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Zusammenfassung

Inhalt dieser Arbeit ist die Realisierung, Charakterisierung und Anwendung eines neu-
artigen Mikroresonators. Der sogenannte

”
Flaschenresonator“ ist eine mikroskopische,

monolithische Struktur aus Silikatglas. In ihm treten
”
Flüstergaleriemoden“ auf, in de-

nen Licht nahe der Oberfläche durch kontinuierliche Totalreflektion eingeschlossen wird.
Dieses Einschlussprinzip ermöglicht extrem lange Speicherzeiten, erschweren aber im
Gegenzug die Abstimmbarkeit der Resonanzfrequenz. Die ausgeprägte prolate Form
des Flaschenresonators hingegen erlaubt flexible Kontrolle über die Modenstruktur und
ermöglicht damit volle Durchstimmbarkeit – eine Grundvoraussetzung für Experimente
zur

”
Resonator-Quantenelektrodynamik“.

Kapitel I gibt einen kurzen Überblick über gebräuchliche Typen von Mikroresonatoren.
Wichtige Größen, wie der Gütefaktor Q und das Modenvolumen V , die den zeitlichen
und räumlichen Einschluss des Lichtfeldes beschreiben, werden hier eingeführt.

Kapitel II enthält eine theoretische Beschreibung der Lichtpropagation in Flaschen-
moden und ultradünnen Glasfasern. Letztere ermöglichen die effiziente Einkopplung von
Licht in Mikroresonatoren. Als wesentliche Ergebnisse erhält man die Intensitätsverteilung
der Flaschenmoden, aus der sich das Modenvolumen berechnet. Das Kapitel schließt mit
der Beschreibung des Herstellungsprozesses beider Strukturen.

In Kapitel III präsentiere ich experimentelle Ergebnisse zur hocheffizienten, nahe-
zu verlustlosen Einkopplung von Licht in Flaschenmoden sowie deren räumliche und
spektrale Charakterisierung. Es werden ultrahohe Gütefaktoren von 360 Millionen und
vollständige Durchstimmbarkeit der Resonanzfrequenz demonstriert.

Kapitel IV untersucht die Eigenschaften eines Flaschenresonators in der sogenann-
ten

”
add-drop filter“ Konfiguration, in der zwei ultradünne Glasfasern an das Lichtfeld

einer Flaschenmode gekoppelt sind. Diese Konfiguration ermöglicht einen resonanten
Lichttransfer zwischen beiden Fasern mit einer Effizienz von über 90%. Des Weitern
lässt sich in Flaschenresonatoren aufgrund des günstigen Verhältnisses von Absorption
und nichtlinearem Brechungsindex optische Kerr-Bistabilität bei extrem kleinen Leistun-
gen von etwa 50 µW beobachten. Dies erlaubt Signale zwischen den Ausgängen beider
ultradünner Glasfasern zu dirigieren und zwar lediglich durch Variation der Eingangs-
leistung und ermöglicht damit Anwendungen im Bereich der optischen Signalverarbei-
tung.

Kapitel V diskutiert die Eignung von Flaschenresonatoren für Experimente zur
Resonator-Quantenelektrodynamik mit einzelnen Atomen. Der hier realisiert Quotient
Q/V , der dem maßgeblichen Verhältnis der Koppelrate zwischen Atom und Resonator
zu den dissipativen Verlustraten der Subsysteme entspricht, ermöglicht eine Wechselwir-
kung von Atom und Resonator im Bereich der starken Kopplung. In Kombination mit
der vollen Durchstimmbarkeit, und der hocheffizienten Faserkopplung stellt der Flaschen-
resonator somit ein einzigartiges Werkzeug zur Kopplung von Licht und Materie dar.
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Resumen

En esta tesis se presentan la realización experimental, caracterización y aplicación de un
nuevo tipo de microrresonador óptico. El llamado “microrresonador de botella” genera
“modos de galeŕıa de susurros” (MGS). Aśı, en esta estructura microscópica de cuar-
zo, el campo electromagnético está confinado cerca de la superficie por reflexión total
interna. En general, los microrresonadores basados en MGSs poseen unas propiedades
excelentes con respecto al confinamiento espacial y temporal de la luz. Sin embargo, la
estructura monoĺıtica del microrresonador hace complicado el ajuste de su frequencia
de resonancia. Esto dificulta su uso, por ejemplo, en experimentos de electrodinámica
cuántica de cavidades (EDCC), donde se investiga la interacción de un emisor cuántico
de frequencia de resonancia predeterminada con un modo del microrresonador. Por el
contrario, la forma elongada del microrresonador de botella produce una estructura de
los modos ajustable y por tanto permite el ajuste ilimitado de cualquier frequencia de
resonancia.

