lines at 852 nm and 895 nm, respectively.
The scalar polarizability crosses zero at ∼880 nm, where the contributions from the D2 and D1

transitions cancel out. The values here are compiled from the published paper by Fam et al. [38].

2.4 Nanofiber-based two-color trapping potential

A typical trapping configuration is mentioned previously in section 2.1, where we use a combi-
nation of a 783 nm running light and a pair of 1064 nm laser fields to form a standing wave. The
total trapping potential is given by the sum of the light shifts originating from the trapping light
fields, ULS , and the surface-induced Van der Waals potential, Us. The light-shift potential can
be approximated using only the scalar component of the polarizability, while the Van der Waals
potential can be approximated by Us = −C3/(r − a)3, where C3 = 2π�× 1.16 kHz µm3 for
the electronic ground state of cesium 6S1/2 [39]. For the trapping configurations in the thesis,
the contribution of the surface-induced potential is negligible as the trap minimum is more than
200 nm away from the surface. The total trapping potential is shown in Fig. 2.7. Here, the stand-
ing wave and running wave have a power of 2.88mW and 17.8mW, respectively. Fig. 2.7(a)
shows the potential in the x (radial)-direction. The red-detuned trapping light field gives an at-
tractive potential while the blue-detuned trapping light field gives a repulsive potential. As the
decay length of the evanescent field is longer for the light with the larger wavelength, the red-
and blue-detuned light fields form a trap minimum in the x-direction that is ∼280 nm from the
surface of the nanofiber. Since the red- and blue-detuned trapping fields have orthogonal quasi-
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Figure 2.7: Nanofiber-based trapping potential for neutral cesium atoms. (a) Trapping
potential in the x-direction (solid black line). The trapping potential is the sum of the scalar
light shift induced by the red-detuned light field Ured (red-dashed line) and by the blue-detuned
light field Ublue (red-dashed line), and the Van der Waals potential induced by the nanofiber.
Here, potential minimum is ∼280 nm away from the surface of the nanofiber. (b) Trapping
potential in the y-direction. (c) Trapping potential in the z-direction. Both potentials, along the
y- and z-directions are symmetric and close to harmonic near the trap minimum. The origins in
panels (b) and (c) correspond to the location of the trap minimum.

linearly polarizations, the rotational symmetry of the trapping potential is broken, and the atoms
are confined in the y (azimuthal)-direction (see Fig. 2.1). The confinement in the z (axial)-
direction is realized by a standing wave formed by a pair of counter-propagating red-detuned
light fields. The atoms are trapped at the node positions of the standing wave. The potential near
the trap minimum is close to harmonic in the x- and y-directions.

2.5 Measuring the optical density of nanofiber-trapped atoms via
transmission spectroscopy

A simple way to characterize the nanofiber-trapped atoms is to measure their optical density (OD)
via transmission spectroscopy. We carry out the transmission measurement in the weak satura-
tion regime using a probing light field with a few pW power. We perform this measurement
at 0G of external magnetic field to avoid Zeeman splitting of mF substates. The probe light
field propagates in the −z direction (see Fig. 2.5). When the probe light is on resonance, the
amplitude transmission coefficient is given by [25]:

t− = 1− 2β−, (2.12)
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where β− is the directional β factor and is defined as follows:

β− =
γ−

γ+ + γ− + Γom
, (2.13)

where γ± is the spontaneous emission rate into the ±z mode and Γom is the emission rate into
other modes. Both Γom and β± can be computed using an ab initio simulation [40].

The intensity transmission coefficient with N trapped atoms is given by:

T− = |t|2N = |1− 2β−|2N . (2.14)

For our experimental setting 0 < β− << 1, we can rewrite equation 2.14 as follows:

T− = exp(ln(1− 2β−))2N ≈ exp(2N ln(1− 2β−)) = exp(−4β−N). (2.15)

The definition of OD for a resonant light field is T− = exp(−OD). Therefore, the OD for a
resonant light field in the weakly saturated regime is 4β−N .

However, measuring OD with a resonant light light field can be challenging as the trans-
mitted signal decreases exponentially, e.g., at OD= 10, the T− for a resonant light field is
∼ 5× 10−5. To have a more robust way of determining OD, we measure the transmission spec-
tra of nanofiber-trapped atoms. The OD can be inferred from the transmission dip in the spectra,
i.e., the larger OD increases the amplitude and the width of the dip. To acquire a transmission
spectrum, we scan the frequency of the probe laser field over a 100MHz window that is centered
on the F = 4 to F

�
= 5 transition of the D2-line. This scan is performed at a constant rate and

within a 5ms duration. We record the transmitted light with a single photon counting module
(SPCM). We bin the acquired data at 10 µs, which results in a histogram shown in Fig. 2.8.

The probe light field is quasi-linearly polarized along the x-direction. The probe light ex-
hibits a large component of σ− (σ+) polarization at the trapping sites on the x > 0 (x < 0)
side of the nanofiber (see Fig. 2.5). During the transmission measurement, the probe light field
quickly pumps the atoms to the two outermost Zeeman substates. Therefore, we can make the
simplification to assume that the probing light field drives only the outermost cycling transitions
F = 4,mF = ±4 to F

�
= 5,mF = ±5 during the transmission measurement. The atoms in the

two outermost Zeeman substates experience the same tensor light shift exerted by the trapping
light fields, resulting in the shift of the resonant frequency. We infer the OD of the trapped atoms
by fitting the transmission spectra as a function of the laser detuning:

I(Δ) = exp



−OD

1
4Γ

2

1
4Γ

2 + (ωl − ωre)
2

�
, (2.16)

where ωl is the detuning of the laser frequency. The resonance frequency ωre is set to be a free
parameter in the fit to account for the tensor shift exerted by the trapping light fields. We use the
natural linewidth of the cesium D2 transition for Γ.

We show an example of the transmission spectra in Fig. 2.8. The first red shaded area (start-
ing from bin 50) indicates the transmission spectrum H0 of the atoms initially loaded in the trap.
Each bin corresponds to a frequency interval of ∼0.2MHz. After a sequence of atom prepara-
tion and manipulation, we measure another transmission spectrum H1 (red shaded area starting
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2.5. Measuring the optical density of nanofiber-trapped atoms via transmission spectroscopy

from bin 760). In all measurements, we acquire a reference transmission Href (blue shaded area)
in the absence of trapped atoms to account for the frequency-dependent variation of the input
power. In addition, we also acquire the background transmission signal Hbng (green shaded area)
without probing light to account for the long drift of the background noise. The background at
∼4 counts per bin originates mainly from the remaining Raman scattering of the blue-detuned
trap laser. We compute the histogram corrected by the background and the reference signal:

Hcorr
n =

Hn −Href

Href −Hbng
. (2.17)

The number of loaded atoms to the nanofiber fluctuates from run to run. In addition to statis-
tical variation, the initial atom number can also fluctuate due to change of experimental condi-
tion, e.g., the variation of MOT density before loading, the drift of cooler laser’s frequency. The
fluctuation of the atom number is detrimental when we want to compare the experimental results
across different experimental runs. To mitigate this effect, we compute the ratio of the optical
density before (OD0) and after (OD1) atom preparation and manipulation in each experimental
run. Using the fit function 2.16, we infer OD0 and OD1 from Hcorr

n and Hcorr
n , respectively.
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Figure 2.8: SPCM counts during transmission measurements of the nanofiber-trapped
atoms. For each transmission measurement, we scan the frequency of the nanofiber-guided
probe laser over a 100MHz interval that is centered on the F = 4 → F

�
= 5 transition of the

D2 line. The SPCM counts detected during this frequency scan correspond to the transmission
spectrum, of which we use to infer the OD of the trapped atoms. We first measure the trans-
mission spectrum H0 after the atoms are initially loaded into the trap. After atom preparation
and manipulation, we measure the spectrum again, see H1 and H2. We use H1 for most of our
experimental analysis and H2 to monitor atom loss after measuring H1. The two transmission
spectrum Hbng and Href correspond to the background signal in the absence of the probing beam
and the probe signal in the absence of atoms, respectively. Each bin has a 10 µs duration.
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CHAPTER 3
Spin-motion coupling of

nanofiber-trapped atoms

For nanofiber-trapped atoms, the phenomenon of ’killing’ B-field was observed: when atoms
were initially prepared in the 6S1/2, F = 4 hyperfine state, they became untrapped after being
optically pumped from 6S1/2, F = 4 to 6S1/2, F = 3 at an offset magnetic field of ∼0.5G [24].
In contrast, atoms remained trapped when the same operation was carried out at an offset mag-
netic field of 0G. Since the trap depth is mostly independent of the magnetic field, the large
increase of atoms’ motion energy to escape the trapping potential has to originate from the
larger Zeeman splitting. Later, the mechanism for the exchange of energy between spin and
motional degrees of freedom (DOF) was discovered, namely the spin-motion coupling. In this
chapter, we introduce the fictitious magnetic field which originates from the trapping light fields
and show how it enables the spin-motion coupling of nanofiber-trapped atoms.

3.1 Fictitious magnetic field

As shown in chapter 2, the vector light shift depends on the total angular momentum operator
F̂ . When an atom is in an eigenstate with respect to one of the components of F̂ , the vector
light shift is proportional to mF . Thereby, the vector light shift can be equivalent to the Zeeman
energy splitting in a magnetic field. Thus, we can treat the vector light shift as an effective
Zeeman interaction with a fictitious magnetic field [41]:

V̂ vec
AL

= gnJFµBBfict · F̂ , (3.1)

where µB is the Bohr magneton, gnJF is the Landé factor for the level of hyperfine structure
nJF , and the fictitious magnetic field Bfict is:

Bfict =
iαv

8gnJFµBF
(E∗ ×E). (3.2)
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Figure 3.1: (a) Fictitious magnetic field of a nanofiber-guided light that is quasi-linearly polar-
ized along the y-axis. Here we show the evanescent component in the xy-plane (shown as the
black arrows). The fictitious magnetic field is maximum at +y and −y side of the nanofiber. The
yellow circles represent the position of the trapped atoms, whereas the blue circle represents the
cross-section of a nanofiber. (b) The gradient of the fictitious magnetic field along the y-axis.
The origin is the position of the trapping potential minimum. The gradient is the largest in the
x component of the fictitious magnetic field. The trapping configuration used for panels (a)-(b)
can be found in the main text.

The fictitious magnetic field generated by the trapping light is depicted in Fig. 3.1. In panel
(a), we see the fictitious magnetic field vector in the xy-plane. The trapping sites are indicated
by the two yellow circles, and the blue circle represents the cross-section of the nanofiber. Since
the longitudinal components of the two counter-propagating red-detuned light fields cancels out,
the main contribution of the fictitious magnetic field comes from the blue-detuned light field that
is quasi-linearly polarized along the y-axis. The fictitious magnetic field is maximum above and
below the nanofiber, where it points in the ±x-direction. As shown in Fig. 3.1(a), the amplitude
of fictitious magnetic field decays near exponentially along the radial direction.

In Fig. 3.1(b), we see Cartesian components of the fictitious magnetic field as a function
of the distance from the trap minimum along the y-axis. Near the trap minimum, the fictitious
magnetic field can be approximated by its x component and as a linear gradient along the y-axis.
Therefore, in the xy-plane, the fictitious magnetic field near the trapping site can be modeled as:

Bfict ≈ byye
−x

l êx, (3.3)

where by = 1.6G/µm and l =78nm in a typical trapping configuration,.

3.2 Origin of spin-motion coupling for nanofiber-trapped atoms

In this section, we show how fictitious magnetic field gradients can enable the coupling of the
spin and motional DOF of nanofiber-trapped atoms. By approximating the trapping potential to
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Figure 3.2: Schematic diagram for coupling between spin and y motional DOF. The ficti-
tious magnetic field near the trapped atoms can be approximated as a linear gradient along y-axis
and with its direction in x. An offset magnetic field is added along the y-axis. The atoms are
indicated by the yellow circles.

be harmonic, the Hamiltonian of an atom in an external magnetic field is as follows:

Ĥ =
�

i=x,y,z

�ωiâ
†
i âi + gnJFµB(Bo +Bfict) · F̂ ), (3.4)

where âi and â†i are the ladder operators of the motional state in the i DOF.
For simplicity, we now consider only the y DOF, and we use an approximation that the

fictitious magnetic field has a linear gradient along the y-direction, see Fig. 3.2. By taking these
simplifications into account, we have the following Hamiltonian of the nanofiber-trapped atom
in an offset magnetic field in the y-direction:

Ĥ = �ωyâ
†
yây + gnJFµB(BoF̂y + byyF̂x), (3.5)

where the first term corresponds to the harmonic oscillator for y motional DOF, the second term
represents the Zeeman interaction with the offset magnetic field and the fictitious magnetic field
gradient along the y-direction.

Since the offset magnetic field is in the y-direction, it is convenient to use y as the quantiza-
tion axis. We can replace the x-component of the angular momentum operator Fx with the ladder
operators in the y-basis, Fx = 1

2(F̂++ F̂−), and quantize the y motional DOF, ŷ = y0(ây+ â†y),
where y0 is the RMS center-of-mass position of the y-motional ground state. After these substi-
tutions, the Hamiltonian in 3.5 becomes:

Ĥ = �ωyâ
†
yây + �αFB0F̂y + �

Ωy

2
(ây + â†y)(F̂+ + F̂−), (3.6)

where Ωy = gnJFµBbyy0, αF = gnJFµB , and Ωy is the coupling strength between the spin and
y motional DOF.
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Figure 3.3: (a) Cartesian components of the fictitious magnetic field at different positions in the
z-direction. The origin corresponds to the trap minimum. (b) Gradient of the fictitious magnetic
field along the z-direction as a function of the angle θcp,red between the polarization axis of the
two quasi-linearly polarized red-detuned trapping light fields.

In addition, the coupling between the spin and x motional DOF can be found by Taylor
expanding the equation of fictitious magnetic field shown in 3.3:

Bfict ≈ byy + byy(−x

l
) + byy(

x2

2l2
) +O(x3). (3.7)

We now substitute the first three terms of the Taylor series in equation 3.4:

Ĥ =
�

i=x,y,z

�ωiâ
†
i âi + �αFB0F̂y + gnJFµB(byŷ + byŷ(− x̂

l
) + byŷ(

x̂2

2l2
))F̂x

=
�

i=x,y,z

�ωiâ
†
i âi + �αFB0F̂y + �

Ωy

2
(ây + â†y)(F̂+ + F̂−)

− �
Ωxy

2
(âx + â†x)(ây + â†y)(F̂+ + F̂−) + �

Ωxxy

2
(âx + â†x)

2(ây + â†y)(F̂+ + F̂−),

(3.8)

where Ωxy = by0x0/l, Ωxxy = by0x
2
0/(2l

2).
We see from equation 3.8 that the 1st Taylor polynomial results in the coupling of the spin

and y motional DOF, which corresponds to the Hamiltonian in equation 3.5. In contrast, the
higher-degree Taylor polynomials result in the coupling between the spin and both the x and y
motional DOF.

A direct coupling between the spin and z motional DOF can occur when there’s an angle
between the polarization axes of the two counter-propagating red-detuned trapping light fields.
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This angle gives rise to a linear gradient of the fictitious magnetic field along the z-direction. In
Fig. 3.3 (a), the Cartesian components of the fictitious magnetic field are plotted as a function
of the distance from the trap minimum in the z-direction. In Fig. 3.3 (b), the gradient of the
fictitious magnetic field is plotted against the angle between the polarizations of the two counter-
propagating red-detuned light fields. In analogy to the coupling shown in equation 3.6, this
gradient gives rise to the coupling between spin and z motional DOF:

Ĥ = �ωzâ
†
zâz + gnJFµB(BoF̂y + bzzF̂z), (3.9)

where bz is the fictitious magnetic field gradient along the z-direction.
Similarly to the derivation of the coupling between spin and y motional DOF, we can express

spin operators in the y basis, Fz = − i
2(F̂+ − F̂−), and quantize the z DOF, ẑ = z0(âz + âz

†).
We substitute these expressions in equation 3.9:

Ĥ = �ωzâ
†
zâz + �αFB0F̂y + �

iΩz

2
(âz + iâ†z)(F̂− − F̂+). (3.10)

As a summary, we list the relevant parameters including the calculated spin-motion coupling
strengths in the following table:

P1063 nm 2.88mW

P783 nm 17.8mW

ωx 2π×136 kHz

ωy 2π×83 kHz

ωz 2π×215 kHz

Ωy 2π×12 kHz

Ωxy 2π×2.6 kHz

Ωxxy 2π×0.28 kHz

Ωz (θcp,red = 5◦) 2π×1.4 kHz

Table 3.1: Table of parameter values. The trapping laser powers are taken from experimental
values (see chapters 5 and 6). The trap frequencies and spin-motion coupling strengths are
inferred from an ab initio calculation.
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CHAPTER 4
Introduction to fluorescence

spectroscopy

4.1 Overview

Resonance fluorescence is a textbook example of quantum optics. In particular, the fluorescence
spectrum from optically-trapped cold atoms provides important insight into atoms’ internal and
external states [42–45]. In this thesis, fluorescence spectra are used to obtain atom’s mean mo-
tional quanta (see chapter 5) as well as to investigate the coupling between atom’s internal and
external degrees of freedom (DOF) (see chapter 6). To understand the characteristics of fluo-
rescence spectra, we cover the essential theoretical framework for resonant fluorescence and its
experimental implementation with nanofiber-trapped atoms. In particular, we discuss resonance
fluorescence in the case of the interaction between a single mode light field and a two-level sys-
tem, using both the rate equation approach and the quantum master equation approach. Finally,
we show how fluorescence spectroscopy can be utilized as a thermometer for the nanofiber-
trapped atoms, and how we measure the fluorescence spectrum using heterodyne spectroscopy.

An intuitive understanding of the fluorescence spectrum can be obtained by considering
a harmonically-bounded atom which acts as a pointlike scatterer. For simplicity, the atom is
confined in a one-dimensional harmonic potential along the z-direction, see Fig. 4.1. The motion
of the atom along the z-axis is z(t) = za sin(ωzt), where za is the amplitude of the oscillation
along the z-axis, ωz is the trap frequency in the z DOF. Here, the incident light field is treated as a
plane wave. The plane wave is a valid assumption when the variation of the incident light field’s
intensity or polarization is negligible in the spatial extent of atom’s center-of-mass trajectory.
The wavevectors of the incident photon kI and of the scattered photon kS give a net change of
the wavevector to the atom. The wavevector change along the z-axis is Δkz = (kI − kS).ez,
where ez is the unit vector in the z-axis. The motion of the atom modifies the phase of the
scattered light field:

Es(t) = E0 exp(−i(ωLt+Δkz(t))). (4.1)
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Figure 4.1: Illustration of light scattered by a trapped atom. The wavevectors of the incident
and scattered light field are denoted by kI and kS, respectively.

The normalized power spectrum S(ω) of Es(t) is defined as the Fourier transformation of
the normalized first-order correlation function:

S(ω) = Re
�

1

2π

� ∞

0

�E∗
s (t+ τ)Es(t)�
�E∗

s (t)Es(t)� e−iωτ dτ

�
. (4.2)

Substituting equation 4.1 into equation 4.2, we have [45]:

S(ω) =

n=−∞�
n=∞

Jn(Δkza)
2δ(ω − ωL + nωz), (4.3)

where Jn is the nth order Bessel function.
From equation 4.3, we see that the motional sidebands at frequecies of ωL ± nωz arise from

the motion of the atom in a harmonic well. The amplitude ratio between the sum of the first-order
sidebands, S(ωL − ωz) + S(ωL + ωz), and the carrier transition S(ωL) is:

S(ωL − ωz) + S(ωL + ωz)

S(ωL)
=

Jn(Δkza)
2 + Jn(Δkza)

2

Jn(Δkza)2
=

(Δkza)
2

2
= (ΔkzRMS)

2, (4.4)

where zRMS is the root mean square extent of the atom position, and zRMS = za/
√
2.

4.2 Rate equation approach

The full quantum calculation of the fluorescence spectrum can be cumbersome as the computa-
tion complexity grows exponentially with the number of atomic states considered. Hence, rate
equations are often used to approximate the fluorescence spectrum. In the low saturation limit
where the excited state is scarcely populated, we can use second-order perturbation theory for
the transition rate between the two motional states ni and nf of the atom in its electronic ground
state |g� [46]:

Γni→nf
=

γc
4π

�
Ω

������
�
j

�nf | e−ikS·z |ej� �ej | eikI·z |ni�
������
2

dΩ, (4.5)
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4.2. Rate equation approach

Figure 4.2: (a) Schematic diagram of resonance fluorescence of a trapped two-level atom. The
motion of atom in the electronic ground state |g� is bound by a harmonic potential. The in-
cident excitation light field is far-detuned from the atomic transition and the excited state has
a negligible population. The up-arrow represents the incident light field, and the three down-
arrows represent the atom-emitted light fields. (b) Fluorescence spectrum corresponding to the
transitions indicated in panel (a). The central peak corresponds to the carrier transition where
the motional state is unchanged. The left (right) peak corresponds to the first-order red (blue)
sideband transition where one motional quantum is gained (lost) after scattering.

where γc is the rate of the carrier transition, |ej� is an electronic excited state. Here, we abbre-
viate |g, n� to |n�. The transition rate is integrated over all solid angle.