En el caṕıtulo I, presento una idea general sobre los distintos tipos de microrresonadores
ópticos. Introduzco parámetros importantes como el factor de calidad Q y el volumen
de los modos V , que caracterizan el encierramiento temporal y espacial de la luz respec-
tivamente.

El caṕıtulo II se dedica a una descripción teórica de la propagación de la luz en micro-
rresonadores de botella basada en las ecuaciones de Maxwell. Se calcula la distribución de
la intensidad de la luz dentro del microrresonador. Además, hago una breve descripción
de la propagación de la luz en fibras ópticas de diámetros comparables a la longitud de
onda óptica. Estas fibras ultrafinas se utilizan para acoplar la luz en el microrresonador
de botella. Finalmente, describo la fabricación de ambas estructuras.

En el capitulo III presento resultados experimentales del acoplamiento de la luz en
microrresonadores de botella con una eficiencia muy alta. Además investigo las propie-
dades espaciales y espectrales de los modos. Demuestro factores de calidad que exceden
los 360 millones aśı como la posibilidad de ajuste de cualquier frequencia de resonancia
predeterminada.

En el caṕıtulo IV se describen los experimentos en los que el microrresonador de botella
es utlizado en la llamada “configuración add-drop” (inserción-extracción), para la cual
dos fibras ultrafinas se acoplan a un modo del microrresonador. El acople de la luz de
eficiencia alta junto con el elevado factor de calidad, permiten la transferencia resonante
de la potencia óptica entre las dos fibras con una eficacia de más de un 90 por ciento.
Además la ratio favorable de la absorción al ı́ndice de refracción no lineal de cuarzo,
hace posible la observación de biestabilidad óptica causado por efecto Kerr a potencias
ópticas muy bajas del orden de 50 µW. En combinación con la configuración add-drop,
abre la posibilidad de dirigir señales ópticas entre las dos salidas de las fibras ultrafinas
variando simplemente la potencia óptica. De esta manera se facilita la aplicación en el
área de procesamiento de señales ópticas.

Finalmente, el caṕıtulo V, discute el potencial de los microrresonadores de botella para
experimentos EDCC con átomos individuales. Su ratio Q/V , que determina la relación
entre el acoplo átomo-modo y las tasas de disipación de los subsistemas, es comparable
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a los valores obtenidos con los mejores microrresonadores optimizados tecnológicamente
para experimentos para EDCC. Además, las posibilidades de ajustar la frequencia de
resonancia a un valor arbitrario y de acoplar y extraer la luz de los modos del micro-
rresonador con una eficiencia alta, convierten al microrresonador de botella en una herra-
mienta única para aplicaciones en el área de la óptica cuántica.
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Abstract

This thesis reports on the experimental realization, characterization and application of a
novel microresonator design. The so-called “bottle microresonator” sustains whispering-
gallery modes in which light fields are confined near the surface of the micron-sized
silica structure by continuous total internal reflection. While whispering-gallery mode
resonators in general exhibit outstanding properties in terms of both temporal and spa-
tial confinement of light fields, their monolithic design makes tuning of their resonance
frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics
(CQED) experiments, which investigate the interaction of single quantum mechanical
emitters of predetermined resonance frequency with a cavity mode. In contrast, the
highly prolate shape of the bottle microresonators gives rise to a customizable mode
structure, enabling full tunability. The thesis is organized as follows:

In chapter I, I give a brief overview of different types of optical microresonators.
Important quantities, such as the quality factor Q and the mode volume V , which
characterize the temporal and spatial confinement of the light field are introduced.

In chapter II, a wave equation calculation of the modes of a bottle microresonator
is presented. The intensity distribution of different bottle modes is derived and their
mode volume is calculated. A brief description of light propagation in ultra-thin optical
fibers, which are used to couple light into and out of bottle modes, is given as well. The
chapter concludes with a presentation of the fabrication techniques of both structures.

Chapter III presents experimental results on highly efficient, nearly lossless coupling of
light into bottle modes as well as their spatial and spectral characterization. Ultra-high
intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated.

In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two
ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly
lossless coupling characteristics of each fiber combined with the resonator’s high intrin-
sic quality factor, enable resonant power transfers between both fibers with efficiencies
exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive
index of silica yields optical Kerr bistability at record low powers on the order of 50 µW.
Combined with the add-drop configuration, this allows one to route optical signals be-
tween the outputs of both ultra-thin fibers, simply by varying the input power, thereby
enabling applications in all-optical signal processing.

Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED
experiments with single atoms. Its Q/V -ratio, which determines the ratio of the atom-
cavity coupling rate to the dissipative rates of the subsystems, aligns with the values
obtained for state-of-the-art CQED microresonators. In combination with its full tun-
ability and the possibility of highly efficient light transfer to and from the bottle mode,
this makes the bottle microresonator a unique tool for quantum optics applications.
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1. M. Pöllinger, D. O’Shea, F. Warken and A. Rauschenbeutel,
“Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,”
Physical Review Letters 103, 053901 (2009).
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Introduction

Introduction

Optical microresonators hold great potential for many fields of research and technol-
ogy [Vah03]. They are used for filters and switches in optical communications [Chu99,
Djo02, Alm04b], bio(chemical) sensing [Arm07], microlasers [San96, Kli00, Cai00a], as
well as for cavity quantum electrodynamics applications such as single-photon sources
[Mic00, McK04, Hij07] and interfaces for quantum communication [Boo07, Wil07]. All
these applications rely on the spatial and temporal confinement of light by the micro-
resonator. More quantitatively, these light-confining properties are characterized by the
resonator’s mode volume V and its quality factor Q. For a given in-coupled power,
the resulting intra-cavity intensity is then proportional to the ratio of Q/V . This ratio
also defines a key figure relating the coupling strength between light and matter in the
resonator to the dissipation rates of the coupled system. The highest values of Q/V to
date have been reached with whispering-gallery mode (WGM) microresonators [Kip04a].
WGM microresonators are monolithic, micron-sized, dielectric structures in which the
light is guided near the surface by continuous total internal reflection [Mat06]. This
extremely lossless mechanism of confinement enables their ultra-high quality factors ex-
ceeding 108. Standard WGM microresonators, like dielectric microspheres, microdisks,
and microtoroidal resonators, typically confine the light in a narrow ring along the
equator of the structure by continuous total internal reflection at the resonator sur-
face [Mat06]. While such equatorial WGMs have the advantage of a small mode volume
they also exhibit a large frequency spacing between consecutive modes, which scales
inversely with the resonator diameter. In conjunction with the limited tuning range due
to their monolithic design, tuning of modes which combine ultra-high quality factors
and small mode volumes in equatorial WGM microresonators to an arbitrary frequency
has therefore not been realized to date. This impedes their use in a large class of appli-
cations which require a resonance of the microcavity to coincide with a predetermined
frequency. For this reason, the WGM “bottle microresonator” has recently received
considerable attention [Kak01,War06,War08,Str08] because it promises a customizable
mode structure while maintaining a favorable Q/V -ratio [Sum04, Lou05]. In this work
highly prolate shaped bottle microresonators are fabricated from standard optical glass
fibers. As I will show in the following, these devices combine an ultra-high quality factor
of 360 million, a small mode volume, and nearly lossless fiber coupling, characteristic
of whispering-gallery mode resonators, with a simple and customizable mode structure
enabling full tunability, which makes them ideal candidates for CQED experiments.

Due to the strong enhancement of the intracavity intensity, microresonators are often
used for non-linear optics applications. As an example they are employed for third har-
monic generation [Car07] and the creation of frequency combs [Hay07]. Moreover, they
are very interesting in the field of “all-optical switching”, i.e., the control or redirec-
tion of the flow of light using a second light field . If the resonator material exhibits
a third-order susceptibility χ(3), its refractive index n depends on the intracavity in-
tensity via the Kerr effect n = n1 + n2 × I, where n1 is the linear refractive index,
n2 ∝ χ(3) is the nonlinear refractive index, and I is the intensity of the light field.
A variation of the intra-cavity intensity then modifies the cavity’s optical path length
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and thus changes the transmission properties of the microresonator. In this work, I
present all optical switching via the Kerr effect at record-low powers using bottle micro-
resonators. [Sum04,Lou05,Mur09,Poe09]. For a given input power, the nonlinear shift of
the resonance frequency in units of the resonator linewidth is proportional to n2Q

2/V .
The bottle microresonator combines ultra-high quality factors of up to Q > 108 with
mode volumes in the range of 1000 µm3. The resulting Q2/V -ratio is among the highest
realized for optical microresonators and allows us to observe bistable behavior at very
low powers. Single-wavelength all-optical switching via the Kerr effect at a record-low
threshold of 50 µW is demonstrated. In addition, using the evanescent field of sub-
micron diameter tapered fiber couplers, the bottle microresonator allows one to couple
light into and out of its modes with high efficiency by frustrated total internal reflec-
tion [Kni97,Cai00b,Spi03]. Finally, the mode geometry offers simultaneous access to the
resonator’s light field with two coupling fibers without the spatial constraints inherent
to equatorial WGMs typically employed in microspheres and microtoroidal resonators.
This facilitates the use of the bottle microresonator as a four-port device in a so-called
“add-drop configuration”. In combination with the bottle microresonator’s nonlinear
properties a CW optical signal can therefore be routed between both fiber outputs with
high efficiency by varying its power level.