Since the sum of the excited states
�

j |ej� �ej | form a complete set, equation 4.5 can be
simplified to:

Γni→nf
=

γc
4π

�
Ω

����nf | e−i(kS−kI)·z |ni�
���2 dΩ. (4.6)

Let’s consider a subset of the atom-scattered light propagating within a small solid angle
δΩfg, and is coupled to a nanofiber-guided mode. Equation 4.6 becomes:

γni→nf
=

γc
4π

����nf | e−i(kS−kI)·z |ni�
���2 δΩfg. (4.7)

The resonance fluorescence for a two-level atom is depicted in Fig. 4.2(a). The atom in the
electronic ground state |g� experiences a one-dimensional potential along the z-axis. Fig. 4.2(b)
depicts the corresponding fluorescence spectrum for the transitions shown in Fig. 4.2(a). The
combination of incident light field and scattered light field can alter the motion states of the
atoms. For example, the Stokes (anti-Stokes) transition that increases (lowers) one motional
quantum corresponds to the first-order red- (blue-) motional sideband shown in panel (b). The
center line in panel (b) corresponds to the carrier transition where the motional state is un-
changed. An important parameter in the fluorescence spectrum is the ratio between the area
of the red- and blue-motional sidebands. Since the anti-Stokes transition is not available for
atoms in the motional ground state, the larger asymmetry of the sidebands indicates the lower
temperature of the atom. The ratio between the first-order sidebands is:
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4. INTRODUCTION TO FLUORESCENCE SPECTROSCOPY

SΔ−1

SΔ1
=

�∞
n=1 πnγn→n−1�∞
n=0 πnγn→n+1

=

�∞
n=0 πn+1γn+1→n�∞
n=0 πnγn→n+1

, (4.8)

where πn denotes the population of the atom in |g, n�.
For atoms that are thermalized, the population of the motional state πn follows the Boltz-

mann distribution:

πn = (1− q)qn, (4.9)

where q is the Boltzmann factor:

q = exp(− �ωz

kBT
), (4.10)

where �ωz is a motional quantum, T is the temperature, and kB is the Boltzmann constant.
By substituting the expression 4.9 for πn into equation 4.8, we see that the ratio between the

two first-order motional sidebands equals to the Boltzmann factor:

SΔ−1

SΔ1
= q. (4.11)

Furthermore, there is a fixed relationship between the mean number of motional quanta �n�
and the Boltzmann factor:

�n� =
�∞

n=0 πnn�∞
n=0 πn

=
q

1− q
. (4.12)

Although the harmonic potential well considered here has infinite depth, we see from equa-
tion 4.12 that this relationship remains unchanged when the motional states are truncated, i.e.,
summing over a finite number of the trapped states.

In addition, we can look at the ratio between the carrier transition and the sideband transi-
tions. The exponential function in the transition rate equation 4.7 can be rewritten as a Taylor
series:

e−i(kS−kI)·z = e−i(Δk)·z = 1− iΔkzz +O(z2), (4.13)

where z is the magnitude of the vector z, Δkz is the change of the wavevector along the z-axis.
We can quantize the z DOF and substitute z in equation 4.13 with the operator ẑ = z0(âz +

â†z), where â†z (âz) is the raising (lowering) operator, and z0 is the root mean square extent of the
motional ground state. Equation 4.7 then becomes:

γni→nf
=

γc
4π

����nf | (1− iΔkz(âz + â†z)) |ni�
���2 δΩfg. (4.14)

The rate for the carrier transition is:

γn→n =
γc
4π

|�n| 1 |n�|2 δΩfg =
δΩfg

4π
γc, (4.15)
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4.3. Fluorescence spectrum of nanofiber-trapped atoms

and the rates for the first-order sideband transitions are:

γn→n+1 =
γc
4π

����n+ 1| − iΔkzz0(âz + â†z) |n�
���2 δΩfg = (Δkzz0)

2(n+ 1)
γc

4π
δΩfg,

γn→n−1 =
γc
4π

����n− 1| − iΔkzz0(âz + â†z) |n�
���2 δΩfg = (Δkzz0)

2n
γc

4π
δΩfg.

(4.16)

From equations 4.15 and 4.16, we compute the ratio between areas of the two first-order
sideband transitions SΔ1 + SΔ−1 and the carrier transition S0:

SΔ1 + SΔ−1

S0
=

�∞
n=0 πnγn→n+1 +

�∞
n=0 πn+1γn+1→n�∞

n=0 πnγn→n
. (4.17)

Using equations 4.15 and 4.16, we find the ratio between SΔ1 and S0:

SΔ1

S0
=

q(Δkzzo)
2

1− q
. (4.18)

Combining equations 4.12, 4.11, and 4.18, we have:

SΔ1 + SΔ−1

So
=

(q + 1)(Δkzz0)
2

(1− q)
. (4.19)

For a thermal distribution, the root mean square extent of the center of mass position zRMS
is:

zRMS = z0
�
2 �n�+ 1 = z0

�
q + 1

1− q
. (4.20)

Therefore, equation 4.19 can be rewritten as:

SΔ1 + SΔ−1

S0
= z2RMSΔk2z = (2 �n�+ 1)Δk2z z0

2. (4.21)

We see equation 4.21 matches equation 4.4 that is derived from a simple classical model.

4.3 Fluorescence spectrum of nanofiber-trapped atoms

So far, we have discussed the fluorescence spectrum limited to one motional DOF. In this section,
we show how the fluorescence spectrum of nanofiber-trapped atoms can give information on all
three motional DOF. For this discussion, we consider the experimental configuration in our
setup, see Fig. 4.6. Here, the incident light field can be approximated as a plane wave that
propagates in the +y-direction, and we observe the atom emission coupled into the nanofiber-
guided mode.

At the position of the trapped atoms, we approximate the electric field of the nanofiber-
guided mode as an exponential decay in the x-direction, i.e., the x-axis is normal to the surface
of the nanofiber and intersects the position of the trapped atoms (see chapter 3): EFG ∝ e−x/L,
where L is the decay length of the fiber-guided light. We denote knf as the wavenumber of
the nanofiber-guided mode and k0 as the wavenumber of the excitation light field in free space.
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4. INTRODUCTION TO FLUORESCENCE SPECTROSCOPY

Similar to equation 4.6, we can write down the transition amplitude for the nanofiber-trapped
atoms:

γni→nf
=

γc
4π

����nx
f , n

y
f , n

z
f | e−x/Le−ikfgzeik0y |nx

i , n
y
i , n

z
i �
���2 δΩfg, (4.22)

where eik0y originates from the incident light field which propagates in y-direction, e−ikfgze−x/L

originates from the scattered light field that is coupled into the nanofiber-guided mode and prop-
agates in the +z-direction.

The two exponential functions eik0y and e−ikfgz introduce spatial phase modulations in the
y-direction and the z-direction, respectively. The phase modulations in the two directions result
in the non-zero transition amplitude between the adjacent motional states which correspond to
motional sidebands of the y and z DOF. Furthermore, the rate equation has a contribution from
the amplitude gradient of the electric field in the x direction. By Taylor expanding e−x/L in
x, we see the 1st Taylor polynomial results in the coupling between adjacent motional states in
the x DOF, which leads to motional sidebands of the x DOF. For atoms trapped close to the
motional ground state, the three motional DOF are separable. We can rewrite 4.22 as:

γni→nf
=

γc
4π

����nx
f | e−x/L |nx

i � �nz
f | e−ikfgz |nz

i � �ny
f | eikfsy |ny

i �
���2 δΩfg. (4.23)

From this equation, we can see the expected first-order sideband amplitudes for the z, y,
x DOF are proportional to z0kfg

�
nz
i , y0kfs

�
nz
i , and x0/L

�
nx
i , respectively. For an atom

initially in the motional ground state in three DOF, we expect the ratio between the intensity
of the first-order red x, y, z sidebands and the carrier transition to be 0.035, 0.025, 0.0096,
respectively.

In conclusion, by collecting atom emission into the nanofiber-guided mode, motional side-
bands in three DOF can be observed through a combination of phase and amplitude modulations.
This allows us to simultaneously measure {�nx� , �ny� , �nz�} of the nanofiber-trapped atoms.

4.4 Master equation approach

In this section we describe an alternative approach to simulate fluorescence spectra using master
equations. The Hamiltonian for a two-level atom interacting with a laser is:

H = �ω0 |e� �e|+ �
2
(Ωrσ

+ +Ω∗
rσ

−), (4.24)

where ωeg is the energy of the two-level atom, Ωr is the Rabi frequency.
The time evolution of an atom can be described by the master equation of Lindblad form [47]:

ρ̇ = Lρ = −i[H, ρ] +
�
i

Γi

2
(2ĉiρĉ

†
i − {ĉ†i ĉi, ρ}) (4.25)

where the last term is the Lindblad dissipator and ĉi is a jump operator. For a two-level system,
the jump operator ĉi is a Pauli operator σ̂− = |g� �e|.
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4.4. Master equation approach

The time evolution of a driven two-level system can be derived from the master equation
4.25 and written as the Optical Bloch equations:

d

dt




�σ̂−�
�σ̂+�
�σ̂z�

�� =




iΔL − Γ

2 0 iΩr
2

0 −iΔL − Γ
2 −iΩ

∗
r
2

+iΩ∗
r −iΩr −Γ

��



�σ̂−�
�σ̂+�
�σ̂z�

��+




0

0

Γ

�� , (4.26)

where ΔL is the laser detuning from the atomic transition frequency, Γ is the natural decay rate
of the electronic excited state, σ̂+ = |e� �g|, and σ̂z = 0.5(|e� �e| − |g� �g|).

At the steady state, the solutions are:

�σ̂z�0 = −1 +
s

s+ 1
(4.27)

and

�σ̂−�0 = �σ̂+�∗0 =
(ΔL + iΓ/2)

Ω

s

s+ 1
, (4.28)

where s is the saturation parameter:

s =
2Ω2/Γ2

1 + 4ΔL
2/Γ2

. (4.29)

When the system is strongly driven, s � 1 , �σ̂z�0 → 0, meaning the excited state and the
ground state are equally populated, whereas for a weakly driven system with s 
 1, �σ̂z�0 →
−1, indicating the atom is in the ground state. The total scattering rate is [48]:

γs = Γ
s

2(s+ 1)
. (4.30)

A fraction of the scattered light is coherent, and the coherent scattering rate is given by [48]:

γcohs = Γ |σ̂−|2 = Γ
s

2(s+ 1)2
. (4.31)

We see for s 
 1, the two equations 4.30 and 4.31 coincide, meaning for a weakly driven
system almost all scattering events are coherent processes. When s > 1, incoherent scattering
becomes dominant.

The radiated spectra of incoherent scattering processes have spectral widths on the same
order of magnitude as the natural linewidth, which is 2π× 5.22MHz for the cesium D2 cy-
cling transition F = 4 → F

�
= 5. In contrast, the radiated spectrum of coherent scattering

processes have spectral widths that are much narrower, e.g., for a two-level system excited by a
monochromatic excitation light, its radiated spectrum is a delta function. To spectrally resolve
the motional sidebands that are typically on the order of 100 kHz, the coherent part of the scatter-
ing process should dominate. Therefore, the saturation parameter s should be kept small. In this
case, the excited state is not populated and can be adiabatically eliminated. The corresponding
Hamiltonian for an atom in a one-dimensional harmonic potential along the y-direction is:

H = �ωyâ
†â. (4.32)
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Figure 4.3: Simulated fluorescence spectrum using master equation. (a) Fluorescence spec-
trum with an initial mean excitation of 1. The time of evolution for the simulation is 0.5ms. (b)
Time evolution of the mean excitation �n�. The heating rate of this process is linear.

The Lindblad dissipator for this system is ĉ =
√
γ(1 +

√
η(â† + â)), where

√
η(â† + â)

corresponds to recoil heating from photon scattering. We can compute the spectrum with:

S(ω) = Re(
� ∞

0
eiωτ �ĉ†(τ)ĉ(0)�dτ) (4.33)

Note that an underlying assumption for equation 4.37 is that the system is in a stationary
state, thus the computed spectrum is constant with respect to any chosen initial time.

We use QuTiP to numerically simulate the evolution of the trapped atom in discrete time
steps using the master equation [49]. We assume atom’s initial motional states to be thermally
populated and the mean motional excitation �n� to be 1. We show the resulting spectrum in
Fig. 4.3(a). From the ratio between the areas of two first-order motional sidebands, we infer
�n� = 1.0 quanta, within 1% agreement with the �n� averaged over the time evolution, ¯�n�. In
addition, we can also infer the �n� from the ratio of the carrier and the sum of the two first-order
sidebands, which yields a similar value of 1.0 quanta. The discrepancy here originates from the
fact that the system is not in a stationary state which is assumed for equation 4.37. Since there is
no cooling process in the simulation to counteract recoil heating of the atom, the mean motional
state excitation increases with time, see Fig. 4.3(b). In this simulation, we use parameters similar
to our experimental setup: trap frequency of 90 kHz, η of 0.035.

In additional, we can simulate the spectrum when the Hamiltonian has a spin-motion cou-
pling term (see chapter 3):

Ĥ = �ωyâ
†
yây + �αFB0F̂y + �

gy
2
(ây + â†y)(F̂+ + F̂−). (4.34)

For simplicity, we consider only Zeeman substates mF = −4 and mF = −3 of the F = 4
hyperfine state of cesium’s electronic ground state. This is a suitable model for many of our
experimental settings, where we use a σ− polarized excitation light field and atoms are populated
at the lowest Zeeman substates.

30



4.4. Master equation approach

Figure 4.4: Cesium D2 dipole matrix elements for transitions between the two lowerest mF

substates in F = 4 and F
�
= 5.

When the excitation light field is σ− polarized, the relevant transition operators are [50]:

Ĵ− =

�
1

2
|e−4� �e−5|+

�
2

5
|e−3� �e−4| ,

Ĵ0 =

�
1

10
|g−4� �g−4| .

(4.35)

The subscripts in |en� and |gn� indicate the mF substates. The dipole matrix elements
between the mF substates are taken into account in equation 4.35, see Fig. 4.4 [51]. The relevant
jump operators are:

ĉ− =
√
γJ−J

†
−(1 +

√
η(â†y + ây)),

ĉ0 =
√
γJ0J

†
−(1 +

√
η(â†y + ây)).

(4.36)

To calculate this spectrum we use:

S(ω) = Re(
� ∞

0
eiωτ �ĉ†−(τ)ĉ−(0)�dτ) (4.37)

The simulated spectrum is shown in Fig. 4.5. Due to spin-motion coupling, we no longer
see the bare states in the spectrum, but rather the dressed states which are superpositions of
the bare states, e.g., the bare states with a total of one excitation: |mF = −4, n = 1� and
|mF = −3, n = 0�. For this simulation, we set the atom initially close to the motional ground
state. Hence, we expect to observe the transition from |mF = −4, n = 0� to the pair of dressed
states with one excitation, and also the transition between the dressed states of one and two ex-
citations. The expected frequencies of these transitions (indicated by the vertical lines) match
well with simulated peak positions.
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Figure 4.5: (a) Simulated fluorescence spectrum using master equation. The two vertical dashed
lines indicate the expected frequency of the transition between |mF = −4, n = 0� and the pair of
dressed states which are superpositions of |mF = −4, n = 1� and |mF = −3, n = 0�. The two
dotted lines indicate the expected frequency of the transition between two pairs of dressed states,
i.e., superpositions of |mF = −4, n = 1� and |mF = −3, n = 0� and of |mF = −4, n = 2� and
|mF = −3, n = 1�. For this simulation, ωt = 2π × 90 kHz, Ωy = 2π × 34 kHz, the scattering
rate of the outermost cycling transition is 2π × 2 kHz. (b) Mean motional quanta as a function
of time. The fast oscillation in panel (b) corresponds the energy exchange between spin and
motional DOF.

4.5 Heterodyne fluorescence spectroscopy

We use heterodyne detection for fluorescence spectroscopy. We are interested in probing the
motional sidebands that are on the order of 100 kHz away from the carrier transition. The atom-
emitted light field has a frequency on the order of 300THz, many orders of magnitude larger
than the upper bandwidth limit of a photodetector. A common solution is to use heterodyne
measurement, i.e., mixing the atomic fluorescence signal with a local oscillator which serves as
a frequency reference. By measuring the beat frequency between the atomic signal and the local
oscillator, we shift the relevant atomic signal from a few 100THz to the MHz range, where it
can be read out using a photodetector, e.g., a photodiode or an SPCM. The local oscillator can
be realized using a reference light field that has a fixed frequency difference from the excitation
light field. We can tune the frequency of the reference light with acoustic-optic modulators or
electro-optic modulators. This way, we can set the beat frequency far from DC noise or other
low-frequency noises.

The experimental setup is shown in Fig. 4.6. We split the input light field into two beams:
One beam is used as the excitation light field for the nanofiber-trapped atoms. A part of the
atom scattered light field is coupled into the nanofiber-guided mode and is denoted as Es. The
other beam is used as the local oscillator ELO, which is frequency shifted from the input light
field by 10MHz. We generate this frequency shift using a pair of acoustic optical modulators.
To observe the beating between Es and ELO, we match their polarization at the SPCM using a

32



4.5. Heterodyne fluorescence spectroscopy

x

yz

atom

nanofiber

+10 MHz

Figure 4.6: Experimental setup. Individual cesium atoms are trapped near the surface of an
optical nanofiber. They are exposed to a near-resonant excitation light field (frequency ωI),
propagating along the +y-direction. A fraction of the atomic fluorescence is coupled into the
guided mode of the nanofiber (frequency ωS). This light field is superposed with a local oscillator
that is derived from the excitation light and is frequency-shifted by +10MHz. We record the
combined light field with a single photon counting module (SPCM). Fourier analysis of the
resulting signal yields the fluorescence spectrum, which grants access to the energy spectrum
of the trapped atoms. The black dotted line indicates the vacuum chamber which encloses the
nanofiber.

combination of a quarter waveplate and a half waveplate in the beam path of the local oscillator.
The fiber-guided trapping light fields introduce Raman scattering processes that generate broad-
band Stokes photons in the signal beam path. To reduce detection of the background signals,
i.e., the Stokes photons and trapping light, we employ a volume Bragg grating and a band-path
filter before the SPCM. The Bragg grating and the band-path filter have center wavelength at
∼852 nm, and exhibit FWHM of 12.5 nm and 0.12 nm, respectively. The resulting background
counts detected by the SPCM is ∼4 counts/10 µs for a typical trapping configuration (see chap-
ter 2).

We now discuss how to retrieve the power spectrum from the heterodyne measurement. We
can approximate the local oscillator with a single frequency component: ELO(t) = E0

LOe
iωLOt,

where E0
LO and ωLO are the amplitude and the frequency of the local oscillator, respectively. In

the heterodyne detection, we measure the intensity of the combined field It = cn�0EtE
∗
t /2,

where Et = ELO + Es, c is the speed of light, n is the refractive index, �0 is the vacuum
permittivity. The intensity correlation function is [52]:

G1
t (τ) = �It(t)It(t+ τ)�t , (4.38)
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where �...�t denotes the time average, It(t) is:

It(t) =
cn�0
2

(ELO(t) + Es(t))(ELO(t)
∗ + Es(t)

∗)

= ILO + Is(t) +
cn�0
2

(E∗
LO(t)Es(t) + c.c.).

(4.39)

The local oscillator has a single frequency component, therefore its intensity ILO = cn�0
2 |ELO|2

is time independent. By substituting equation 4.39 into 4.38, we have:

G1
t (τ) = �It(t)I∗t (t+ τ)�t

= I2LO + �Is(t)Is(t+ τ))�t + 2ILOĪs + 2ILO
cn�0
2

�E∗
LO(t)Es(t) + c.c.�t

+
cn�0
2

�Is(t)(E∗
LO(t+ τ)Es(t+ τ) + c.c.)�t +

cn�0
2

�Is(t+ τ)(E∗
LO(t)Es(t) + c.c.)�t

+
c2n2�20

4
�(E∗

LO(t)Es(t) + c.c.)(E∗
LO(t+ τ)Es(t+ τ) + c.c.)�t . (4.40)

When the frequency of the local oscillator is far from any Fourier components of the atomic
signal, the terms which include the product of the two fields, e.g., E∗

LO(t)Es(t), have time aver-
aged value of zero. In addition, the terms that include ei2ωLOt or e−i2ωLOt oscillate much faster
than any Fourier components of Es(t) and Is(t), also have time average of zero. Equation 4.40
then simplifies to:

G1
t (τ) = I2LO + �Is(t)Is(t+ τ))�t + 2ILOĪs +

c2n2�20
4

�E∗
LO(t)ELO(t+ τ)Es(t)E

∗
s (t+ τ) + c.c.�t

= I2LO + �Is(t)Is(t+ τ))�t + 2ILOĪs + (eiωLOτ
cn�0
2

ILO �Es(t)E
∗
s (t+ τ)�t + c.c.),

(4.41)

where Īs = �Is(t)�t.
Now we perform Fourier transformation on equation 4.41:�
G1

t (τ)e
−iωτdτ = δ(0)(I2LO + 2ILOĪs) +

�
�Is(t)Is(t+ τ))�t e−iωτdτ

+
cn�0
2

(

�
�Es(t)E

∗
s (t+ τ)�t ei(ωLO−ω)τdτ +

�
�E∗

s (t)Es(t+ τ)�t e−i(ωLO+ω)τdτ)

= δ(0)(I2LO + 2ILOĪs) +

�
�Is(t)Is(t+ τ))�t e−iωτdτ

+
cn�0
2

ILO(Ss(ω − ωLO) + Ss(ω + ωLO)). (4.42)

The last two terms in equation 4.42 correspond to the shifted spectra which are centered
at ±10MHz. In our experimental analysis, we look at the shifted spectra at +10MHz. The
frequency of the local oscillator ωLO is chosen such that the shifted spectrum Ss(ω − ωLO) has
no overlap with the other terms in equation 4.42 in the frequency domain.
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CHAPTER 5
Ground state cooling of atoms 300 nm

away from a nanofiber

With applications ranging from high precision spectroscopy to quantum simulation, atom cool-
ing is an enabling technique which has pushed the frontier of quantum science since its inven-
tion [53–56]. For free-space atom traps, various schemes, e.g., Sisyphus cooling and Raman
sideband cooling, have been realized to cool atoms down to sub-Doppler temperature and into
the motional ground state of the trapping potential. In the past decade, nanophotonic-based cold
atom traps have emerged to realize efficient coupling between light and atoms.