2



1 Basics – optical microresonators

In the following, a brief overview of common microresonator designs and their appli-
cations is given. Moreover, the novel concept of the “bottle microresonator”, which is
subject of this work, is presented.

1.1 Fabry-Pérot microresonators

A typical Fabry-Pérot (FP) microresonator (also, microcavity) consists of two millimeter-
sized mirrors with a separation of L = 10 − 160 µm [Hoo00, Khu08]. The light field of
the cavity is described by an Gaussian standing wave profile as shown in Fig. 1.1. The
divergence of the Gaussian mode can be neglected because the mirror spacing is usually
much smaller than their radius of curvature. For the fundamental TEM00 mode the
intracavity intensity is then given by

I(r, z) = I0 exp
(
−2r2/w2

0

)
sin (2πz/λ)2 , (1.1)

where w0 is the waist diameter, z is the cavity axis, defined by the direction of light
propagation, r is the radial coordinate, perpendicular to z, and I0 is the maximum
intensity for r = 0. In order to obtain small mode volumes, the curvature of the mirrors
is chosen to obtain a waist diameter of few tens of microns. However, the maximum
curvature is limited by spatial constraints. The mode volume V for a given set of cavity

Figure 1.1: Basic principle of a Fabry-Pérot resonator consisting of two highly reflect-
ing mirrors. The cavity mode is a Gaussian beam exhibiting a standing wave structure.

3



1 Basics – optical microresonators

parameters is calculated by integration over the resonator’s intensity distribution

V =

∫
R3

n2 (~r)
I (~r)

Imax
dr3 , (1.2)

where n(~r) is the refractive index. The intensity distribution is normalized to unity by
dividing by its maximum value Imax in order to make the mode volume independent of the
power coupled into the cavity. For the intensity distribution given above, and neglecting
the propagating light fields outside the cavity caused by the finite reflectivity of the cavity
mirrors, this formula yields V = πw2

0L/4. The mirror’s multi-layer dielectric coatings
have a transmission t in the ppm range in order to enable a maximum storage time of the
light. Losses result from leakage of photons from the cavity due to the finite reflectivity
r of the coatings as well as from absorption and scattering losses a (the coefficients t, r
and a describe the change in intensity due to transmission, reflection and absorption by
the cavity’s mirrors). Therefore, in the absence of a driving light field, the intracavity
energy W decays exponentially with a time constant τ . The first loss mechanism enables
coupling of propagating light fields to the cavity mode and is therefore inevitable. The
latter are referred to as intrinsic losses resulting from imperfections in the resonator
material and fabrication. The temporal confinement can be quantitatively described by
the storage time τ in units of the optical period T = ν−1

0 , with the optical resonance
frequency ν0. It is convenient to use the “so-called” quality factor Q which is defined as

Q = 2π
τ

T
. (1.3)

Using the angular resonance frequency ω0 = 2πν0, the quality factor writes as Q = ω0τ .
In order to characterize both the spatial and temporal confinement of the intracavity light
field, the ratio Q/V is used. This ratio determines the enhancement of the intracavity
intensity for a given input power Pin and thus is an important figure of merit for optical
microresonators. Since in Fabry Pérot resonators, unlike as in monolithic resonators, the
losses almost exclusively occur at each reflection, it is convenient to characterize these
devices by the cavity’s finesse F , which is related to the number of round trips N of the
light within the storage time τ by

F = 2πN . (1.4)

Optical power can only be efficiently coupled into the cavity if the incident light field
constructively interferes with the intra-cavity field. This condition is fulfilled only for
distinct wave numbers k = 2π/λ, for which the cavity round trip phase δ is an integer
multiple i of 2π. The transmitted power Ptr, which is proportional to the intracavity
intensity, is then given by an Airy function [Mes04]

Ptr =
4t2(1− a)

(2t+ a)2

Pin

1 + FA sin2(δ/2)
, (1.5)

with the generalized finesse coefficient FA = 4r
√

1− a/(1− r
√

1− a)2. Figure 1.2 shows
Ptr as a function of the optical frequency of the input wave. The frequency spacing