However, cooling atoms at sub-wavelength distances away from the nanophotonic structure
presents different challenges compared to free-space setups. First, the atoms’ motional degrees
of freedom (DOF) are coupled to the mechanical modes of the nanophotonic structure, result-
ing in orders of magnitude higher heating rate in nanophotonic-based traps than comparable
free-space optical traps [57]. Moreover, the excitation light in atom cooling schemes produces
stray light by scattering off the nanophotonic structures. The stray light can interfere with the
excitation light, thereby introducing unwanted polarization or intensity variations at the atom
positions and reducing the efficiency of cooling. One of the previous results in this context is the
microwave sideband cooling of nanofiber-trapped atoms [58]. Using this technique, atoms can
be cooled close to the motional ground state of the y (azimuthal) DOF. In addition, the heating
rate along the y DOF can be measured. However, thus far, this cooling scheme is limited to one
DOF since simultaneously cooling the x (radial) and z (axial) DOF have not been realized. As
a consequence, microwave sideband cooling in the y DOF does not extend the trapping lifetime
since atoms can be heated out via the two other motional DOF, as experimentally observed in
[58]. In another work, Raman sideband cooling of the x DOF was employed [59]. While it was
observed that the trapping lifetime was extended in this scheme, the average motional quantum
number in the x DOF remained significantly above 1.

The discussion in this chapter closely follows the published manuscript [60]. In this chapter,
we demonstrate degenerate Raman cooling (DRC) of nanofiber-trapped atoms in all three DOF
close to the motional ground states. By cooling the trapped atoms continuously, the trapping
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5. GROUND STATE COOLING OF ATOMS 300 NM AWAY FROM A NANOFIBER

lifetime becomes limited by background gas collisions and increases ∼20-fold compared to
the passive lifetime. Finally, we perform heterodyne fluorescence spectroscopy to extract the
temperature of atoms.

5.1 Principle of degenerate Raman cooling

Figure 5.1: Schematic diagram for DRC. (a) Fictitious magnetic field Bfic near the nanofiber-
trapped atom (yellow circle). We approximate Bfic as a field which points parallel to x̂ and varies
along the y-coordinate. The gradient of Bfic enables coupling between spin and motional DOF
of the trapped atoms. In the DRC scheme, the excitation light field or the cooling laser is σ−

polarized and propagates in the +y direction. The offset magnetic field B0 is orientated in the
+y direction and its magnitude is adjusted such that the energy splitting between the adjacent
Zeeman substates is close to one motional quantum. (b) In a cooling cycle, the atoms in the lower
Zeeman substates can lose one motional quantum in exchange for a higher Zeeman state due to
spin-motion coupling. The cooling light (red arrows) then pumps the atoms to energetically
lower Zeeman substates while mostly preserving their motional states, resulting in a loss of one
motional quantum in a cooling cycle.

First, we explain the experimental scheme for DRC. The trapping configuration used for
DRC is detailed in chapter 2. We show the schematic diagram for DRC of the nanofiber-trapped
atoms in Fig. 5.1. As shown in chapter 2, the tight confinement of nanofiber-guided trapping
light gives rise to the coupling between spin and motional DOF. For simplicity, we first con-
sider only the y motional DOF. Near the trap minimum, we can approximate Bfict as a linearly
gradient which its magnitude varies along y and direction points along the x-axis. The mag-
nitude of the gradient changes its sign at y = 0, i.e., the position of the trapped atom. We
apply an offset magnetic field B0 = B0êy along the y-axis such that the states |mF = −4, n�
and |mF = −3, n− 1� are close to be energy degenerate. The resulting Hamiltonian is (see
equation 3.6 in chapter 2):

Ĥ = �ωyâyây + �αFB0F̂y + �
Ωy

2
(ây + â†y)(F̂+ + F̂−). (5.1)
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5.1. Principle of degenerate Raman cooling

The spin-motion coupling term �Ωy

2 (ây + â†y)(F̂+ + F̂−) enables us to control the y motional
DOF through manipulation of the internal spin DOF. For our trap configuration, we expect the
coupling strength Ωy = 2π × 12 kHz (see chapter 3). By multiplying out this term, we have
�Ωy

2 (âyF̂++ â†yF̂−+ âyF̂−+ â†yF̂+). The terms âyF̂+ and â†yF̂− cause atom to precess between
adjacent Zeeman states while conserving the number of excitations. As the atom goes to a
higher (lower) Zeeman state, one quantum in y-motional DOF is removed (added). Hence, the
states |mF = −4, n� and |mF = −3, n− 1� are coupled. Both âyF̂− and â†yF̂+ are the counter-
rotating terms. Their effects can be neglected since they are far-off resonant and the coupling
strength is small compared to ωy and αFB0.

To achieve cooling, we utilize a σ− polarized light field that is near-resonant to the D2

cycling transition (62S1/2, F = 4 → 62P3/2, F
�
= 5) to pump atoms to the lower Zeeman sub-

states continuously. We denote it as the cooling laser or the excitation light field. The excitation
light field can either propagate in free space or be guided by the nanofiber. In the former case,
the excitation light field propagates in the +y direction and impinges on the trapped atoms, see
panel (a) in Fig. 5.1. We approximate the external light field as a Gaussian beam. The 1/e2-
diameter of this light field is 1.4mm, which is enough to cover the entire region of the trapped
atoms. In the latter case, the nanofiber-guided light field is quasi-linearly polarized along x-axis
and its local polarization on one side of the nanofiber is predominantly σ−. Thus the nanofiber-
guided light acts as the cooling light for atoms on one side of the nanofiber. Using an ab initio
calculation with the experimental parameters, the trap frequency in the x, y, z motional DOF
are expected to be {ωx, ωy, ωz}/2π = {136, 83, 215} kHz. Since the excitation light’s pho-
ton has a recoil frequency of ∼2 kHz, two orders of magnitude lower than the calculated trap
frequencies, the nanofiber-trapped atoms are in the Lamb-Dicke regime where optical pumping
is likely to preserve their motional states. Without considering heating, most atoms accumulate
in |mF = −4, n = 0� at the end of the cooling process. The state |mF = −4, n = 0� is not
resonantly coupled to other states through the spin-motion coupling.

DRC in the two other DOF follows a similar idea (see chapter 3). For the x DOF, we
rely on the higher-order expansion of the fictitious magnetic field gradient. For the z DOF, we
rely on the fictitious magnetic field gradient along the z-axis which originates from the relative
alignment between the two counterpropagating red-detuned trapping light fields. Together, we
have a Hamiltonian which includes coupling between spin DOF and all three motional DOF:

Ĥ =
�

i=x,y,z

�ωiâ
†
i âi + �αFB0F̂y − �

Ωy

2
(ây + â†y)(F̂+ + F̂−)+

�
Ωxy

2
(âx + â†x)(ây + â†y)(F̂+ + F̂−) + �

iΩz

2
(âz + iâ†z)(F̂− − F̂+). (5.2)

The Ωxy term has two effects: First, it can remove (add) one quantum of motional energy in
the x and y DOF as the atom goes to a higher (lower) Zeeman state. Second, it can exchange one
quantum between x and y DOF as the atom goes to a different Zeeman state. Both mechanisms
can enable cooling in the x DOF. We expect Ωxy = 2π×0.56 kHz for our trap configuration. The
Ωz term behaves similarly to the Ωy term and removes (adds) one quantum from the z motional
DOF as the atom goes to a higher (lower) Zeeman state. We expect Ωz to be significant when
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5. GROUND STATE COOLING OF ATOMS 300 NM AWAY FROM A NANOFIBER

there’s a small angle θcp,red between the polarization axes of the two counter-propagating red-
detuned trapping light fields, e.g., Ωz = 2π × 1.4 kHz when θcp,red = 5◦. Since the resonance
conditions for these spin-motion coupling terms are all different from each other, the magnitude
of B0 plays an important role in optimizing the DRC for different DOF. We experimentally
examine the dependency of DRC on B0 in sections 5.4 and 5.5.

5.2 Experimental procedure

In a typical experimental sequence, we first perform molasses cooling on the nanofiber-trapped
atoms at zero offset magnetic field. This procedure initializes the temperature of the trapped
atoms. We measure the extinction of a weak nanofiber-guided light field on the cycling transition
of the D2 line. We denote this light field as the probe light. The probe light is quasi-linear
polarized along the x-axis. Assuming the extinction per atom is a constant value at a given
temperature, the extinction of the probe light is proportional the initial atom number, N0. To
perform DRC, we ramp up the offset magnetic field to a fixed value and turn on the cooling
laser for a time duration. After DRC, We measure again the extinction of the probe light which
is proportional to the final atom number, Nat. The ratio N0/Nat, namely the normalized atom
number, is the fraction of the atoms survived during DRC. We can make this measurement
at either a zero offset magnetic field or a relatively high magnetic field, i.e., 10 to 20 G. In
the latter case, the probe light, with its opposite polarization of σ− and σ+ on the two sides
of the nanofiber, optically pumps the two diametric arrays of the trapped atoms into the two
opposite outermost Zeeman substates. By measuring the extinction in a high magnetic field,
the atoms in |F = 4,mF = −4� and |F = 4,mF = +− 4� can be distinguished since their
transition frequencies are separated by Zeeman splitting, i.e., the frequency difference between
the F = 4,mF = −4 → F

�
= 5,m

�
F = −5 transition and to the F = 4,mF = 4 → F

�
=

5,m
�
F = 5 transition. This procedure enables us to measure the percentage of atoms survived

after DRC on each side of the nanofiber separately, see section 5.6.

5.3 Trapping lifetime during degenerate Raman cooling

We observe the first sign of cooling by measuring the lifetime of the trapped atoms, see Fig. 5.2.
Here we measure Nat/N0 as a function of the cooling time. For comparison, we also measure
the passive trapping lifetime without DRC. We fit all measurements with an exponential function
to infer the 1/e time constant which is defined as the trapping lifetime. Without cooling (red
squares), we find the trapping lifetime to be τref =75(1)ms. When we apply DRC with an
external light field as the cooling laser (blue circles), the trapping lifetime increases drastically
to τ ext

DRC = 1650(20)ms. Similarly, we also determine the trapping lifetime during DRC us-
ing a nanofiber-guided cooling light field, which yields a value of τ ext

DRC = 1750(30)ms. Both
measurements with DRC reach the limit of lifetime imposed by collisions with the background
gas in the vacuum chamber. This is supported by an additional atom lifetime measurement in
the presence of a three-dimensional polarization gradient cooling (PGC) at zero Boff (red trian-
gle), which yields τPGC = 1560(20)ms, in reasonable agreement with the lifetimes measured
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5.3. Trapping lifetime during degenerate Raman cooling
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Figure 5.2: Normalized number of trapped atoms measured after a variable time, in the absence
of cooling (red squares), with DRC using an external (blue circles) or a nanofiber-guided (purple
diamonds) laser field, and with optical molasses (green triangles). The solid lines correspond to
exponential fits.

during DRC. The difference between τPGC and τ ext
DRC can be explained by the fluctuation of the

background gas density and its associated collision-limited trapping lifetime.
The significant increase of lifetime during DRC indicates that this technique is efficient to

counteract heating mechanism for all 3 motional DOF in the nanofiber-based atom trap. The
various heating mechanisms are discussed in the appendix 9.1. Furthermore, it was shown in
previous work that cooling in one dimension, namely the y motional DOF, does not extend the
trapping lifetime [58]. This indicates that possible coupling between different motional DOF,
i.e., resulting from the nonseparability of the trapping potential, is not sufficient to explain the
increase of the trapping lifetime. Therefore, the increased trapping lifetime during DRC is the
first indication that all three motional DOF are directly cooled in our method. The measurements
with DRC are performed at an offset magnetic field B0 = 0.5G. The measurement using an
external light field is performed with a peak intensity of I0 = 4.1 Isat and a detuning of −12 Γ,
where Isat and Γ denote the saturation intensity and natural linewidth of the D2 cycling transition
of cesium, respectively. The measurement using a nanofiber-guided light field is performed with
an intensity of I0 = 0.2 Isat at the positions of the atoms and a detuning of −6.5 Γ.
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Figure 5.3: Normalized number of remaining atoms that are trapped after 500ms of DRC as a
function of B0. The top x-axis ticks correspond to the frequency splitting between two adjacent
Zeeman substates at a given B0. We indicate the B0 where the energy of one spin excitation
matches one excitation in the y (azimuthal), x (radial), z (axial) DOF with the vertical dashed
lines.

5.4 Optimization of degenerate Raman cooling based on
minimizing atom loss

We now study the trapping lifetime during DRC at various B0, shown in Fig. 5.3. The energy
of one spin excitation is given by the energy splitting between the adjacent Zeeman substates in
the presence of the offset magnetic field. Therefore, B0 determines the detuning from various
resonant conditions of couplings between spin and motional DOF, see equation 5.2. We measure
Nat/N0 as a function of B0 for 500ms of DRC. For reference, Nat/N0 with 500ms of waiting
time is ∼ 0.1 % based on the trapping lifetime measured without any cooling.

We observe pronounced local maxima which correspond to optimal combinations of cooling
rates in three motional DOF. The first local maximum appears at B0 ≈ 0.25G, corresponds to
the resonance condition given by the simple spin-coupling model given by equation 5.1, where
one excitation of the y motional DOF and one spin excitation are exchanged. The expected
position of this resonance is ωy, and is indicated by the leftmost vertical dashed line in Fig. 5.3.
We use two additional vertical dashed lines to indicate the expected B0 where the energy of one
spin excitation matches one motional excitation in the x and z DOF, respectively.

To achieve efficient DRC, we systematically examine the effect of the cooling laser’s pa-
rameters, i.e., power and frequency, on the trapping lifetime. In Fig. 5.4(a), we show for three
different laser powers, the normalized number of atoms after 80ms of DRC as a function of the
laser detuning. The measurement is done in an offset magnetic field of 0.5G and with an ex-
ternal cooling laser. For reference, we indicate the fraction of atoms left in the absence of DRC
with a horizontal dashed black line. Furthermore, we do a finer scan of the cooling laser power
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5.4. Optimization of degenerate Raman cooling based on minimizing atom loss
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Figure 5.4: (a) Normalized number of atoms remaining in the trap after 80ms of DRC for vari-
ous detunings of the external cooling laser field. Negative (positive) detuning values correspond
to a red (blue) detuning of the laser field with respect to the (6S1/2, F = 4) → (6P3/2, F

� = 5)
optical transition of the trapped cesium atoms. We repeat this measurement for different power
of the external cooling laser, P0 = 61.2 µW (red circles), 12.3 µW (blue squares) and 1.3 µW
(green triangles), which correspond to peak intensities of I0/Isat = 6.8, 1.4 and 0.14, respec-
tively. The horizontal black dashed line indicates the fraction of atoms remaining in the trap in
the absence of DRC. (b) Normalized number of atoms remaining in the trap as a function of the
cooling laser power. The top secondary x-axis indicates the expected scattering rate γ0 for the
outermost cycling transition F = 4,mF = −4 → F � = 5,mF = −5. The measurement is
taken after 80ms of DRC and at a detuning of −9.4Γ (same detuning is indicated by the verti-
cal dash-dotted line in panel (a)). The number of atoms remaining is maximized for a power of
about 15 µW or I0 = 1.7 Isat. This power corresponds to γ0 = 2π × 12 kHz, which is on the
same order of magnitude as the coupling strength Ωy.
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while fixing its frequency, shown in Fig. 5.4(b). We can identify two limiting regimes: At a low
power or a large detuning, the scattering rate is reduced along with the cooling efficiency. On the
other hand, at a high power or small detuning, the large scattering rate can have two detrimental
effects on cooling. First, it leads to a high recoil heating rate which counteracts the cooling.
Second, the excessive power of the cooling laser interrupts the coherent exchange between the
spin and motional quanta and thereby the cooling cycle. At this limit, the DRC scheme can even
lead to significant heating and atom losses.

A more subtle effect comes from the Zeeman-state-dependent ac Stark shift induced by the
cooling laser. At a higher laser power or frequency closer to the atomic resonance, the cooling
laser can induce significant vector light shift and modify the energy difference between the
adjacent Zeeman states or the energy of one spin excitation. Moreover, depending on the laser
detuning, the ac Stark shift can either increase or decrease one spin excitation’s energy, thereby
altering the DRC resonance condition. This is evident by the asymmetry of the cooling efficiency
at positive and negative detuning in Fig. 5.4(a).

5.5 Heterodyne fluorescence spectroscopy during degenerate
Raman cooling

To obtain more quantitative information on the atoms’ temperature, we measure the fluorescence
spectrum using a heterodyne detection scheme while performing DRC [42, 52, 61]. Under the
illumination of an external cooling laser, a fraction of the light scattered by the atoms is coupled
into the nanofiber-guided mode. This light is then guided to a beam splitter, where it is combined
with a reference laser field which acts as a local oscillator. To suppress relative frequency drifts,
we derive the reference laser field from the cooling laser itself with a non-polarization beamsplit-
ter and shift its frequency by 10MHz using a pair of acoustic optical modulators. We detect the
combined light field with an SPCM. As shown in section 4.5, the auto-correlation of the intensity
of the combined light field can be used to calculate the effective power spectrum. Following this
recipe, we analyze the SPCM signal and compute the power spectrum of the atom-scattered light
field. To improve the signal to noise ratio of the spectra, we apply the Welch method with 1ms
window to the SPCM signal before the Fourier transformation. In the Welch method, the signal
is split up into overlapping segments of 1ms window. After discrete Fourier transformation, we
average the squared magnitude of the computed result over all segments.

When the excitation laser power is far below the saturation intensity, the population in the
excited state is negligible, and the scattering process is mostly coherent. This means the spec-
trum of the scattered light is much narrower than the atomic linewidth. The width of the side-
bands then depends on the combination of the depopulation rates of the states (see chapter 4),
the anharmonicity and the homogeneity of the trapping potential. The motion of the atoms in
the 3D trapping potential modulates the scattered light field, and gives rise to sidebands at the
trap frequencies, see Fig. 5.5. We can estimate the atomic ensemble’s temperature based on the
ratio of the areas of the sidebands. The mean number of motional state excitation is given by
�ni� = Si−1/(S

i
+1−Si−1), where Si±1 is the area of the sideband corresponding to the transition

n → n± 1 in i DOF (see chapter 4).
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5.5. Heterodyne fluorescence spectroscopy during degenerate Raman cooling
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Figure 5.5: Fluorescence spectrum during DRC. (a) Power Spectral Density (PSD) of the
SPCM signal for an offset magnetic field of 0.34G (b) PSD of the SPCM signal for an offset
magnetic field of 0.51G. The frequency axis in both panel is defined relative to the central
beat note in the heterodyne measurement (see 4.5 for details). The atoms are illuminated for
200ms with an intensity I ≈ 14 Isat and a detuning of −12Γ during each experimental cy-
cle. For each realization, we obtain the PSD from a windowed Fourier transform of the SPCM
signal (Welch method, 1ms window). Both spectra are averaged over 6000 experimental real-
izations. The dashed black lines correspond to fits of the experimental data, see main text for the
fit model. From the fits, we extract mean numbers of excitations of (a) {�nx�, �ny�, �nz�} =
{0.20(2), 0.52(2), 1.47(8)} and (b) {�nx�, �ny�, �nz�} = {1.2(3), 0.78(4), 0.36(8)}, indicat-
ing that all motional DOF can be cooled close to the ground state.

The fitted spectra are shown in Fig. 5.5(a) and (b). In panel (b), the fit yields trap frequen-
cies {ωx, ωy, ωy}/2π = {154, 94, 231} kHz, which agree with our ab initio calculation within
10%. From the widths of the fitted sidebands, we determine the upper limit of about 10% for
the inhomogeneity of the trapping frequencies in different sites along the nanofiber. The clear
asymmetry of the Stokes and anti-Stokes sidebands in Fig. 5.5(a) and (b) indicates significant
ground-state occupations. The spectrum shown in Fig. 5.5(a) corresponds to an offset mag-
netic field of Boff = 0.34G. Our fit yields {�nx�, �ny�, �nz�} = {0.20(2), 0.52(2), 1.47(8)},
which corresponds to ground states occupations of {83%, 66%, 40%} for the x, y, and z mo-
tional DOF, respectively. We can more efficiently cool the z motional DOF by changing the
offset magnetic field closer to the resonance condition for the direct exchange between one
spin excitation and one excitation in the z DOF. For this reason, we record another spectrum at
Boff = 0.51G (see Fig. 5.5(b)), which yields a mean number of excitations of �nz� = 0.36(8),
corresponding to a ground-state occupation of 74%. For the other motional DOF, we then find
{�nx�, �ny�} = {1.2(3), 0.78(4)}.

To extract the sideband amplitude, we fit the acquired spectra using a model based on second
order perturbation and rate-equation approach [42, 45]. In our model, the florescence spectrum
S(ω) is given by summing the contributions of all n → n ± 1 processes in all motional DOF.
The width of the spectral contribution from the transition between motional states n and n + 1
in the i DOF is given by the decay rate of the states coherence, Γi

n,n+1:
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Γi
n,n+1 = (Γi

n + Γi
n+1)/2 = Γi

0(n+ 1), (5.3)

where Γi
n is the depopulation rate of the motional state n.

For our model, we add different contributions incoherently to obtain the spectrum:

S(ω) =
�

i=x,y,z

+∞�
n=0

{πi
nγ

i
n+1→n

Γi
n,n+1/(2π)

(ω + ωi)2 + (Γi
n,n+1/2)

2

+ πn+1γ
i
n→n+1

Γi
n,n+1/(2π)

(ω − ωi)2 + (Γi
n,n+1/2)

2
}+ Coff, (5.4)

where πi
n is the population of the motional state n, γini,nf

is the rate of transition between
motional states ni and nf , Coff is an constant offset to account for the background signal.

We assume a thermal distribution of the motional states: πi
n = (1 − qi)q

n
i , with qi =

exp(−�ωi/(kBTi)), where Ti is the temperature in the i DOF and and kB is the Boltzmann’s
constant.

The rates γin→n+1 and γin+1→n are given by:

γin→n+1 = γin+1→n = (Δkii0)
2(n+ 1)

γs

4π
δΩ, (5.5)

where δΩ/(4π) is the percentage of the emitted light that are coupled to the nanofiber-guided
mode, γs is the total scattering rate of the atom, Δki is the change of the wave vector in the
scattering process along i-axis, i0 is the root mean square size of the motional ground state in
the i DOF.

Due to the moving time window used to compute the power spectral density from the SPCM
data, the profile of each spectral contribution is closer to a Gaussian function rather than a
Lorentzian function. Hence, we use Gaussian function for the fit. In addition, we introduce a
new fit parameter ξi = ξdet(Δkii0)

2δΩγs/(4π), where ξdet is the detection efficiency. The fit
function can be written as follow:

S(ω) =
�

i=x,y,z

ξi(1− qi)

+∞�
n=0

qni
2

Γi
0

�
ln 2

π
{exp(− (ω − ωi(n))

2

(Γi
0(n+ 1))2/(4 ln(2))

)

+ qi exp(− (ω + ωi(n))
2

(Γi
0(n+ 1))2)/(4 ln(2))

)}+ Coff, (5.6)

where ωi(n) is the trap frequency that has a dependency on n. This accounts for the trap anhar-
monicity which is modeled by ωi(n) = (En+1−En)/� = ωi

0(1+e1+e2(2n+1))/(1+e1+e2),
where e1 and e2 are two constant coefficients obtained from ab initio simulation, ωi

0� is the en-
ergy difference between n = 0 to n = 1 in the i DOF.

The fit parameters include ωi
0, qi,Γ

i
0, ξi for i = {x, y, z}. Moreover, the global offset Coff

is used as a free parameter to account for the background signal. The mean number of motional
quanta in the i DOF is given by �ni� = qi/(1− qi).
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5.5. Heterodyne fluorescence spectroscopy during degenerate Raman cooling
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Figure 5.6: Fluorescence spectrum during DRC. (a) PSD of the SPCM signal for an offset
magnetic field of 0.34G. (b) PSD of the SPCM signal for an offset magnetic field of 0.51G.
The dashed black lines in both panels present fit which account for an additional mF -changing
transition. From the fits, we extract mean numbers of excitations of {�nx�, �ny�, �nz�} =
{1.85(7), 0.51(1), 1.62(3)} for panel (a) and {�nx�, �ny�, �nz�} = {1.3(2), 0.80(3), 0.9(2)}
for panel (b).

A shortcoming of this model is that the transitions between adjacent Zeeman substates
are not taken into account. For example, a two-photon transition could occur between
|F = 4,mF = −3� and |F = 4,mF = −4�, where the first and second photon have π and σ−

polarization, respectively. This transition is not available if the excitation light field has a purely
σ− polarization. However, due to experimental imperfections, i.e., imperfect optical alignment,
a small portion of the π polarization in the excitation light field could result in an mF -changing
transition that has a comparable signal intensity with the motional sidebands. The Zeeman split-
tings for the setting of the two spectra in Fig. 5.5 are at 105 kHz and 175 kHz, respectively.
Therefore the mF -changing transition has a frequency close to the x motional sidebands in
Fig. 5.5(a) and the y motional sidebands in Fig. 5.5(b). To check its effect, we extract Δki for
the i motional DOF, where Δki is the difference between the i component of the wavevector of
the incident photon and the scattered photon. We expect Δki to be constant for all spectra since
the experimental geometry is fixed. As shown in section 4.2, the ratio between the areas corre-
sponding to the two first-order sidebands transitions Si

Δ1+Si
Δ−1 and to the carrier transition S0

is proportional (Δki)
2:

Si
Δ1 + Si

Δ−1

S0
= (2 �ni�+ 1)Δk2i i0

2, (5.7)

where S0 is the area corresponding to the carrier transition.
With equation 5.7, we can extract Δki from the data in Fig. 5.5(a) and (b), re-

sulting in {Δkx, Δky, Δkz} = {8(2), 8.9(2), 7.3(3)} µm−1 and {Δkx, Δky, Δkz} =
{4.1(8), 9.0(4), 12(2)} µm−1, respectively. While the values of Δky in the two datasets agree
within the error, the values of Δkx and Δkz differ by a factor of ∼2. We attribute this discrep-
ancy to the addition of the mF -changing transition near the x motional sidebands in Fig. 5.5(a)
and the y motional sidebands in Fig. 5.5(b).
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The |F = 4,mF = −3� → |F = 4,mF = −4� transition has a lower emitted photon en-
ergy compared to the incoming photon energy, thereby this transition would appear on the red
side (ωS − ωI < 0) of the spectra and exaggerates the asymmetry of the observed spectra.
The amplitude of the Zeeman changing transition depends on the polarization of the excita-
tion beam and the distribution of Zeeman substates. To account for this transition, we include
in our fit model an additional Gaussian function that has three fit parameters, ωze, γze , Aze,
corresponding to the center position, width and the height of the Gaussian function, respec-
tively. Furthermore, to restrict the number of free parameters for a more robust fit, we fix
Δki using our previous fit shown in Fig. 5.5. When the mF -changing transition is near a mo-
tional sideband, we take Δki from an different dataset where the mF -changing transition is
close to a different motional sideband. For example, for Fig. 5.5(a), the mF -changing tran-
sition is close to the x DOF. We then use Δkx extracted from the fit shown in Fig. 5.5(b)
where the mF -changing transition is close to the z motional sidebands. We show this fit in
Fig. 5.6. The fit yields {�nx�, �ny�, �nz�} = {1.85(7), 0.51(1), 1.62(3)} for panel (a) and
{�nx�, �ny�, �nz�} = {1.3(2), 0.80(3), 0.9(2)} for panel (b). These mean numbers of mo-
tional quanta are higher than what was found in the previous analysis. Nevertheless, they still
indicate atoms are close to the ground states in all 3 motional DOF.

We now discuss possible mechanisms that can limit the performance of DRC scheme, i.e.,
the final temperature of the trapped atoms. The final temperature or the mean number of mo-
tional quanta is measured in a stationary state where the heating rate matches the cooling rate.
For a fixed trapping configuration, the cooling rate depends on the power and detuning of the
cooling laser (see Fig. 5.4) and on the amplitude of the offset magnetic field (see Fig. 5.3). In
general, the upper limit of the cooling rate is set by the rate of spin-motion coupling at the cho-
sen magnetic field. There are two types of heating mechanisms during our DRC schemes. The
first type of heating comes from the optomechanical coupling of the optically trapped atoms to
the mechanical modes of the nanofiber [57]. In previous work, the heating rate in the y-direction
is measured to be about 0.3 quanta/ms [58]. The second type of heating comes from the DRC
scheme itself. Since the cooling laser in our experiment is on an optical cycling transition, there
are no optical dark states and the atoms constantly experience recoil heating during DRC. The
intensity of the cooling laser field for our fluorescence spectrum measurements is higher than
the optimum intensity indicated in the Fig. 5.4(b). We use a larger intensity in order to increase
the signal-to-noise in our spectra. The increased recoil heating in this setting suggests that the
measured mean numbers of motional quanta correspond to the upper bounds of what can be
achieved with the DRC method, e.g., using a light field on a non-cycling transition for cooling.

5.6 Discerning and preparing atoms on only one side of the
nanofiber

In our trap configuration, two atomic ensembles are trapped in two diametric lattices of trapping
sites around the nanofiber. The two arrays are ∼1 µm apart. The trapping light fields can cause
state-dependent light shifts that are different on the two sides of the nanofiber, and thereby lead
to an inhomogeneous broadening of atomic transitions. For engineering collective interaction
between atoms and light, it is often advantageous to reduce such complexity and select atoms
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on only one side of the nanofiber. This capability was first demonstrated in previous work by R.
Mitsch et al. [24]. A single optical mode is used to pump the two atomic ensembles to opposite
Zeeman states simultaneously. At a magnetic field where the Zeeman splitting between these
two states is greater than the natural linewidth, the two atomic ensembles can be discerned in
their optical spectra. Furthermore, opposite fictitious magnetic fields can be introduced to the
two atomic ensembles via modifying the trap configuration. As a result, the locally distinct
Zeeman shifts allow one to discern and manipulate the two atom ensembles even when prepared
in the same Zeeman substate.

Taking advantage of DRC, we demonstrate an alternative method to select atoms on one side
of the nanofiber. As shown in chapter 2, we utilize a nanofiber-guided excitation light field that
is quasi-linearly polarized along the x-axis. Its evanescent field is mostly σ+ polarized on one
side of the nanofiber and σ− polarized on the other side. While the σ− polarized light facilitates
degenerate Raman cooling, the σ+ polarized light does the opposite, i.e., degenerate Raman
heating. As the σ+ polarized light pumps atoms to a higher Zeeman state, the added energy of
the spin DOF can be converted to of motional DOF through the process of spin-motion coupling.

As shown in Fig. 5.7(a), the atoms trapped on opposite sides of the nanofiber overlap with
the σ− and σ+ components of the evanescent field of a quasi-linearly polarized nanofiber-guided
light, respectively. By adding an offset magnetic field between 0.2G and 0.5G along the +y
direction, we achieve cooling of atoms on one side of the nanofiber while simultaneously heat-
ing atoms out of their trapping potential the other side. Furthermore, the excitation light field
optically pumps the two atomic ensembles into different Zeeman states, enabling us to discern
the population of the two ensembles since their optical resonance frequencies now differ by the
Zeeman splitting. We ramp the offset magnetic field to 16G and measure the transmission spec-
tra of the trapped atoms. To obtain the transmission spectrum, we sweep the frequency of a
nanofiber-guided probe light over a 140MHz interval or ∼ 27 Γ. The two spectra in panel (b)
and (c) exhibit the structure of two dips. The left dip originates from the extinction of the atomic
ensemble on the σ+ side. These atoms are lost during degenerate Raman heating. Meanwhile,
the atomic ensemble on the σ− side undergoes degenerate Raman cooling and remains trapped.

For a more qualitative result, we measure Nat/Ni of the two atomic ensembles as a function
of the illumination duration with the excitation light field, see Fig. 5.7(d). The populations of the
two atomic ensembles are extracted from the transmission spectrum, e.g., the spectra shown in
panel (b) and (c). Here we assume a constant OD per atom. From an exponential fit, the lifetime
of the atomic ensemble on the σ+ side is found to be 2.3ms, far less than the passive trapping
of lifetime ∼70ms.
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Figure 5.7: Selection of the atomic ensemble trapped on one side of the nanofiber. (a)
Schematic diagram for selecting an atomic ensemble on one side of the nanofiber. Using a
nanofiber-guided light which is linearly polarized along the x-axis, atoms trapped on one side of
the nanofiber undergo degenerate Raman heating and are heated out of the trap. Meanwhile, the
atoms on the other side undergo degenerate Raman cooling and remain trapped. (b)-(c) Trans-
mission spectra before and after exciting atoms with 31ms of the nanofiber-guided light field,
respectively. Both spectra are taken at 16G offset magnetic field along +y direction. For the
spectrum shown in panel (b), atoms are trapped on both sides of the nanofiber, whereas atoms are
trapped predominantly on one side of the nanofiber in the spectrum in panel (c). The left (right)
peak in the spectrum results from the extinction of the guided light by the atomic ensemble on
the σ+ (σ−) side. (d) Normalized atom number as a function of the time. The number of the
atomic ensemble trapped on the σ+ (σ−) side is indicated by the hollowed circle (filled circle).
In the absence of the nanofiber-guided excitation light, the population of the two atomic en-
sembles, indicated by the hollowed diamond and blue diamond, respectively, are equal at the
various waiting time. It is apparent that the trapping lifetime of atoms on the σ+ (σ−) side is
far shorter (longer) than the lifetime in the absence of the excitation light field, indicating the
presence of degenerate Raman heating and cooling on the two atomic ensembles, respectively.
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5.7 Summary and outlook

In this chapter, we demonstrate degenerate Raman cooling of the nanofiber-trapped atoms. Our
cooling scheme relies on the strong gradients of fictitious magnetic fields, which naturally arise
for atoms trapped using evanescent fields of nanofiber-guided light. The implementation of the
DRC scheme in our system requires only one additional laser field, which can be either fiber-
guided or in free space. Thus, our cooling scheme is directly applicable to a wide variety of
optical microtraps, e.g., nanophotonic-based atom traps. We use fluorescence spectroscopy to
measure the temperature of trapped atoms. We confirm all motional DOF can be cooled close to
the ground state.

One interesting technical improvement in the near future is to probe the atom’s temperature
using Raman sideband spectroscopy [62]. This would allow us to characterize the performance
of the DRC scheme with stimulated Raman transitions. We expect observation of even lower
numbers of the mean motional state excitation since the photon recoil heating rate is signifi-
cantly reduced in this method. In addition, Raman sideband spectroscopy can be used to probe
transient atomic temperature. This would open the possibility to directly measure the heating
rate in all three motional DOF simultaneously. Furthermore, it would be interesting to study the
effectiveness of DRC using different trapping laser frequencies and powers, which would result
in the change of trap frequency and coupling strength of spin-motion DOF.

By preparing atoms close to the motional ground state near a nanophotonic waveguide, we
ensure homogeneous coupling between the guided light and the nanofiber-trapped atoms. This
could significantly improve the performance of experiments which rely on the collective effect
of the atomic ensemble, e.g., atomic Bragg mirrors [28, 29], quantum memories [26, 32], or
squeezing protocols [63]. In a more general context, by cooling atoms close to the ground
state, we provide a well-defined initial states for future studies including near-surface effects
[40, 64–66], or quantum friction [67].
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CHAPTER 6
Ultra-strong spin-motion coupling of

nanofiber-trapped atoms

Studying light-matter interaction is at the heart of quantum optics. A textbook example is the
quantum Rabi model (QRM) describing the interaction of a single bosonic mode and a two-
level system. Together, with its extension for an ensemble of atoms, namely the Dicke model
(DM), they constitute as a cornerstone of quantum optics due to their universality. Both models
have been used extensively for a wide variety of quantum systems, e.g., cavity and circuit QED
systems.

In the past decade, there has been tremendous progress in realizing larger coupling strengths
and new regimes of light-matter interaction. In particular, g can be made comparably large with
respect to the bosonic mode frequency ω0. In this regime, the RWA breaks down, yielding the
ultra-strong coupling (USC) regime, i.e., for ηc = g/ω0 � 0.1, where ηc is normalized coupling
strength. In 2009, USC was first experimentally realized in an intersubband polaritons system
with ηc ≈ 0.1 [68, 69]. In 2010, USC was also realized in superconducting circuits, where
ηc ≈ 0.1 [70, 71]. When the coupling strength is increased further, i.e., ηc ≈ 1, the deep-strong
coupling (DSC) regime can be realized [72]. DSC was achieved more recently in circuit QED
as well as by coupling a planar THz metamaterial with cyclotron resonances [73–75].

In the USC and DSC regimes, the very nature of light-matter interaction can be modified. In
particular, the higher-order coupling, i.e., between states with different numbers of excitations,
can no longer be neglected. In the USC and DSC regimes, there are new possibilities to study
and engineer light-matter systems, which could lead to many applications, e.g., novel protocols
for quantum communication and quantum information processing [76–79]. Furthermore, at
these non-perturbative regimes, the existence of a quantum phase transition is expected in the
thermodynamic limit, which adds to the richness of the DM [80–82].

While current experimental setups have reached the USC and DSC regimes, the large cou-
pling strength makes state preparation and read-out challenging. For this reason, alternative
routes were proposed to achieve large coupling in experimental platforms that, at the same time,
offer a high level of control and tunability [83, 84]. Among these proposals, the QRM in the
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USC and DSC regimes has been realized in both circuit QED and single-trapped ions experi-
ments [85–87].

In this chapter, we realize a mechanical analog of the Dicke model using the spin-motion
coupling of nanofiber-trapped atoms. As shown in chapter 2, strong gradients of the fictitious
magnetic field arise naturally in nanofiber-based optical traps. The fictitious magnetic field
gradients facilitate the coupling between atom’s motional and spin degrees of freedom (DOF).
With spin-motion coupling induced by a linear fictitious magnetic field gradient, the Hamiltonian
of a nanofiber-trapped atom is formally equivalent to the QRM or the DM [88]. Instead of
photons in a cavity QED system, the bosonic mode is represented by atoms’ motional states.
Hence, ω0 is given by the trap frequency of ≈100 kHz, which is ∼9 orders of magnitude less
than the energy of a photon in the optical domain.

To probe the energy spectrum of the trapped atoms’ Hamiltonian, we employ fluorescence
spectroscopy which was used previously to measure atoms’ temperature during degenerate Ra-
man cooling (see chapter 5). In these fluorescence spectra, we observe a vacuum Rabi splitting
and also the transitions between the dressed states. In addition, we infer the coupling strength
from the vacuum Rabi splitting, which is shown to be a significant fraction of the mode fre-
quency and thereby in the USC regime. Furthermore, we show that the coupling strength can be
readily tuned in situ using an additional laser light field. The discussion in this chapter closely
follows the published manuscript [89].

6.1 Simulating quantum Rabi model and Dicke model with
nanofiber-trapped atoms

The Rabi model was first introduced in 1935, describing the transition between Zeeman sub-
states in the presence of a rapidly varying weak magnetic field [90]. Later, Jaynes and Cum-
mings introduced the quantum Rabi model (QRM) describing a two-level atom interacting with
a quantized bosonic mode:

HQRM/� = ωegσ̂z + ω0â
†â+ g(â† + â)σ̂x, (6.1)

where â (â†) is the creation (annihilation) operator for the single bosonic mode, σ̂x and σ̂z are
the Pauli matrices of the two-level system, ωeg is the energy gap of the two-level system, ω0 is
the single bosonic mode frequency, and g is the coupling strength between the two-level system
and the bosonic mode.

By substituting σ̂x with the raising operator σ̂+ and the lowering operator σ̂−, we can rewrite
the coupling term in equation 6.1 as g(σ̂+â† + âσ−) + g(â†σ̂− + âσ̂+). The co-rotating terms
âσ̂+ and â†σ̂− conserve the total number of excitation, i.e., âσ̂+ (â†σ̂−) corresponds to the
annihilation (creation) of one bosonic excitation and the creation (annihilation) of one spin ex-
citation. In contrast, the counter-rotating terms â†σ̂+ and âσ̂− do not conserve the total number
of excitations.

The DM was first introduced to describe the phenomenon of superradiance, where N indis-
tinguishable two-level systems interfere constructively in their emission process at an amplitude
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proportional to N [91]. The DM has the following Hamiltonian:

HDM/� = ω0â
†â+

N�
j=1

ωegσ̂
j
z + g(â† + â)

N�
j=1

σ̂j
x, (6.2)

When N = 1, the DM is identical to the QRM model. The coupling strength g depends on the
dipole moment of the atomic transitions. Most cold-atom systems, e.g., cavity QED systems,
are in the so-called strong coupling regime, where g is larger than the rate of dissipation. In
this regime, a coherent exchange of excitations between a bosonic mode and an atom can be
observed in Rabi oscillation. However, g can be orders of magnitude smaller than ωeg and ω0

in the strong coupling regime. Hence, the rotating-wave approximation (RWA) is valid and the
counter-rotating terms that are far off-resonant can be neglected. The resulting Hamiltonian after
this approximation is known as the Jaynes-Cummings model:

HJC/� = ω0â
†â+ ωegσ̂z + g(σ̂−â† + σ̂+â). (6.3)

In chapter 3, we derived the Hamiltonian of the trapped atoms in the y motional DOF and
with an additional offset magnetic field B0 along the +y direction:

Ĥ = �ωyâ
†
yây + �ΔF̂y +

�g�
y√

2F

	
â†y + ây

�	
F̂+ + F̂−

�
, (6.4)

where F̂+ (F̂−) is the spin raising (lowering) operator, Δ is the Zeeman splitting between ad-
jacent mF substates and is proportional to the magnitude of an external offset magnetic field,
B0.

For equation 6.4, we substitute equation 3.6 in chapter 3 with Ωy/2 = g
�
y/
√
2F so the

coupling strength g
�
y becomes independent of the F -quantum number. For F = 1/2, the Hamil-

tonian (6.4) becomes the QRM. When F > 1/2, the Hamiltonian corresponds to the DM with
N = 2F two-level systems. In this case, F̂x in equation 6.4 becomes the angular momentum
operator of a pseudo-spin-N/2:

F̂x =
1

2
(F̂+ + F̂−) =

N�
j=1

σ̂j
x, (6.5)

where the states with the same number of total spin excitations, spanning from −N to N , can
be mapped onto Zeeman substates mF = −N...N . For example, the state F = 4 of the cesium
atom allows one to simulate the DM with 8 two-level systems.

The physics of the QRM and the DM is governed by three parameters: The mode frequency,
ωy, the Zeeman splitting between adjacent mF -states, Δ ∝ B0, and the spin-motion coupling
strength, g

�
y ∝ by, where by is the gradient of the fictitious magnetic field along the y-direction.

An ab initio calculation using our trapping configuration yields g
�
y ≈ 2π × 17 kHz, ωy ≈

2π × 82 kHz, and g
�
y/ωy ≈ 0.2 (see chapter 3).
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Figure 6.1: Schematic diagram for spin-motion coupling. (a) In the absence of spin-motion
coupling, the eigenstates in the harmonic trapping potentials are |mF , ni� with eigenenergies
�(mFΔ+niωi), where �Δ is the Zeeman splitting between two adjacent mF substates and �ωi

is the energy of one motional quantum. The spin-motion coupling is resonant for Δ = ωi. (b)
At the resonance of spin-motion coupling, the energy degeneracy between |−4, 1� and |−3, 0�
is lifted. The energies of the new eigenstates |+� and |−� are split by �Ω�

i. We denote |−4, 0� as
the ground state |0�.

6.2 Fluorescence spectroscopy and 2D spectrum

We measure the energy spectrum of nanofiber-trapped atoms using fluorescence spectroscopy.
The experimental scheme is detailed in section 4.5. The trapped atoms are excited by a σ−

polarized light propagating along the +y direction. This light is used to optically pump atoms
to the low-lying energy states and facilitate degenerate Raman cooling, see Fig. 6.1 [60]. We
set the excitation light to be red-detuned with respect to the cycling transition of the D2 line of
cesium. The final spectrum is obtained using heterodyne detection (see chapter 4).

In our experiment, the nanofiber-trapped cesium atoms are initially prepared in the F =
4 hyperfine ground state. In the absence of spin-motion coupling, the eigenstates of Ĥy are
the bare state |mF , ny�, where ny corresponds to the motional state of the harmonic trapping
potential in the y DOF. The energy diagram of the bare states is illustrated in Fig. 6.1(a). In the
presence of spin-motion coupling, the motional and spin states become hybridized, thereby the
new eigenstates are dressed states. We illustrate this effect in Fig. 6.1(b), where the spin-motion
coupling is resonant (Δ = ωy). Due to spin-motion coupling, the energy degeneracy of the two
bare states |−4, 1� and |−3, 0� is lifted. The new eigenstates are now superpositions of the bare
states, i.e., |±� = (|−4, 1� ∓ |−3, 0�)/√2. The two dressed states are separated in energy by
�Ω�

y, where Ω
�
y is the Rabi frequency. Here, we expected Ω

�
y = 2g

�
y = 2π× 34 kHz based on an

ab initio calculation (see chapter. 3).
We measure fluorescence spectra for different values of the Zeeman splitting, Δ ∝ B0,

see Fig. 6.2(a)-(c), where Δ corresponds to the energy of the two-level systems in the Dicke
model. By tuning the offset magnetic field B0, and thereby Δ, we can modify the spin-motion
coupling condition to be either off-resonant or on-resonant. The ordinate axis in Fig. 6.2(a)
corresponds to the Zeeman splitting expected at a given B0. In the case of far off-resonance,
i.e., for |Δ − ωi| � Ω

�
i, we observe three pairs of motional sidebands. An example of such

a spectrum is shown in Fig. 6.2(b) measured at a Zeeman splitting of Δ1, indicated by the top
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Figure 6.2: (a) Fluorescence spectra for different values of Δ. The two horizontal white lines
indicate the Zeeman splitting Δ1 and Δ2 used for the spectra in panel (b) and (c), respectively.
The avoided crossings occur when the resonance condition is fulfilled for the x DOF or the y
DOF. The predicted transitions between the ground-to-bare states are derived from a fit of the
data far from resonance and are indicated by the dashed white lines. In particular, the two di-
agonal dashed white lines indicate the transition between two adjacent Zeeman substates, i.e.,
|F = 4,mF = −4� and |F = 4,mF = −3�. We use this transition to calibrate the offset mag-
netic field. The solid black lines indicate a multi-parameters fit of the ground-to-dressed state
transitions. We infer the coupling strength from this fit. The inter-dressed-state transitions are
indicated by the dashed black lines. (b) Fluorescence spectra when the Zeeman splitting is Δ1.
Here the coupling is far from resonance, and three pairs of motional sidebands are apparent. (c)
Fluorescence spectra when the Zeeman splitting is Δ2 and the coupling condition is fulfilled for
the y DOF. The transition between the two dressed states |−� → |+� (|+� → |−�) is indicated
by the up-pointing (down-pointing) triangle, whereas the transition |0� → |+� ( |0� → |−�) is
indicated by the diamond (circle).
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horizontal white light in Fig. 6.2(a). Here the eigenstates of the trapped atoms can be represented
by the bare states due to the near-absence of spin-motion coupling. The motional sidebands
correspond to the transitions which the motional states is changed by one motional quantum.
Thus the sideband positions correspond to the trap frequencies. We find {ωx, ωy, ωz} = 2π ×
{149(2), 93(2), 243(5)} kHz. The strong asymmetry of the sidebands indicates that atoms
are close to the motional ground state [92]. Furthermore, we observe transitions between two
adjacent mF -states at a given motional state, shown as the diagonal line in the upper left part
of Fig. 6.2(a). The mF changing transitions at ωI − ωS < 0 originates from a combination of
π polarized incident photon and σ− polarized scattered photon. The π component of incident
light field could originate from experimental imperfections, i.e., the propagation direction of the
incident light field is not parallel to the quantum axis along y.

We now look at a spectrum with near-resonant spin-motion coupling, i.e., when the Zeeman
splitting Δ ≈ ωy, see Fig. 6.2(c). A double-peak structure occurs near the expected frequency
of ωy. This structure corresponds to the transition between the ground state and the lowerest pair
of dressed states. As we scan Δ around the resonances, two avoided crossings are visible near
ωx and ωy, see panel (a), indicating that strong spin-motion coupling is present for both the x
and y DOF. The coupling in the x DOF could arise from a spurious vector light shift originating
from the interference of the external excitation light with its reflection on the nanofiber or from
the imperfect alignment of the polarization of the trapping light fields. In addition, we can
also observe transitions between the two dressed state, indicated by the triangles in Fig. 6.2(c)
near the carrier transition. Since atoms are close to the motional ground state, the transition
between the lowest pair of dressed states is pronounced [92]. By fitting the spectrum, we find
Ω

�
y = 2π × 35(1) kHz and Ω

�
x = 2π × 36(1) kHz, which correspond to normalized coupling

strengths of g
�
y/ωy = 0.19(1) and g

�
x/ωx = 0.12(1), respectively. Therefore, our system is in

the USC regime for both the x and y DOF.

6.3 Tuning the coupling strength

An advantage of our setup is the ability to tune the coupling strength in situ. Since the coupling is
induced by light, we can turn the coupling on and off instantaneously compared to the timescale
of the atom’s internal and external dynamics. For this purpose, we utilize an additional fiber-
guided light field at the tune-out wavelength of ∼880 nm (see section 2.3). We denote this light
field as the tune-out laser. At the tune-out wavelength, the scalar polarizability vanishes for the
electronic ground state of cesium, i.e., F = 3 and F = 4 hyperfine states. Therefore, the laser
field only induces a vector light shift. When this field propagates in the same direction and has
the same polarization as the blue-detuned trapping light field, we expect a partial compensation
of the fictitious magnetic field gradient and thereby of the spin-motion coupling strength [58].
We demonstrate this capability by measuring the Rabi splitting Ω

�
y as a function of the tune-out

laser power P880, see Fig. 6.3. As expected, Ω
�
y decreases with P880. The linear slope of the

fitted line is dΩ
�
y/dP880 = 2π × −120(10)Hz/µW, see Fig. 6.3(b). Taking into account the

vector polarizability and the mode function of the nanofiber-guided tune-out light, an ab initio
calculation yields a slope of 2π × −100Hz/µW, which is in reasonable agreement with the
experimental value.
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Figure 6.3: Tunability of the spin-motion coupling strength. We tune the spin-motion cou-
pling strength using a nanofiber-guided tune-out laser field at a wavelength of ∼ 880 nm.
The tune-out laser modifies the fictitious magnetic field gradient along y direction, which is
proportional to the coupling strength. (a) Fluorescence spectra taken at resonant coupling
of the y DOF (Δ = ω

�
y) and different values of the tune-out laser power P880. The peaks

in panel (a) correspond to the |+� → |−� inter-dressed-state transitions. Each peak posi-
tion corresponds to the Rabi splitting Ω

�
y. The peak shifts toward the carrier frequency for

increasing values of laser power P880, indicating a reduction of the coupling strength. (b)
Measured Ω

�
y as a function of P880. A linear fit, indicated by the black dashed line, yields

dΩ
�
y/dP880 = 2π × −120(10)Hz/µW. For P880 > 100 µW, the proximity of the carrier

transition peak impedes a precise measurement of the peak position of the inter-dressed state
transition.
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6. ULTRA-STRONG SPIN-MOTION COUPLING OF NANOFIBER-TRAPPED ATOMS

6.4 Exploration of the USC regime at higher coupling strengths

In this section, we explore the USC regime where the spin-motion coupling strength is increased.
In contrast to the last section, we now reverse the propagation direction of the tune-out laser field
so it counterpropagates with respect to the blue-detuned trapping light field. We expect the tune-
out laser field increases the gradient of the fictitious magnetic field and thereby the coupling
strength.

Fig. 6.4 shows the comparison of the atom’s trapping lifetime with and without DRC at var-
ious Ω

�
y. Here we convert the tune-out laser power to Ω

�
y using dΩ

�
y/dP880 obtained in section

6.3. The passive lifetime (without DRC) is roughly constant with respect to Ω
�
y, indicating that

the trapping potential and the heating rate are both similar at different tune-out laser power. In
contrast, as we increase Ω

�
y during DRC, the trapping lifetime reduces by ∼2 orders of magni-

tude and becomes shorter than the passive lifetime. Since all other experimental parameters are
constant, the drastic reduction of the trapping lifetime indicates an additional heating channel
introduced by the combination of optical pumping and larger coupling strength.
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Figure 6.4: Comparison of the trapping lifetime in the presence (grey circle) and absence (or-
ange square) of optical pumping, respectively.

In Fig. 6.5(a)-(f) show a collection of spectra at different Ω
�
y. Note that the fluorescence

spectra here are not obtained at a steady state as atoms are lost from the trap on the timescales
shown in Fig. 6.4. An interesting feature in Fig. 6.5(a) is that the ratio between the area of two
first-order y motional sidebands Sy

Δ1 and Sy
Δ−1 decreases as the coupling strength increases,

where Sy
Δ±1 is the area of the sideband corresponding to the transition ny → ny ± 1. At

Ω
�
y =∼80 kHz, an inversion of the sideband areas occurs, i.e., Sy

Δ−1 is larger than Sy
Δ1. This

inversion is usually a signature of the motional states’ population inversion, which corresponds
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6.4. Exploration of the USC regime at higher coupling strengths

to a negative temperature in the case of thermal distribution. The population inversion should
correspond to a high mean motional excitation number. To verify this, we compute the average
motional excitation number in the y DOF inferred from the carrier-to-sidebands ratio:

Sy
Δ1 + Sy

Δ−1

S0
= (2 �ny�+ 1)Δk2yy0

2, (6.6)

where y0 is the RMS extent of the motional ground state in y DOF, S0 is the area of the carrier
transition, Δky is the change of the wavenumber along the y-axis during scattering. Consider
the experimental geometry where the incident and scattered light fields propagate approximately
in orthogonal directions, we use the wavenumber of the excitation light field in free space for
Δky.

The average motional excitation �ny� increases with Ω
�
y, as shown in Fig. 6.5 (h), from ∼1

to ∼2 quanta. At �ny� = 2 quanta, the average motional energy is ∼8 µK, i.e., far below the
trap depth expected in this trapping configuration at ∼180 µK. This suggests that the inversion
of the motional sidebands does not originate from the population inversion of the motional state,
but rather other mechanisms. By simulating the fluorescence spectrum using a master equation,
we find the inversion of the motional sidebands can occur while observing π polarized emission.
The master equation we used for this simulation is detailed in chapter 4. Since the reference light
field in the heterodyne spectroscopy was aligned to a σ− polarization, the π polarized emission
should not show up in the observed spectra. Therefore, further investigation is needed to find
out the origin of the motional-sideband inversion.
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Figure 6.5: (a)-(f) Fluorescence spectra at different coupling strength Ω
�
y. Each spectrum is

normalized such that the peak of the carrier transition has the same amplitude. The coupling
strength Ω

�
y is calculated based on the expected fictitious magnetic field gradient in the presence

of the nanofiber-guided light field at the tune-out wavelength. (g) Ratio between the areas of two
first-order y motional sidebands Sy

Δ1 and Sy
Δ−1 as a function of Ω

�
y. Both Sy

Δ1 and Sy
Δ−1 are

inferred from multiple Gaussian fits. (h) Mean motional excitation in the y DOF as a function
of Ω

�
y. We infer the mean excitation from the carrier-to-sidebands ratio. The error bars in panels

(g) and (h) are propagated from the fit error.
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6.5 Summary and outlook

In summary, we show an implementation of the DM using the nanofiber-trapped atoms. Our
implementation relies on the gradient of the fictitious magnetic field, which can occur in a wide
classes of optical traps, e.g., optical lattices and free-space optical microtraps [93–95]. Our
approach constitutes a new route to explore light-matter interaction in the USC regime, and
potentially, even the DSC regime. By using a cold-atom setup, we also have access to the rich
toolbox developed in the cold-atom community. In future implementations, other established
techniques could be used to probe motional states and spin states [58, 96–99].

We demonstrate that the coupling strength can be readily tuned using a nanofiber-guided
light at the tune-out wavelength. The ability to switch the spin-motion coupling off non-
adiabatically is essential for projecting the system onto the uncoupled basis prior detection,
allowing observation of quantum quench dynamics. In addition, the versatility of having tun-
able system parameters in our implementation enables the study of the dynamical Casimir ef-
fect [100] or of the role of dissipation in the USC and DSC [101]. Understanding these effects
will be beneficial for realizing ultra-fast quantum gates or qubit protection protocols [77–79]
relying on the USC. By tailoring real and fictitious magnetic field patterns, our implementation
can be extended to realize generalizations of the QRM or the DM, e.g., the driven QRM, or the
QRM with quadratic coupling [88].

Moreover, an important feature of the DM is a phase transition to a superradiant state once
the coupling strength is at a critical value which is on the order of trap frequencies for our
system [102]. Since the critical coupling strength can be reached using a tune-out laser, it would
be interesting to investigate whether a phase transition can be observed in our setup.
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CHAPTER 7
Imaging of individual

nanofiber-trapped atoms

One of the main assets of nanophotonic cold atom systems is to study atom-light interaction in
unique geometries and at large interaction strength. Thus far, we have demonstrated the prepara-
tion of the internal and external quantum state of atoms trapped and optically interfaced with an
optical nanofiber [58, 92, 103]. In light of these developments, the next steps to achieve further
control of trapped atoms near a nanophotonic waveguide is to directly image and to selectively
address individual atoms. For free-space atomic tweezer or atomic lattice experiments, there
have been many remarkable results utilizing single-atom imaging and addressing [104–109]. In
contrast to the free-space atomic traps, the nanophotonic-based atom traps are a few hundred
nanometers away from a surface, which can act as a large scatterer of light. The main challenge
for imaging has been suppressing the background scattered light field when illuminating the
trapped cold atoms. Recently, optical tweezers have been employed to trap and position atoms
close to an optical chip [110]. Atom imaging in such a tweezer array has been demonstrated.
Furthermore, single-atom detection using a nanophotonic resonator has been demonstrated [16].

The discussion in this chapter closely follows our manuscript in PRL [111]. In this chapter,
we present the experimental method for imaging nanofiber-trapped atoms. we show series of raw
atom images under different experimental settings. In addition, we characterize the detection
efficiency of a single trapped atom. To highlight the unique research opportunities enabled
by single-atom imaging, we will show two applications. In the first application, we use atom
imaging to determine the exact number of the trapped atoms and to measure the transmission
of a nanofiber-guided probing light field as a function of the atom number. This gives us a
direct measurement of the extinction per single atom interfaced with a waveguide. In the second
application, we use atom imaging to study atom-scattered light fields that are coupled into the
nanofiber-guided mode. In particular, we observe interference between the two atom-scattered
light fields.
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7. IMAGING OF INDIVIDUAL NANOFIBER-TRAPPED ATOMS

7.1 Experimental method

A schematic diagram of the experiment is shown in Fig. 7.1. We show in chapter 5 that de-
generate Raman cooling (DRC) can be implemented with nanofiber-trapped atoms [92]. Here,
we use DRC to continuously cool atoms close to their motional ground state while collecting
atom-scattered light to image the atoms. We apply an offset magnetic field of 0.3G in the y-
direction. The excitation light is red-detuned relative to the D2 cycling transition of Cesium
and its wavelength is at ∼852 nm. Unless otherwise mentioned in this chapter, the excitation
light is an external light field in free-space. We also show the possibility of imaging with a
nanofiber-guided excitation light in section 7.2. The 6S1/2, F = 3 is a dark state with respect
to the excitation light. To pump atoms from F = 3 → F = 4 of the 6S1/2 state, we use a
nanofiber-guided light that is resonant on the D1 transition, i.e., 6S1/2, F = 3 → 6P1/2, F

� = 4.
This light field has a quasi-linear polarization such that it is mainly σ− polarized at the trapping
sites. Since the D1 transition is about 40 nm detuned from the D2 line at 852 nm, we can easily
filter out the D1 light before the camera or the SPCM with bandpass filters. We use a similar
trapping configuration as described in the chapter 2 with two modifications. First, we change the
wavelength of the blue-detuned trapping light to 762.6 nm (TOPTICA’s DLX 110 diode laser).
This wavelength is chosen to reduce the background noise originating from the Raman scattering
induced by the trapping light field in the fiber material. In comparison to the 783 nm light used
in previous chapters, we achieve a factor of 7 reduction of the Raman scattered light at ∼852 nm
for the same power of the laser. Since the scalar light shift is about 30 % lower at 765 nm than
783 nm, our second modification is to reduce the total power of the red-detuned standing light
from 2.88mW to 1.96mW. In this setting, the total trapping potential is similar to the one used
in chapter 2, and the trapping potential minimum is about 270 nm from the nanofiber surface
according to our ab initio calculation.

Atoms are initially loaded into the trapping potentials on both sides of the nanofiber. To
avoid interference between the atom-scattered light on the two sides of the nanofiber, we use a
nanofiber-guided light field to selectively heat out atoms trapped on one side of the nanofiber, see
section 5.6 for details. To make sure the imaged atoms are illuminated evenly by the excitation
light, we trap atoms in a smaller region in comparison to the diameter of the imaging beam.
Before atom imaging, we perform DRC on the atoms for 300ms using an excitation light with a
Gaussian diameter of 200 µm. Since the trapping lifetime during DRC is on the order of 1 s, i.e.,
significantly longer in comparison to the passive trapping lifetime of ∼50ms, the diameter of the
excitation light defines the region of the trapped atoms, see subsection 7.3.5. We perform atom
imaging using an excitation light field with a diameter of 1300 µm, more than 6 times larger in
comparison with the previous excitation light. The uniformity of illumination is characterized
experimentally in subsection 7.3.5. A smaller trapping region also helps us to minimize the
effect of vignetting in the imaging process. This way, we ensure the width of the trapped atoms’
position distribution is less than half of the width of the intensity profile of the excitation beam
used for imaging.

We use a band-pass filter (Semrock 852 nm MaxLine) and a long-pass filter (Semrock
808 nm EdgeBasic) in front of the camera to further improve the ratio between the atom sig-
nal to the background. We collect the photons scattered by the atoms using an imaging objec-
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7.2. Raw atom images using an external or nanofiber-guided excitation light field

tive with a numerical aperture (NA) of 0.29 [112]. The objective is mounted ∼ 3.6 cm away
from the nanofiber and inside the vacuum chamber. The solid angle corresponding to the NA
is Ω/4π = (1 −

�
1− NA2)/2 ≈ 2.1% . We image the light scattered by the atoms onto

a camera (Andor iXon Ultra 897) using a 10 cm focusing lens outside the vacuum chamber.
The magnification of our imaging setup is ∼3, and the point spread function of our imaging
system has a measured 1/e radius of ∼ 10 µm in the objective plane. The CCD chip of the
camera is set to -60◦C, resulting in quantum efficiency of ∼45 % at 852 nm. The light exit-
ing the nanofiber, i.e., a nanofiber-guided probe light or the light scattered from the atom into
guided modes, can be detected with an SPCM. Before the SPCM, we use a combination of short-
pass, long-pass filter, band-pass filters, and a passively-stabilized ultra-narrow band Fabry-Pérot
filter cavity (FPE001B, Quantaser) to filter out the Raman scattering originating from nanofiber-
guided light. The combined transmission of the signal through the filtering system is ∼50 %,
and the background SPCM count rate after filtering is ∼ 2 counts/ms.

Figure 7.1: Experimental setup. Individual cesium atoms are trapped ∼ 270 nm away from
the surface of an optical nanofiber. DRC is used to simultaneously counteract heating and gener-
ate fluorescence signals for imaging. The excitation light in DRC can be either an external light
field propagating along the +y direction or a nanofiber-guided light field. Individual atoms are
imaged onto a camera using a combination of an in-vacuum objective lens and a focusing (con-
vex) lens outside the vacuum chamber. A fraction of the fluorescent photons are coupled to the
nanofiber-guided mode and are detected with an SPCM.

7.2 Raw atom images using an external or nanofiber-guided
excitation light field

Fig. 7.2(a) shows a typical series of raw images from one experimental run. Here the excitation
light is a σ− polarized external light field propagating along the y-direction. We acquire consec-
utively 11 images with an exposure time of 150ms per image. Between every two consecutive
images, there are 45ms of waiting time reserved for the camera to perform image readout and
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Figure 7.2: Raw images of nanofiber-trapped atoms. (a) A typical series of raw atom images.
Each image has an integration time of 150ms. (b) Time evolution of the atom photon counts.
The photon counts are summed over regions of 3 × 3 pixels, centered on the atoms shown in
(a). The photon counts drop to the background level when the left and right atom are lost from
the trap after ∼0.8 s and ∼2 s, respectively.

to reinitialize for the next image. After imaging, we turn off the red-detuned trapping light field
to lose any remaining trapped atoms. Moreover, in each experimental run, we take an addi-
tional reference image of 150ms integration time when no trapped atoms are present but other
experimental parameters, e.g., the intensity of the excitation light and trapping light, are same
as during atom imaging. The first atom image in Fig. 7.2(a) contains two trapped atoms with
similar photon counts. The left atom and the right atom are lost from the trap after ∼0.8 s and
∼2 s, respectively. In Fig. 7.2(b), we analyze the same series of images by summing photon
counts over 3×3 pixel regions centered on the detected atom positions. The yellow (blue) sym-
bols show the signal corresponding to the atom on the left (right). For each atom, ∼180 photon
counts are observed per image. When an atom is lost from the trap, a significant drop of photon
counts can be observed.

In addition, we demonstrate that faster imaging time can be achieved while the atom image
remains clearly distinguishable from the background noise, see Fig. 7.3. Here the exposure time
of each image is shortened to 100ms and the waiting time between adjacent images is now
40ms. All other settings, i.e., power and frequency of the excitation laser, remain unchanged
from the previous experiment.

For some nanophotonic cold-atom systems, it might be challenging to use an external ex-
citation light field for atom imaging without introducing excessive background light. Here we
demonstrate atom imaging using only nanofiber-guided light, shown in Fig. 7.4. We use the
same imaging scheme as in described in section 7.1 except the excitation light is now guided
by the nanofiber. We align the polarization of the excitation light field such that it is mainly

66



7.2. Raw atom images using an external or nanofiber-guided excitation light field

σ− polarized at the trapping sites. The excitation light is -3 Γ detuned with respect to the D2

cycling transition. The integration time for the image series in Fig. 7.4 is 400ms. We expect the
performance of the nanofiber-guided excitation light to be similar to the free-space excitation
light, and a shorter exposure time such as 150ms is sufficient for atom detection.
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Figure 7.3: Fast atom imaging with an external light field. Each image has an integration
time of 100ms. Each experimental cycle consist of 32 consecutive images. The excitation beam
is an external light field which is -3Γ detuned from the D2 cycling transition and σ− polarized.
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Figure 7.4: Atom imaging with a nanofiber-guided light. Here we show atom images with
400ms of integration time each. An experimental cycle consists of 5 consecutive images.

7.3 Atom detection scheme

To detect the presence of atoms, we need to distinguish an atom signal from the background
noise. The background noise consists of mostly camera dark counts, Raman scattering of the
trapping light field, and other stray light fields, e.g., spuriously scattered excitation light. An
example of the image section used for the detection sequence is shown in Fig. 7.5. The analysis
outlined in this section relies on a dataset that was acquired over 6000 experimental runs. A
typical experimental run is described in the previous section.

In the first step of our detection procedure, we smoothen the noise by convoluting the raw
image with a discretized two-dimensional Gaussian. We set the two-dimensional Gaussian to
have a full width at half maximum of 1.5 pixels or 8 µm in the object plane. It is set to zero
outside an 11 × 11 pixel region. An example of the convoluted image is shown in Fig. 7.5(c). In
the next step, we subtract each convoluted image with the averaged background image, which is
generated by averaging over 6000 reference images. Note that average background image is also
convoluted with the same two-dimensional Gaussian with a full width at half maximum of 1.5
pixels. We position the camera such that the highest photon counts from a trapped atom always
falls into the same pixel row, regardless of the position of its trapping site along the nanofiber.
Fig. 7.5(a) shows the average of images, i.e., of the first images obtained in all 6000 experimental
runs. The central row of pixels shows the highest photon counts. In the final step, we analyze
this row, see Fig. 7.5(d), and search for the position and value of pixels that exhibit local maxima
of the photon counts. We find a trapped atom when a pixel value of these local maxima in the
convoluted, background-corrected image exceeds a threshold of 18 counts. We save the position
of this pixel in order to analyze the same spot in consecutive images. In Fig. 7.5(d), two atoms
were detected and their locations are indicated by the two vertical dashed lines.
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Figure 7.5: Atom detection scheme. (a) The mean of the first image of each 11-image series
over 6000 experimental runs. (b) A typical example of a raw image. (c) The raw image in panel
(b) is convoluted with a discrete two-dimensional Gaussian with FWHM of 1.5 pixels. (d) A
horizontal cut of the background subtracted convoluted image in panel (c). The detected atom
positions are indicated by the two vertical dashed lines.

To study how well we can herald the atoms in such experiments, we have quantitatively char-
acterized the performance of our detection procedure, shown in Fig. 7.6. For this analysis, we
use a region of interest of ∼ 300 µm along the nanofiber, see subsection 7.3.5. This corresponds
to the segment of the nanofiber where most trapped atoms are prepared.

When our procedure detects one and only one atom in the region of interest, we take the
non-convoluted, non-background corrected version of next image in the series and generate a
histogram of the total photon counts in the 3 × 3 pixel region that is centered on the pixel at
which the atom was detected. We repeat this for all image series of the data set. The resulting
photon count histogram is shown in Fig. 7.6(a), which shows two distinct peaks. We expect that
the left and right peak corresponds to the background photon counts in the absence of atoms and
the presence of one atom, respectively. We fit this histogram with the sum of two Gaussians, see
the black dashed line. The left peak is centered at 38.8(6) counts (standard deviation σ= 12.5(6),
whereas the right peak is centered at 146.9(8) counts (σ= 32.6(8) counts).

To check the left peak corresponds to the background photon counts in the absence of atoms,
we analyze the reference images for all 6000 experimental runs. We generate a photon count
histogram of disjoint 3 × 3 pixel regions in these images, see Fig. 7.6(b). The histogram exhibits
only one single peak. We perform a Gaussian fit to the histogram in Fig. 7.6(b), shown as the
black dashed line, yielding a center value of 35.2(2) counts and a standard deviation of σ=10.5(2)
counts. Therefore the presence of the left peak in Fig. 7.6(a) implies that there are some instances
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Figure 7.6: Histogram of photon counts of single nanofiber-trapped atoms obtained with
the camera. The photon counts sum over 3 × 3 pixel squares that are centered on the detected
atom positions. The threshold of the peak detection algorithm is at 18 pixel counts. In one run,
we take 11 consecutive images with an integration time of 150ms per image. (a) Histogram
of photon counts conditioned on a detection event in the previous image, i.e., when an atom is
detected in images number 1, 3, 5, 7, 9. We build this histogram using the photon counts at the
detected atom positions in the subsequent image frame. (b) Histogram of photon counts with no
atoms in the trap. The narrow peak in the histogram corresponds to the background photon count
distribution. (c) Histogram of photon counts when false detections and atom loss are excluded.
Here the dataset is conditioned on the peak detection in the previous and subsequent images, i.e.,
images number (1,3), (3,5), (5,7), (7,9), (9,11), when building the histogram on images number
2, 4, 5, 6, 8, respectively. The black dashed lines in the three panels are Gaussian fits, and the
dotted line in panel (a) is a simulated photon count distribution, see text for details.

when no atom is present in the image following the one in which a detection event has occurred.
There are two possible mechanisms that can lead to such a false detection event. First, the
detection algorithm may erroneously detect atoms in an image where no atom is present. By
running the detection algorithm on all 6000 reference images, we find that this happens with ∼
7 % probability in the region of interest. Second, an atom that is correctly detected in an image
may be lost before the next image is recorded due to the finite trapping lifetime.

We can rule out the occurrence of both mechanisms by analyzing also the image directly
following the one that was used to generate the histogram in Fig. 7.6(a). When an atom is
detected in this additional image, we obtain the photon count histogram in Fig. 7.6(c). This
histogram exhibits one single peak which coincides with the right peak of the histogram in
Fig. 7.6(a), which confirms that this peak originates from the in-situ fluorescence of a single
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Figure 7.7: Measurement of the trapping lifetime of atoms during imaging. Each data point
here corresponds to the mean photon counts per pixel in a given image number averaged over
6000 experimental runs. Due to the averaging over many realizations, we expect that the inter-
ference between different atom emissions can be neglected, and the atom signal is proportional
to the atom number. The red line is an exponential fit.

nanofiber-trapped atom. We fit the histogram in panel (c) with a Gaussian (black dashed line),
yielding a center value of 149.4(5) counts (σ= 29.0(5) counts). Note that the observed photon
counts in panel (c) differ significantly from the threshold value of 18 pixel counts. The threshold
condition refers to the photon counts of a single pixel while the histogram in panel (c) shows the
photon counts of 3 × 3 pixel regions in the non-convoluted, non-background corrected images.
Furthermore, the widths of the right peak in panel (a) and panel (c) are wider than the shot
noise limited width. We attribute this, at least partially, to the position dependence of the single-
atom signal, which originates from vignetting and inhomogeneous illumination with the external
excitation laser beam, see subsection 7.3.5.

To confirm that the histogram in Fig. 7.6(a) is indeed influenced by atom loss and false de-
tection, we establish a model which incorporates the photon count distributions from panels (b)
and (c), the independently measured trapping lifetime during DRC of τDRC ∼ 1 s (see Fig. 7.7),
and the probability for false detections to predict the data shown in panel (a). The model predic-
tion is in a very good agreement with the experimental data, see the green dotted line in panel
(a). From the model, we infer that the probability of not detecting a trapped atom due to its loss
during the 150-ms image integration time is ∼ 6 %. In addition, we infer that the probability of
detecting a trapped atom which is then lost by the end of the image integration time is ∼ 8 %.
The details of this model are described in the next subsection.

7.3.1 Modeling photon count histogram and false atom detection probability in
the presence of atom loss

In this subsection, we study in detail how the finite trapping lifetime of atoms can affect atom
detection and alter the photon count histogram. To this end, we first simulate the photon count
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7. IMAGING OF INDIVIDUAL NANOFIBER-TRAPPED ATOMS

Figure 7.8: Time sequence of building the photon count histogram conditioned on atom
detection in the previous image. The bottom panel shows an exponential decay representing
the percentage of atoms that remain trapped since the beginning of imaging session. The two
consecutive images are used for atom detection and for generating the photon count histogram,
respectively. The integration time of each image is 150ms, and there are 45ms of waiting time
between two adjacent imaging acquisitions.

distribution conditioned on the detection of a single atom in the previous image. In Fig. 7.8, we
show the time sequence for building such a photon count histogram. We see in the bottom panel
that the percentage of atoms that are lost after the first imaging session n, Plost, is ∼ 14 %

The procedure to compute the photon count histogram in presence of atom loss can be sum-
marized in three steps (a detailed, quantitative discussion follows):

1. We compute the photon count histogram of the single-atom signal without atom loss using
the histograms shown in Fig.7.6 (b) and (c). In this step, we remove the contributions of
Poissonian and background noise.

2. We compute the histogram of the single-atom signal with a finite trapping lifetime.

3. We add Poissonian and background noise to the final histogram to compare with the ex-
perimental data.

The rate of atom loss is given by the measured trapping lifetime of 1 s, see Fig. 7.7. The
probability for an atom to remain trapped at time t is given by the exponential function:

Patom = e−t/1 s. (7.1)

The photon count histogram when an atom is trapped during the entire image integration time
is shown in Fig. 7.6(c). The histogram can be well fitted with a Gaussian function, shown as the
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black-dashed line in Fig. 7.6(c). Thus we can approximate this histogram with a Gaussian pro-
file, which is denoted as Hatom+bng(nph). Since Hatom+bng(nph) is based on the non-background
corrected images, we need to remove the contribution of the background signal to find the count
distribution of the atom signal. The photon count histogram of the background signal is shown
in Fig. 7.6(b), and we use a Gaussian fit Hbng(nph) as an approximation.

Since both Hatom+bng(nph) and Hbng(nph) have Gaussian shapes, the histogram for the
trapped atom without the background signal, Hatom(nph) , also follows a Gaussian distribu-
tion. For notation, we denote ñ and σ as the center and the standard deviation of the Gaus-
sian, respectively, and we use the subscript to indicate the corresponding Gaussian-shaped his-
togram, e.g., ñatom+bng is the center of the histogram Hatom+bng(nph). The center of Hatom(nph)
is given by ñatom = ñatom+bng − ñbng, and the standard deviation of Hatom(nph) is given by

σatom =
�
(σ2

atom+bng − σ2
bng)− ñatom. Note that we subtract ñatom from the standard deviation

to remove the contribution of the Poissonian noise. The standard deviation σatom originates from
technical noise, i.e., inhomogeneous illumination and intensity drift of the excitation light.

For an atom that remains trapped at the end of imaging session n, see Fig. 7.8, there are
three different cases:

• Atom is lost during the 45-ms waiting time and before the imaging session n+1:
Since atom is already lost before the imaging session n+1, there are no atom signal in
image n + 1. The probability of this event is: Plossbf = 1 − Patom(45ms)= 1 − exp(-
45ms/1 s) = 0.04.

• Atom is lost during the imaging session n+1: The chance for the atom to be lost from
the trap at time ti = iΔt is given by P (ti) = P �

atom(ti)Δt. The trapped atom scatters
light for ti/150ms of the imaging time. Note that we use discrete time step here for the
computation.

• Atom stays trapped during the entire imaging session of n+1: The probability of this
case is: Pnoloss = Patom(45ms+150ms)=exp(−(195ms)/1 s) = 0.82. The atoms scatter
light for 100 % of the imaging time.

We summarize the three cases into two vectors:�
P = [Plossbf, P (t1), P (t2)...Pnoloss]

Rt = [0, t1/150 ms, t2/150 ms, ..., 1]
,

where Rt is the ratio between the duration of atom being trapped and the image integration time.
We can calculate the photon count histogram with atom loss:

Hwloss(n) =
�
j

�
ni

n=niniRt(j)

(Hatom(nini)P (j)), (7.2)

where index j is used for both vector P and Rt.
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7. IMAGING OF INDIVIDUAL NANOFIBER-TRAPPED ATOMS

In the next step, we include the background noise by discretely convolving the histogram
from equation 7.2 with the background histogram Hbng:

Hwloss+bng = Hwloss ∗Hbng. (7.3)

Finally, we add back the contribution of the Poissonian noise:

Hp
wloss+bng(i) =

�
n

PPois(i, λ = n)Hwloss+bng(n), (7.4)

where PPois is the Poisson distribution.
Now we have a photon count histogram which takes into account the atom loss. To com-

pare with the photon count histogram shown in Fig. 7.6(a), i.e., the photon count histogram
conditioned on the one-atom detection in the previous image, we need to account for two erro-
neous detection mechanisms which lead to additional instances of the background signal in the
histogram.

First, due to statistical fluctuation, the background noise can be erroneously detected as
atoms. At the detection threshold of a pixel value of 18 counts, a single false atom is detected
in PF = 7 % of the reference images which contain no trapped atoms, see subsection 7.3.2.
Since the histograms in Fig. 7.6 are conditioned on the detection of one atom, this source of
error contributes to the histograms when there are no trapped atoms but one false detection has
occurred. Therefore, the percentage of this contribution in our histogram is given by PFN

r
0/N

d
1 ,

where Nd
1 denotes the number of images in which we detect one atom, and N r

0 denotes the
number of images which contain zero trapped atoms. The probability of the false atom detection
in the entire reference image PF,ref is ∼14 %, whereas the 7 % quoted earlier this paragraph is
for the region of interest used in our analysis in section 7.3, which is about half of the size of
the entire image. We estimate N r

0 by dividing Nd
0 by (1 − PF,ref), where Nd

0 is the number of
images in which we detect zero atoms. We find the percentage of the false detections out of all
one-atom detection events to be ∼9 %.

Second, an atom can be detected in an image but is lost during imaging due to the finite
trapping lifetime. In order to infer this probability, we analyze the images underlying Fig. 7.6(c).
As discussed in section 7.3, for these images, the presence of an atom in the trap during the entire
integration time is ensured by the detection of an atom the previous and subsequent images
with a fixed threshold of 18. As for the atom detection described in section 7.3, we smoothen
these images through convolution, subtract the background, and determine the pixel value at
the position of the detected atom. We plot the histogram of these pixel values in Fig. 7.9(a).
For every pixel position used for Fig. 7.9(a), we find the pixel value at the same position in the
corresponding reference image in the same experimental run, which contains no trapped atoms.
The histogram of these pixel values corresponds to the background pixel counts and is shown in
Fig. 7.9(b). Note that the counts in the pixel count histogram correspond to the maxima of the
pixel values detected in the background subtracted and convoluted images, which differ from
the photon counts in Fig. 7.6 that sum over 3×3 regions centered on the detected maxima. We
use the same procedure described earlier this subsection (see 7.3.1) except here we no longer
take Poissonian noise into account. The photon counts of the background-subtracted images can
have negative photon counts and cannot be treated with Poissonian statistics. For simplicity,
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Figure 7.9: Pixel count histogram in presence of atom loss. (a) Measured pixel count his-
togram of a single detected atom which is present during the entire image integration time. (b)
Measured pixel count histogram of the background signal. (c) Comparison between the theo-
retical pixel count distribution with atom loss (dashed line) and without atom loss (solid line).
The vertical dotted line in panel (c) indicates the chosen threshold value of 18 pixel counts. The
green shaded area represents the instances where atoms are lost and not detected, and the red
shaded area represents the instances where atoms are detected.

we use the Gaussian fit in Fig. 7.9(a) as the pixel count distribution of atoms that stay trapped
over the entire image acquisition time, shown as the dashed black lines in panel (a) and (c).
The simulated pixel count distribution with atom loss is shown as the solid black line in the
panel (c). Both distributions are normalized to have an integral of 1. The difference between the
two distributions below the threshold value of 18 represents the fraction of atoms which are not
detected due to loss from the traps, which amounts to 6 % out of total distribution. Since we
know there is in total 14 % atom loss after the exposure time of one image, the joint probability
of atoms that are lost from the trap and of atom detection Pdet∩lost is 8 %. The instances of
detected atoms correspond to the area above the threshold value of 18. We use this area as the
detection probability Pdet. We find the percentage of the detected atoms that are already lost
during detection, Pdet∩lost/Pdet = 9 %.

To compare with the histogram from our experiment, we sum over all contributions to the
simulated photon count histogram, see Fig. 7.10. The light red area in Fig. 7.10 corresponds to
the fraction of atoms that remain trapped after the previous imaging session, whereas the dark red
area corresponds to the fraction of atoms that are lost but still detected. Together, the light and
dark red areas represent all detection events originating from trapped atoms, which corresponds
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Figure 7.10: Simulated photon count histogram. The light red region corresponds to the
instances where the detected atoms remain trapped at the end of integration time of image n. The
dark red region corresponds to the instances where atoms that were lost during the integration
time of image n but are still detected. The blue region corresponds to the false detection events
where no trapped atoms are present during imaging.

to the red region in Fig. 7.9(c). Furthermore, the blue region represents the contribution from
falsely detected atoms. We normalize this region to have 9 % of the total colored area. For
the instances where atoms are not trapped, i.e., represented by the blue and dark red regions
in Fig. 7.10, they follow the background count distribution Hbg(nph) (see also Fig. 7.10(b)).
Finally, after summing over all contributions, we normalize the total photon count distribution
to have the same number of instances as our experimental data, resulting in the simulated photon
count distribution shown as the green dotted line in Fig. 7.6(a).

7.3.2 Atom detection probability as a function of detection threshold

We examine the effect of the threshold on the atom detection. The basis for the analysis in this
subsection is the same data set that underlies Fig. 7.6. Due to statistical fluctuation, background
noise can result in pixel counts that exceed the threshold value, and thereby get falsely detected
as atoms. We can increase the detection threshold to lower the probability of false atom de-
tections. On the other hand, choosing a higher threshold will also decrease the atom detection
efficiency since the statistical fluctuation of the atom signal can result in pixel counts that are
lower than the threshold. More quantitatively, one figure of merit is the probability of detecting
a trapped atom for a given threshold. The atom loss in our system is dictated by the rate of the
background gas collision and subject to day to day changes of the vacuum chamber pressure.
Therefore, to characterize the performance of the atom imaging, it is more systematic to look
at the detection probability of atoms that remain trapped for the duration of the entire image
integration time.

In order to infer this probability, we use the same data that is used to generate Fig. 7.9(a). As
discussed in the previous subsection, we use images where the presence of an atom in the trap
during the entire integration time is ensured. We take the convoluted, background-subtracted
version of these images, and determine the pixel value at the position of the detected atom. We
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Figure 7.11: Atom detection at different threshold values. (a) Percentage of pixel counts
above a given threshold value (green solid line). The black dashed line is a fit using the sum of
two cumulative Gaussian distribution functions. (b) Mean number of false detections per image
as a function of threshold. Here, we use 6000 reference images which are taken in absence of
trapped atoms.

compute the percentage of pixel counts above a threshold value as a function of this threshold,
see the green line in Fig. 7.11. When all analyzed images contained exactly one atom, this
percentage corresponds to the efficiency of detecting a trapped atom. However, there are cases
when two nearby trapped atoms may mistakenly be detected as a single trapped atom. This will
lead to images with an anomalously high pixel value. This effect appears in the small asymmetry
of the histogram of photon counts shown in Fig. 7.6(c), i.e., the distribution is above the fitted
Gaussian towards the larger photon counts.

To infer the probability of detecting a single trapped atom in spite of this systematic error,
we fit the data in Fig. 7.11(a) with the sum of two cumulative Gaussian distribution functions,
indicated by the black dashed line. The two cumulative Gaussian distributions correspond to a
single atom and two unresolved trapped atoms, respectively. We assume in our fit that the latter
has on average twice the pixel counts of the former. The fit is in good agreement with the data.
From the fit, we find the probability of detecting a single atom is ∼97.5 % at a threshold value
of 18. We choose this threshold value for the atom detection procedure shown in section 7.3.

Another useful figure of merit is the number of false atom detections per image at a chosen
threshold, see Fig. 7.11(b). Here, we apply the atom detection procedure to 6000 reference
images, which were acquired in the absence of trapped atoms. We compute the mean number of
false detections per image by averaging the occurrence of false atom detections over all reference
images. We infer from this data that the probability of at least one false detection to occur in a
given image is ∼7 % at the chosen threshold of 18.
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7.3.3 Determine atom positions with sub-pixel resolution

To determine atom positions better than the pixel resolution, we fit atom images with a Gaussian
function and use the fitted center for atom localization. The estimated one-dimensional position
error for an atom with the Gaussian shaped point spread function is given by [113]:

(Δz)2 =
ω2

RMS +Δ2
p/12

N
+

4
√
πω3

RMS σ
2
b n⊥

ΔpN2
, (7.5)

where N is the average number of recorded photons per atom, n⊥ is the number pixels that the
fluorescence signal is integrated over in the direction transverse to the lattice, ωRMS is the RMS
width of a Gaussian PSF, Δp is the size of a camera pixel in the object plane, and σb is the
background noise per pixel.

The procedure to determine atom positions is shown in Fig. 7.12. Using the peak finding
procedure described in section 7.3, we detect atoms after image smoothing and background
subtraction. To better localize the atom, we only consider instances where an atom is detected
in three consecutive images. We first sum over the three consecutive raw atom images without
additional image processing. We then take 5 × 3 pixel regions centered on the detected atom
positions, and integrate them along the direction transverse to the lattice. We fit the resulting one-
dimensional array with a Gaussian function and use the fitted center as the atom position, see
Fig. 7.12(c). For typical experimental parameters described in section 7.3, we have ωRMS = 1.2
pixels, Δp =5.76 µm, N = 340 counts, n⊥ = 3 pixels, and Δz ≈500 nm.

In addition, by fitting the atom images, we can better quantify the variation of PSF of atoms
along the nanofiber. In Fig. 7.12(d) we see the fitted Gaussian width of atom images as a function
of atom positions. We see the fitted width varies by ∼ 50 % in the region of interest, i.e., the
region between 20 and 70 pixels.
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Figure 7.12: Measurement of atom positions using imaging. (a) Example of an image show-
ing two nanofiber-trapped atoms. The image shown here is integrated over three consecutive
imaging sessions of 150ms integration time. The white boxes enclose 5 × 3 pixel regions cen-
tered on the detected atom positions. (b) Photon counts of atoms in one dimension. We integrate
the 5 × 3 pixel regions shown in (a) along the y-axis, and fit the resulting one-dimension array
with Gaussian function. We use the center of fitted Gaussian as the position of the atom. (c)
Width of the fitted Gaussian along different nanofiber positions. The variation of fitted widths at
different nanofiber positions is due to astigmatism of the imaging setup.

7.3.4 Atom detection error due to nearby atoms

The PSFs of our imaging system can be inferred from atom images. The 1/e Gaussian width of
the PSF is ∼10 µm . Since the lattice spacing in our system is ∼500 nm, the two atoms that are
only a few lattice sites apart cannot be spatially resolved by our detection scheme. In Fig. 7.13
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Figure 7.13: Instances of two-atom spacing. Based on the one-atom position distribution, we
expect the instances of the two-atom spacing to be near constant when the two-atoms events are
correctly detected. When two atoms are closely spaced, they can be detected as one. The occur-
rence of this event is highlighted in the light blue region. The horizontal dotted line indicates the
average number of instances of atom-atom distance between 4 and 12 pixels.

we plot the occurrence of detected atom-atom distances conditioned on a two-atom detection.
Based on the one atom position distribution, which has a FWHM of 250 µm or ∼ 46 pixels, we
expect the distribution of the two-atom distance to be nearly flat at the distance below 10 pixels.
However, we see the occurrence of the two-atom distance gradually drops to zero at distances
below 4 pixels. We compute the average instances between 4 and 12 pixel distance and use it
as the expected instances for a flat distribution of atom-atom distances, shown as the horizontal
dotted line. We interpret the area of the difference between the flat distribution and the detected
two-atom distance distribution as the number of instances where two atoms are falsely detected
as one atom, shown as the blue region in Fig. 7.13. We can thus estimate the percentage of
instances where two atoms are falsely detected as one out of the total two-atom instances to be
∼ 14 %.

To mitigate events where two atoms are detected as one, we can use an additional processing
procedure. The emissions from the two atoms interfere constructively or destructively depending
on their distance. When the two atoms are at least 3 lattice sites away from each other, the size
of the interference fringe at the objective lens is less than the lens diameter of 2.54 cm. In this
case, the intensity of the atom signal at the lens is about twice of one-atom signal. We can then
identify two-atom events based on the photon counts, see 7.3.2.

7.3.5 Position dependence of single-atom signal

We study the level of light scattered by a single nanofiber-trapped atom as a function of its posi-
tion along the nanofiber. We record in parallel the photon counts of atom images on the camera
and the SPCM counts of the scattered light that are coupled into the nanofiber-guided mode. To
check the position dependence of single-atom signal, we plot both the camera counts and the
SPCM counts in panel (a) and (b) of Fig. 7.14 as a function of the atom position, respectively.
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For this analysis, we use the camera images to determine the atom position. The uniformity
of SPCM counts and photon counts both depend on the spatial variation of the excitation light
intensity. However, the SPCM counts depend also on the local coupling efficiency of the scat-
tered photon into the nanofiber-guided mode, whereas the photon counts in atom images depend
additionally on the collection efficiency of the imaging system at different trap positions.

To avoid the complication of spatial interference between multiple atom-scattered light
fields, the underlying data in Fig. 7.14 are conditioned on the detection of a single trapped
atom in the previous and subsequent images. For the region of interest between 100 µm and
400 µm where most atoms are trapped, the SPCM counts vary within 5 %. The photon counts
seen by the camera are less uniform in the same region, showing a variation of ∼ 20 % due to
imperfections of the imaging system. The horizontal black-dotted lines in Fig. 7.14(a) and (b)
indicate the background photon counts measured without any trapped atoms.

Fig. 7.14(c) shows the histogram of the locations of the detected atoms. The two vertical-
dash lines in Fig. 7.14(c) enclose the region of interest used for Fig. 7.6. The photon counts in
Fig. 7.14(b) is summed over every 3× 3 pixel region centered at the detected atom position. We
do data binning over 50 µm intervals for Fig. 7.14(a)-(c).
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Figure 7.14: Position dependence of single-atom signals. (a) SPCM counts of nanofiber-
coupled light. (b) Photon counts of 3×3 pixel regions detected with the camera (c) Spatial
distribution of detected atom location. In (a) and (b), the counts are averaged over atom events
occurring in 50 µm wide intervals. In (c), the instances are summed up in the same 50 µm
intervals.
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7.4 Resonant transmission through nanofiber-coupled atoms

Taking advantage of our imaging technique, we measure the extinction of a resonant nanofiber-
guided probing light as a function of the atom number determined by atom imaging. The ex-
tinction per atom is an important figure of merit for atom-nanophotonic systems since it charac-
terizes how well the atom is coupled to the guided light. We detect the transmitted light with an
SPCM and use spectral filters to lower counts detected from the background, see section 7.1. We
choose a resonant probing light at the D2 cycling transition to increase the extinction per atom.
The probing light field is quasi-linearly polarized along the x-axis, and it is almost perfectly σ−

polarized at the positions of the trapped atoms on one side of the nanofiber [114]. This probing
light also functions as the excitation light in DRC which counteracts against recoil heating. In
practice, DRC works more effectively when this excitation light is far detuned, i.e., higher trap-
ping lifetime. This could originate from the large differential Zeeman shift induced by light at
the near resonance condition. To increase the trapping lifetime of atoms during resonant trans-
mission measurement, we use an interleaved scheme where we illuminate atoms alternatingly
between a resonant and a -3 Γ detuned light field for 0.2ms and 0.5ms, respectively. This
way, atoms reinitialize to a cooler temperature by the detuned light field in each cycle, and they
are less likely to be heated out after the resonant transmission. We repeat this sequence for
450 cycles in one experimental run. Furthermore, we acquire atom images before and after all
transmission measurements. We condition our dataset on detecting a constant number of atoms
in the images before and after to ensure no occurrence of atom loss during the transmission
measurement.

In Fig. 7.15, histograms of the detected SPCM counts of the resonant transmission are
shown. The histograms in Fig. 7.15(a)-(d) are conditioned on the detection of zero, one, two,
or three atoms, respectively. The histograms show the mean distribution shifts to a lower value
by more than 100 counts with every additional atom. We calculate the mean SPCM counts,
N̄(i), for i = 0 . . . 3 atoms. We find that the extinction increases with each additional atom.
The mean extinction per atom is {η̄(1), η̄(2), η̄(3)}={0.039(1), 0.039(1), 0.043(3)} , where
η̄(i) = 1 − N̄(i)/N̄(i − 1). These values are constant within the error, which is in agree-
ment with Beer-Lambert law. The mean extinction per atom is consistent with the prediction
using an atom–fiber surface distance of ∼300 nm, which is close to the expected position of the
trap minimum of ∼270 nm that is calculated using the trap configuration in our experiment. The
slightly larger value of the atom–fiber surface distance might originate from the fact that some
atoms are not in the motional ground state during the transmission measurement. As the trapping
potential along the radial direction is asymmetric and falls off more slowly further away from
the trap minimum, we expect the mean atom-surface distance is larger at higher motional states.

To correct for the drifts of the experimental setting, e.g., the probe laser power or the fre-
quency of the filter cavity, we record SPCM counts in the absence of the trapped atoms at the end
of each experimental run. We calculate the moving average of the photon counts by summing
over two consecutive experimental runs, shown in Fig. 7.16(a). The standard deviation of the
moving average is about 6 % of its mean value. We rescale the moving average by dividing its
mean value. Finally, we correct the SPCM counts by dividing it by the rescaled moving average.
Fig. 7.16(b) and (c) show the histograms with and without correction of the drifts, respectively.
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Figure 7.15: Histograms of the SPCM counts of the resonant light transmitted through
nanofiber-trapped atoms. (a)-(d) Histograms of the transmitted photon number conditioned
on having zero, one, two, or three atoms detected, respectively. (e) SPCM counts as a function
of atom number. The transmission is fitted using Beer-Lambert’s law, shown as the red-solid
line.
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Figure 7.16: (a) SPCM counts of the nanofiber transmitted light in the absence of the trapped
atoms. This is measured at the end of each experimental sequence and used for referencing drifts
of the setup. The plotted photon counts sum over two consecutive reference measurements. (b)
Histogram of the transmitted photon counts conditioned on zero atoms detected. The underlying
data in the histogram is measured separately but in the same sequence as the referencing mea-
surement. (c) Same as figure (b) but the photon counts are corrected for drifts using the reference
measurement.
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7.5 Scattering of light by atoms into the nanofiber-guided mode

We study the scattering of light by single as well as pairs of trapped atoms into the nanofiber-
guided mode. For this purpose, we image atoms while recording the signal of the nanofiber-
coupled scattered light with an SPCM. Fig. 7.17(a)-(c) show the SPCM count histogram condi-
tioned on the detection of zero, one, and two atoms in images taken with the camera, respectively.
We fit the two histograms in Fig. 7.17(a) and (b) with a Gaussian function. In the case of zero-
atoms detection, as shown in panel (a), the Gaussian center N̄bg and width σNbg are at 309.63(9)
and 18.89(9) counts, respectively. The background contribution is close to a Poissonian distri-

bution or shot-noise limited, i.e., σNbg ≈
�
N̄bg. Panel (b) corresponds to the case of one-atom

detection. The fitted Gaussian center in panel (b) N̄1 is at 345.8(7) counts, a clear shift from
the zero-atom case. The increase in the SPCM counts originates from the light scattered by one
atom into the nanofiber-guided modes. Furthermore, the Gaussian RMS width for the one-atom
case σN1 is 30.9(7) counts, about 70 % wider than what is expected from Poissonian distribution.
We attribute the super-Poissonian distribution of the one-atom signals to the experimental drift
and other imperfections, e.g., shot to shot variation of atom-nanofiber coupling strengths due to
drift of trapping laser power and the inhomogeneity of the excitation laser intensity along the
nanofiber.

We now look at the SPCM count histogram conditioned on a pair of trapped atoms. The
saturation parameter in our experiment is ∼ 0.0023, therefore we expect mainly coherent scat-
tering of the excitation light field by the atoms. The light fields scattered by individual atoms
will interfere constructively or destructively, depending on their relative phase. In the case of
perfect interference between two fields of equal amplitude, the SPCM counts are bounded by
maximum constructive and destructive interference between the light scattered by trapped atoms.
The lower bound of counts thus corresponds to the background signal, whereas the upper bound
corresponds to the sum of the background signal and four times the counts of the one-atom sig-
nal. We take the mean counts in Fig. 7.17(a) and (b), and plot the corresponding lower and upper
bounds of counts as the two vertical black-dotted lines in Fig. 7.17 (a)-(c). Assuming the exci-
tation light field is a plane wave, the relative phase between the two-atom scattered light fields
varies linearly with respect to the inter-atomic distance. The excitation light in our experiment
is at a ∼16◦ incident angle with respect to the y-axis of our coordinate system. This results in
even sampling of relative phases of the scattered light fields in the interval [0, 2π). To confirm
this, we compute the histogram of relative phases, shown in Fig. 7.17(d). For this calculation,
we take into account of the spatial distribution of the trapped atoms along the nanofiber, see
subsection 7.3.5, and use it to infer the distribution of the two-atom distances.

We now model the expected count distribution for two atoms. The step by step procedure is
explained in Fig. 7.18. We first consider the case with only common-mode variations, where the
amplitudes of the fields scattered by the two atoms vary from shot to shot, but are always equal
to each other. We expect such common-mode variations from the drifts of the filter cavity, the
excitation laser power, or the trapping potential. We show the count distribution with common-
mode variations as the red dotted line in Fig. 7.17(c). We normalize the distribution to have the
same integral as the total number of SPCM counts in the experimental data in Fig. 7.17(c).

To simulate the count distribution with common-mode variations, we first compute the count
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Figure 7.17: SPCM count distribution versus number of trapped atoms. Atoms are exposed
to a near-resonant excitation laser field. A fraction of the atomic fluorescence is scattered into the
guided mode of the nanofiber. From (a) to (c), the histogram is conditioned on having zero, one,
two atoms detected in images taken with the camera, respectively. We fit the data in panel (a)
and (b) with Gaussian functions to extract the photon counts of the background and the one-atom
signals. We use the fitted values to simulate the count histogram of the two-atom signal. The
grey and red dash-dotted lines correspond to the two limiting cases assuming common-mode
and differential-mode variations of the two atom-scattered light fields, respectively. The black
dashed line corresponds to a fit to the experimental data, which has a weight of 71 % common-
mode variations and 29 % differential-mode variations. (d) Simulated histogram of the relative
phases between the light fields scattered by two atoms into the nanofiber.

histogram of one-atom signal without Poissonian and background noise following the procedure
described in subsection 7.3.1. As a starting point for this calculation, we use the count his-
togram of background and one-atom signal shown in Fig. 7.17(b). We find the one-atom signal’s
count histogram by removing the background noise’s contribution which is given by the count
histogram shown in Fig. 7.17(a). Same as the procedure shown in subsection 7.3.1, we approx-
imate the count histograms with their fitted Gaussian distributions. This way, we can easily
deduce the technical noise of the one-atom signal which cause the Gaussian distribution to be
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Figure 7.18: Modeling of the SPCM count distribution of two atom-scattered light. (a)
Count distribution of one-atom signal. Compare to Fig. 7.17(a), Poissonian and background
noise are removed here. (b) Examples of two-atom signal’s count histograms with different
values of one-atom signal I. For each count histogram , the two maxima at 0 and 4I correspond
to the case of perfect destructive and constructive interference, respectively. The histograms of
two-atom signal are weighted based on the count distribution of one-atom signal shown in panel
(a). (c) Red and grey lines indicate the count distribution of two-atom signal with common-
mode and differential-mode variations, respectively. To generate the count distribution with
common-mode variations, we sum over count histograms of two-atom signal such as the three
examples shown in panel (b). The count distribution with differential-mode variations can be
obtained using the incoherent sum of two count distributions of single atoms. We generate the
count distribution with differential-mode variations by taking the incoherent sum of two one-
atom signal.(d) Same count distributions as panel (c) but with Poissonian and background noise
added.
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broader than the shot-noise limited width.
We then calculate two-atom signal’s count histograms at every given SPCM counts of one-

atom signal, see Fig. 7.18(b). In this calculation, we sample through all possible phases between
two atom-scattered light fields, see Fig. 7.17(d). We weight the two-atom signal’s count his-
tograms based on the corresponding instances in the count histogram of one-atom signal (with-
out Poissonian and background noise). After summing the two-atom signal’s weighted count
histograms, we have the common-mode count distribution in Fig. 7.18(c). In Fig. 7.18(d), We
add the Poissonian and background noise to the common-mode count distribution.

The final common-mode count distribution has a similar asymmetry compared to the exper-
imental data in Fig. 7.17(c). We attribute the deviation between the experimental data and this
theory prediction to the differential-mode variations. We can expect differential-mode variations
from an out of phase thermal motion of the two atoms in the radial direction of the trapping po-
tential which corresponds to a variation of the atom-nanofiber coupling strengths. Moreover,
a spatial inhomogeneity of the excitation light field intensity would also lead to two unequal
scattered field strengths. In the extreme case of an on-off modulation of the coupling strengths,
the count distribution with the differential-mode variations is given by the incoherent sum of the
two single-atom signals, see the green dotted lines in Fig. 7.17(c), which also deviates from the
experimental data. We compute the count distribution with the differential-mode variations by
taking the convolution of two one-atom signal’s count distributions, see Fig. 7.18(c).

Taking into account both the common-mode and differential-mode variations and fitting their
weight, we find very good agreement between the simulated distribution of SPCM counts and
the experimental data for 71 % common-mode and 29 % differential-mode variations, see the
black dashed line in panel (c).

Moreover, we use a Gaussian fit to locate the two-atom positions, and determine the atom-
atom distance with a precision of ∼0.7 µm, see subsection 7.3.3. We sort the SPCM counts by
the atom-atom distance, and use this data to compute the power spectral density (PSD) of the
Fourier spectrum of the two-atom interference pattern, see Fig. 7.19(b). From the PSD, we can
infer the spatial frequency of the two-atom interference pattern. If the inter-atomic distance can
be varied continuously (denoted as dc), the condition for constructive interference is given by
the incident angle θ, the wavenumber of the excitation light in free-space and the wavenumber
of the scattered light in the nanofiber-guided mode (see Fig. 7.19(b)):

knf sin(θ)dc + k0dc = 2π. (7.6)

The corresponding spatial frequency fc is then:

fc =
1

dc
=

(knf sin(θ) + k0)

2π
. (7.7)

However, the lattice spacing Δz is fixed in our experiment. This leads to a discrete sampling
frequency of fs = 1

Δz . Therefore, the Fourier spectrum will have multiple peaks at fm
alias =

fc + mfs due to the aliasing effect, where m is an integer number. The aliasing effect can be
easily understood considering the value of sin(2π(fc + mfs)nΔz) is constant with respect to
any integer m, where nΔz is the distance between two trapped atoms, i.e., an integer multiple
of Δz. As shown in Fig. 7.19(b), the Gaussian center of the peak in the Fourier spectrum is at
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0.274 µm−1. This peak position corresponds to θ = 20◦, which is in good agreement with our
experimental geometry.

The results in this section are obtained in the following way: For each experimental cycle,
we image the atoms for 11 frames with an exposure time of 150ms per frame. In addition,
we collect the background signal without trapped atoms at the end of each imaging cycle. To
reduce the number of instances where two closely-spaced atoms are detected as one, we only
take atoms where its peak value from the convoluted, background-corrected image is less than
80 pixel counts. In addition, to reduce outliers, we only take data where the error of fitted
distance is less than 0.3 pixels or 1.6 µm.
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Figure 7.19: Spatial interference of nanofiber-coupled light. (a) Schematic diagram of inci-
dent excitation light field and nanofiber-trapped atoms. The incident light is indicated by the red
dashed arrows. We measure the photon number of the scattered light coupled to the nanofiber-
guided mode and propagating in the −z direction. This scattered light is indicated by the red
dash-dotted arrow. The trapped atoms, indicated by the yellow circles, are separated by an
integer multiple of the lattice spacing mΔz. (b) Spatial Fourier spectrum of the interference
pattern from the light scattered by two atoms. Conditioned on the two-atom detection from the
camera image, we record the SPCM counts of the atom-scattered light that are coupled into the
nanofiber-guided mode. We sort the counts by the atom-atom distance inferred from the camera
image. We take the resulting data from this analysis to compute the spatial Fourier spectrum of
the interference pattern using the Blackman window function. The PSD in the figure label stands
for power spectral density. We see a clear peak in the Fourier spectrum with a spatial frequency
of ∼0.27 µm−1, in good agreement with the theory prediction for our experimental conditions.
(c) The expected spatial frequency as a function of the incident angle of the excitation light, θ.
The horizontal dashed line indicates the measured spatial frequency of ∼0.27 µm−1.
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7.6 Summary and outlook

We demonstrate in this chapter, for the first time, imaging of individual atoms interfaced with an
optical nanofiber. We use DRC to keep trapped atoms close to the motional ground state while
collecting the atom-scattered light on a camera. We obtain a sufficient ratio of signal-to-noise to
identify an atom within 150ms, well below the trapping lifetime during imaging. We summarize
the figures of merit in the following table:

Probability of detecting a
single atom

97.5 %

Probability of false de-
tection per image

7 %

Percentage of the de-
tected atoms that are lost
after detection

9 %

1/e width of PSF 10 µm

Error of atom position
(Gaussian PSF)

0.5 µm

Table 7.1: Figures of merit for image detection. Here we use a detection threshold of 18 pixel
counts and an image integration time of 150ms.

Our imaging capabilities provide new avenues for studying atom-light interactions using a
nanophotonic interface. The imaging of individual atoms allows us to measure precisely the
number of a few trapped atoms, and to determine the inter-atomic distance with sub-wavelength
precision. In this chapter, we demonstrate two immediate applications. First, we measure the
transmission of a resonant fiber-guided probe light conditioned on zero, one, two, and three
trapped atoms. We extract the extinction atom by atom, which is in good agreement with the ex-
ponential scaling of Beer-Lambert’s law. Second, we observe interference of nanofiber-coupled
light fields scattered by the two nanofiber-trapped atoms. We observe interference by measuring
the SPCM counts of the nanofiber-coupled light fields as a function of the atomic distance. The
inferred spatial modulation period is well within our expectation.

A technical improvement in the near future is to increase the collection efficiency of the
imaging system. A straightforward method is to increase the NA of the imaging objective, which
currently limits the collection efficiency of the scattered photons. If we can increase the NA of
our setup from 0.29 to a current state-of-the-art value of 0.92 [115], the collection efficiency of
the imaging system improves from 2.1 % to 28 % (see section 7.1), a factor of ∼13 increase. At
this NA, ideally only 12ms of exposure time is required to reach a comparable imaging quality
to that shown in this chapter.

Furthermore, given the current technology, it is feasible to achieve imaging resolution to
site resolve nanofiber-trapped atoms. This would minimize the number of instances where two
closely spaced atoms are erroneously detected as one atom, and allow us to investigate atom-light
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interaction with higher filling factors of the nanofiber-based trap. In addition, this would improve
the precision of determining the inter-atomic distance. For conventional imaging techniques
(non-super resolution), site-resolved imaging requires an optical resolution that is better than
the lattice spacing, which is ∼0.5 µm in our setup. The diffraction-limited resolution of an
imaging system is given by d = λ/(2NA), where λ is the wavelength of the imaging light.
For our imaging setup, the diffraction-limited resolution is ∼1.5 µm, i.e., about 3 times larger
than the lattice spacing. By employing a state-of-the-art microscope objective with NA = 0.92,
the diffraction-limited resolution using a D2 imaging light is at ∼ 463 nm and below the lattice
spacing in our setup. In the current work, the experimentally determined PSF has a 1/e radius of
∼10 µm, which is much larger than the PSF radius of ∼0.835 µm expected if our imaging system
was operating at the diffraction limit. We attribute this discrepancy to aberrations of the imaging
system. The microscope objective in our setup is mechanically fixed to the vacuum chamber
and its alignment could not be optimized for the single atom imaging experiment. Therefore,
an obvious improvement is to mount the microscope objective onto a mechanical stage for fine
positioning and alignment.

When the interaction between the nearest lattice sites is not of interest, e.g., for studies
of atom tunneling, we can increase the lattice spacing by employing a larger wavelength of
the red-detuned standing trapping light field. For example, if we select 1.6 µm wavelength for
the red-detuned light field, we could reach a similar trapping depth using a higher red-detuned
light field intensity. This would increase the lattice spacing by 60 % to ∼ 800 nm spacing.
Such a spacing would loosen the requirements for site-resolved imaging of trapped atoms. In a
different approach, we can use atom trapping based on two-mode interference in ultrathin optical
fibers [116]. When the trapping potential is formed by two co-propagating blue-detuned light
fields with different mode orders, the trapping site spacing can be given by the beat length of
the two modes. By employing different combinations of modes and laser powers, site spacings
on the order of 10 µm can be realized using a nanofiber diameter of 400 nm and trapping light
wavelength at ∼850 nm, enabling single-site resolution in our current imaging setup.
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CHAPTER 8
Conclusion & Outlook

In this thesis, the coupling between spin and motional degrees of freedom in nanofiber-trapped
atoms has been investigated experimentally and theoretically.

We described the nanofiber-based two-color trap for laser-cooled atoms. In particular, we
showed the polarization and mode profile of a nanofiber-guided light field. We discussed the
laser configuration of the nanofiber-based cold-atoms trap, which consists of a running blue-
detuned light and a pair of counter-propagating red-detuned light. We also summarized the
experimental procedure to prepare and load cold atoms into the nanofiber-based atom traps, as
well as the probing scheme to measure the optical density of the trapped atoms. We described
the gradient of fictitious magnetic fields that originate from the trapping light fields and, in
particular, their gradient over the trap volume. We showed these gradients lead to the coupling
between spin and motional degrees of freedom.

We demonstrated that the spin-motion coupling can be utilized to perform degenerate Ra-
man cooling. We presented fluorescence spectra of the nanofiber-trapped atoms that are cooled
close to the motional ground state. In addition, we showed that the spin-motion coupling in
the nanofiber system can be treated as a mechanical analog of the Dicke model. We demon-
strated that the spin-motion coupling strength corresponds to the ultrastrong-coupling regime of
light-matter interaction. Finally, we demonstrated imaging of single nanofiber-trapped atoms.
To demonstrate the usefulness of atom imaging, we showed two-textbook experiments: testing
Beer-Lambert’s law atom by atom and observing interference of two nanofiber-coupled light
fields emitted from two nanofiber-interfaced atoms.

By preparing atoms close to the motional ground states, the atoms are at a well defined
and uniform atom-light coupling strength. Thereby, inhomogeneous broadening of the atomic
transitions due to thermal motion in the trap is suppressed. In conjunction with imaging of
single atoms, these two experiments mark unprecedented control of cold atoms trapped near a
nanophotonic structure. Our findings provide new avenues to study complex light-matter inter-
action phenomena atom-by-atom.

For future experimental studies, the interference measurements of the nanofiber-interfaced
atoms provide an excellent basis for looking at collective, waveguide-mediated effects [117–
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119]. Our results pave the way for implementing position-resolved real-time feedback and for
the step-by-step assembly of quantum matter built from nanostructure-based lattices of atoms
and photons [120]. Finally, the demonstrated atom imaging and cooling techniques will be
assets, for example, for the investigation of self-organization phenomena [121, 122], including
in the chiral domain [123, 124].
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CHAPTER 9
Appendix

9.1 Heating mechanisms of nanofiber-trapped atoms

One of the main challenges to achieving full quantum control of the nanofiber-trapped atoms is
to mitigate heating in the nanofiber-based traps. The heating rates in our experimental setup are
0.3 quanta/ms in the y (azimuthal) degree of freedom (DOF) and 0.7 quanta/ms in the z (axial)
DOF [23, 58]. The high heating rates in our setup results in a trapping lifetime of 50ms. The
trapping lifetimes of the nanofiber-based cold-atoms from groups are ∼10ms, indicating similar
or higher heating rates [125, 126]. In this section, we discuss the heating mechanisms listed in
the following:

• Off-resonant scattering of the trapping laser fields by the atoms

• Raman scattering in the fiber

• Blackbody radiation and Johnson–Nyquist noise

• Mechanical modes of the nanofiber and their coupling to guided light fields

• Brillouin scattering in the fiber

9.1.1 Off-resonant scattering of the trapping laser fields by the atoms

We consider off-resonant scattering from the trapping light fields. Following the recipe shown
in chapter 2, we first calculate the intensities of trapping light fields at the position of the trap
potential minima. We then compute the off-resonant scattering rate which is given by the in-
tensities and the detuning of trapping light fields (see equation 4.30 in chapter 4). Finally, we
convert the off-resonant scattering rate to the recoil heating rate, which amounts to ∼ 2 quanta/s
for z DOF, far less than the measured heating rates in our experiment setup.
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9.1.2 Raman scattering in the fiber

The fiber-guided trapping light fields introduce Raman scattering in the fused-silica-based fiber.
For an order of magnitude estimate, we focus on the contribution of the blue-detuned trapping
light since it has much larger power than the red-detuned trapping light. The Raman scattering
induced by a fiber-guided laser field of 780 nm wavelength has been measured and the Stokes-
scattered light was recorded using a spectrometer. The test fiber in this measurement was the
same type as the one used in our experiment (Liekki Passive-6-125). From this measurement
and other system parameters, we can infer that a single nanofiber-trapped Cesium atom absorbs
about 50 photon/s of the Raman light, corresponding to a heating rate of 0.7 quanta/s, which is
negligible compared to the measured heating rates in our experimental setup.

9.1.3 Blackbody radiation and Johnson–Nyquist noise

Blackbody radiation and Johnson–Nyquist noise are fundamental processes which are prominent
in many cold atom systems [127]. For example, in the work by Henkel et al. [127], the heating
rate is computed for a spin confined in a harmonic potential that is in close proximity to a material
half space. For a trap frequency of 100 kHz, the expected heating rate is only at ∼ 10−14 quanta/s
for an atom 200 nm away from a glass substrate, which is negligible compared to the measured
heating rates in our experiment. The small Johnson–Nyquist noise related heating rate originates
from the low electrical conductivity of glass. Thus, we conclude that Blackbody radiation and
Johnson–Nyquist noise are negligible contributions for the heating rates of nanofiber-trapped
atoms.

9.1.4 Mechanical modes of the nanofiber and their coupling to guided light
fields

The nanofiber can sustain three different types of mechanical modes: torsional modes, flexural
modes, and longitudinal modes. In the theory work by Hummer et.al., the dominant heating
process stems from the optomechanical coupling of the optically trapped atoms to the continuum
of thermally occupied flexural mechanical modes of the waveguide structure, while the torsional
mode’s contribution can be neglected [57]. The flexural modes have a quadratic dispersion
relation that gives rise to a high density of modes near low frequencies. This results in significant
heating estimates. Unfortunately, both the resonance frequencies and the Q-factors of flexural
modes and longitudinal modes are not yet experimentally accessible. In this subsection, we
check experimentally that the contribution from torsional modes is indeed negligible.

The contribution of torsional modes to the heating process can be inferred from resonance
frequencies and mechanical Q-factors. To extract these numbers, we experimentally character-
ize the polarization modulation of a nanofiber-guided light field at the wavelength of 1064 nm.
We carry out this experiment in the same nanofiber cold atom system with which all other exper-
iments of the thesis have been conducted. We set this light field to be quasi-linearly polarized at
the waist of the nanofiber. To see the polarization modulation, we add a linear polarizer after the
light is transmitted through the nanofiber. We measure the intensity modulation of the nanofiber
transmission after the linear polarizer using a low noise photodiode (see Fig. 9.1). We record the
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Figure 9.1: Experimental setup to measure the Q factors of mechanical modes of the
nanofiber. (a) The intensity of a trapping light field is measured before the nanofiber and after
the linear polarizer. (b) The intensity of a trapping light field is measured after the nanofiber
and the linear polarizer. By comparing the Fourier spectrum measured in setup (a) and (b), we
find frequency components which originate from the optomechanical coupling of the nanofiber-
guided light to the mechanical modes of the nanofiber.

time domain signal on the oscilloscope and calculate the power spectrum of the fractional inten-
sity fluctuation. To identify the peaks in the spectrum that originate from the torsional modes
of the nanofiber, we also measure the spectrum before the nanofiber. In addition, we measure
spectra without either the laser light or the linear polarizer. In absence of the linear polarizer, the
peaks in the spectrum correspond to intensity fluctuations. The spectra are shown in Fig. 9.2.
The additional peaks observed with the linear polarizer indicate the existence of the torsional
mechanical modes of the nanofiber at 258 kHz and 375 kHz. Using Gaussian fits, we find the Q-
factor for the modes are at 258 kHz and 375 kHz are 5400±100 and 58000±5000, respectively
(see Fig. 9.3). The uncertainty of the Q-factors originate from the Gaussian fits.

The two observed frequencies for the torsional modes are far higher than the typical frequen-
cies expected from technical noise. We assume the torsional modes are thermally occupied. To
estimate the heating rate from the torsional modes, we consider the position fluctuation of the
nanofiber-based trapping sites that originates from the strain-optic effect of the torsional mode
of the nanofiber.

We calculate the heating rate due to position fluctuations following the paper from Savard et
al. [128]:
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Figure 9.2: Power spectra of a nanofiber-guided light at 1064 nm. (a) Spectrum measured
before the nanofiber and without linear polarizer. The observed peaks correspond to intensity
fluctuation. (b)-(c) Spectra measured before the nanofiber and after a linearly polarizer. Here we
check if there are any polarization fluctuations of the light before coupling into the nanofiber.
The axes of polarization of the linear polarizer are orthogonal in the two panels, i.e., (b) θLP =
125◦ and (c) θLP = 215◦. (d)-(e) Spectra measured after transmission in the nanofiber and after
a linearly polarizer at two orthogonal axes of polarization. The additional peaks at 258 kHz and
375 kHz observed in panel (d) and (e) are induced by the mechanical modes of the nanofiber.
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Ė
�
=

π

2
Mcsω

4
trSx(w) , (9.1)

where ωtr is the trap frequency, Mcs is the mass of a cesium atom, and Sx is the power spectrum
of the position fluctuations.
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Figure 9.3: (a)-(b) Spectrum near 258 kHz and 375 kHz, respectively. The Q-factor is obtained
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Figure 9.4: (a)-(b) Intensity of the red-detuned trapping light field as a function of the angle of
the linear polarizer measured before and after the nanofiber, respectively.

The power spectrum of the position fluctuation Sx(w) is proportional to the power spectrum
of the angle fluctuation of the polarization of the guided light Sφ0,n(ω) by a constant factor:

Sx(w) = Sφ0,n(ω)R
2 , (9.2)

where R is trapped atom’s radial distance from the center axis of nanofiber.
The power spectrum of the angle fluctuation is proportional to the variance of the maximum

displacement
�
φ2
0,n

�
:

Sφ0,n(ω) =
4
�
φ2
0,n

�
ω

ξ

([ω/ω0,n]2 − 1)2 + ξ2
, (9.3)

where �...� denotes the time average, ξ is the mechanical damping rate which is inverse of the Q
factor, ω0,n is the frequency of the torsional modes.
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The variance of the maximum displacement is:

�
φ2
0,n

�
=

kBT

ω2
0,nIeff,n

. (9.4)

The effective moment of inertia Ieff is estimated to be 4.6×10−26kg.m2 for the first torsional
mode. We infer this value from the Ph.D thesis of C.Wuttke [129], where a nanofiber with
similar dimensions to the one in our experiment is described. We use the same value of Ieff for
the second torsional mode. This would results in an overestimation of the heating rate since the
higher frequency modes should have a higher moment of inertia, which lower the heating rate.
With this assumption, and taking literature values for the strain-optical coupling coefficients, we
find a heating rate of ∼ 0.8 quanta/s, i.e., two orders of magnitude smaller than the measured
heating rates.

9.1.5 Brillouin scattering in the fiber

The acoustic motion of the nanofiber can also induce Brillouin scattering of the guided light
fields. For this to happen, the optical mode and an acoustic mode of the nanofiber need to be
phase matched [130]. For a nanofiber radius of 250 nm radius and guide light field of 780 nm
wavelength, the first phase matching condition for Brillouin backscattering occurs for an acous-
tic wave with a frequency of ∼11GHz and spectral width of a few 10MHz. The next resonance
occurs at higher acoustic frequencies. In this subsection, we consider three possible Brillouin
scattering induced heating processes: heating from two photon transitions, parametric heating
and resonant heating originating from trap potential fluctuation.

Heating from two photon transitions

The Brillouin-scattered (BS) light can in principle drive two-photon transitions between different
internal states of the nanofiber-trapped cold atoms together with an additional pump light. When
the trapping potential has a dependency on the internal states (as it can be the case for nanofiber-
based traps, see [41]), this could lead to heating [97]. The only internal atomic states with a
comparable energy separation are the two hyperfine ground-state manifolds at ∼9GHz, which is
still ∼2GHz away from the nearest two-photon detuning at ∼11GHz. Furthermore, we estimate
that the BS light is at the sub-nW level. Consider the BS light’s low power, narrow spectral
width, and large detuning, the heating induced by the two-photon transitions is negligible for
the nanofiber-trapped atoms. For the standard fiber part, the phase matching condition occurs
at ∼22.3GHz, which results in an even larger two-photon detuning. The scattered power in the
bulk fiber is found to be in the sub-nW level. Therefore, we consider this heating process to be
insignificant in our experimental setup.

Resonant and parametric heating

The BS light fields originate from two red-detuned trapping light fields form an additional stand-
ing wave (SW) that has a randomly fluctuating phase with respect to the original trapping SW.
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9.1. Heating mechanisms of nanofiber-trapped atoms

The SW formed from BS results in a stochastic modulation of the trapping potential. In particu-
lar, the change in the trapping frequency in the z DOF leads to parametric heating. In compari-
son, the change of the potential minima along the z-axis leads to resonant heating.

We first consider resonant heating that originates from BS-induced position fluctuations of
the trapping potential minimum. The heating rate due to fluctuation of the trap minimum is
[128]:

�Ė� = π

2
Mω4

trSx(ωtr), (9.5)

where M is the mass of the trapped cesium atom, ωtr is the trap frequency, and Sx is the power
spectral density of the position fluctuation.

As seen in equation (9.5), only position fluctuation at the trap frequencies contributes to this
heating process. If the forward and backward propagating BS red light have a relative frequency
difference of Δν, the combined travels at the speed of πν

k , where k is the wavenumber of the
nanofiber-guided light.

Depending on the relative phase between the trap potential formed by red trapping light and
the BS fields, we can have a different displacement of the trap minima along the z-direction.
Since the BS light is ∼10GHz detuned from the trapping light field, we neglect the mismatch
between the periodicity between the SW formed from BS light and the trapping SW. The max-
imum displacement occurs when the BS light form a SW at π/2 out of phase relative to the
trapping SW:

y = (I1 − I2)(1− cos(kz)) + I2 sin(kz), (9.6)

where I1 is the intensity of the red trapping beams, I2 is the intensity of the BS light. The ratio
I1/I2 is on the order of 106.

To simplify, we expand equation 9.6 in Taylor series up to the first order:

Itotal = (I1 − I2)(kz)
2/2 + I2k(z). (9.7)

We find the trap displacement �max by differentiating Itotal with respect to z:

dItotal/dz = (I1 − I2)(k
2z) + I2k = 0 → �max =

I2
k(I1 − I2)

=∼ 0.8× 10−13m. (9.8)

The one-sided power spectrum is defined as [128]:

Sx(ω) =
2

π

� ∞

0
dτ cos(ωτ)��(t)�(t+ τ)� (9.9)

To have an order of magnitude estimate of the heating rate, we normalize the frequency-
integrated PSD of the individual BS light fields to the root-mean square value of the relative
intensity noise: � ∞

0
Sx(ω)dω = ��2(t)� = �20, (9.10)
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where �0 is the root-mean-square position fluctuation.
We use the maximum displacement �0 = �max as an upper estimate of the heating rate.

Furthermore, we approximate Sx(ω) as a boxcar function with a spectral width of Δω and is
centered on the trap frequency, i.e., Sx(ω) = 0 for |ω − ωtr| > Δω/2, and Sx(ω) = �20/Δω for
|ω − ωtr| ≤ Δω/2.

Using this approximation, equation 9.5 becomes:

�Ė� = π

2
Mω4

tr
�20
Δω

. (9.11)

The heating rate can be expressed in term of motional quanta [128]:

�Ė�
�ωtr

=
π

2
Mω3

tr
�20

�Δω
. (9.12)

The trap frequency in the z-direction in our setup is ∼230 kHz. The spectrum of BS light for
an experimental setup comparable to ours has been published [131]. There, a Gaussian spectrum
with an FWHM of ∼ 25MHz was found. The PSD of the standing wave formed from the BS
light is the (appropriately normalized) convolution of the two PSDs of the two BS fields, which
results in a factor of

√
2 increase in the FWHM. Using this FWHM, we find a heating rate of

∼ 3 × 10−7 quanta/s, which is 9 orders of magnitude smaller than the one measured in our
experiment.

We now consider parametric heating resulting from BS-induced fluctuations of the trap fre-
quency in the z DOF ωz . When the potential minimum of the trapping SW coincides with a
potential minimum(maximum) of the SW formed from BS, the resulting trap frequency in the z
DOF is increased(decreased). For heating due to intensity fluctuation, or parametric heating, the
heating rate is given by [128]:

�Ė� = π

2
ω2

trS�(2ωtr)�E� (9.13)

Again, we assume the PSD of the intensity fluctuations S� to have the above-mentioned
Gaussian spectrum. The spectral density of the intensity fluctuation is inversely proportional to
the spectral width:

S� =∼ �20
Δω

, (9.14)

where �0 is the root-mean-square fractional intensity fluctuation. For an order of magnitude
calculation, we use I1

I2
as �0.

Equation (9.14) shows that the average energy increases exponentially, the time for �E� to
increase by a factor of e is given by [128]:

Te =
1

π2ν2trSx(2νtr)

.
The maximum heating rate occurs when the spectral width of the intensity fluctuation is

twice of the trap frequency, Δω = 2νtr × 2π. We estimate that the motional energy in the
z-direction increases by a factor of e in 106 second. For atoms prepared close to the motional
ground state, this heating rate is negligible compare to the measured value.
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