4



1.2 Whispering-gallery mode resonators

Figure 1.2: Mode spectrum of a Fabry-Pérot resonator. The power transmitted
through the cavity Ptr as a function of the optical frequency of the input light field
is given by an Airy function. The signal transmitted through the cavity is proportional
to the intracavity intensity. The individual peaks of FWHM ∆ν, corresponding to the
modes of the resonator, are separated by the free spectral range ∆νFSR.

between adjacent modes of orders i and i + 1, is called free spectral range ∆νFSR =
νi+1 − νi. The FWHM of the resonances is denoted by ∆ν. It can be shown that the
finesse is given by the ratio of both quantities [Mes04]

F =
∆νFSR

∆ν
. (1.6)

As a consequence, the quality factor can be expressed as the ratio of linewidth to optical
frequency of the resonance ν0

Q =
ν0

∆ν
. (1.7)

The transmission through the cavity, determined by the intrinsic losses rate a, on res-
onance reaches a maximum value of T = Ptr/Pin = 4t2(1 − a)/(2t + a)2 ≈ t2/(t + a)2

[Dot07].
FP cavities have been intensively used in the field of cavity quantum electrodynamics,

in which they enable to observe the interaction between a single atom and the cavity
light field deep within the so-called strong coupling regime. Here, the coupling rate
g, which describes the energy transfer between the cavity light field and the atom,
clearly exceeds the dissipation rates of the system, given by the cavity field decay rate
κ = ω0/(2Q) and the transverse atomic dipole decay rate γ⊥, caused by spontaneous
emission. The figure of merit for CQED experiments in the regime of strong coupling is
g2/(κγ⊥) ∝ Q/V [Rem95,Mab96,Boc04].

1.2 Whispering-gallery mode resonators

Light confinement in WGM resonators is based on total internal reflection. Moreover,
frustrated total internal reflection enables efficient coupling of propagating light field to
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1 Basics – optical microresonators

WGMs. Therefore these phenomena will be reviewed in detail, followed by an overview
of different realizations of WGM resonators, including the bottle microresonator.

1.2.1 Total internal reflection

The refraction of an electromagnetic wave, propagating in a medium of refractive index
n1 at an interface with another medium of refractive index n2 is described by Snell’s
law [Hec89]

n1 sin (Θ1) = n2 sin (Θ2) , (1.8)

where Θ1, Θ2 are the angles between the wave vectors ~k1 and ~k2 of the incident and
refracted light fields and the surface’s normal vector, as illustrated in Fig. 1.3 (a). At
an interface between an optically dense medium and an optically thinner medium, i.e.,
for n2 < n1, a reflected wave only exists for angles Θ1 smaller than the critical angle
Θc = sin−1 (n2/n1). Otherwise, the incident wave is totally reflected from the interface,
as shown in Fig. 1.3 (b) At a glass–air interface with ∆n ≈ 0.5 the critical angle is
42◦. In the following, the electromagnetic field in the optically thinner medium in
the case of total internal reflection will be examined in detail, following the analysis
in [Hec89,Mes04]. In the following, the electric field in the optically thinner medium is
treated as a scalar field of the form

E2 = E02 exp
(
i
(
~k2 · ~r − ωt

))
. (1.9)

The wave vector ~k2 with an absolute value of |~k2| = n22π/λ0 can be split in a component
kx that describes the propagation along the interface and a component ky describing
the propagation normal to the interface. Using Snell’s law one finds a relation for
ky = k2 cos (Θ2)

ky = k2

(
1− n2

1 sin2 (Θ1)

n2
2

)1/2

. (1.10)

Figure 1.3: (a) Reflection and refraction at an interface between two media with
refractive indices n1 and n2. The wave vector of the incident wave and the refracted
wave are denoted by ~k1 and ~k2, respectively. The relation between their angles with the
normal vector of the interface, Θ1 and Θ2, is described by Snell’s law. (b) For n2 < n1

and angles larger than the critical angle Θc the light field is completely reflected by the
interface. A detailed analysis shows that the electromagnetic field decays exponentially
beyond the interface. The penetration depth of this evanescent field into the optically
thinner medium is typically on the order of the wavelength.
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1.2 Whispering-gallery mode resonators

If sin (Θ1) > n2/n1,

ky = ik2

(
n2

1 sin2 (Θ1)

n2
2

− 1

)1/2

= iβ (1.11)

becomes complex, while kx = (n1k2/n2) sin (Θ1) is real. The electric field strength in
the optically thinner medium is given by

E2 = E02 exp (−βy) exp i (kxx− ωt) . (1.12)

This so-called “evanescent field” exponentially decays with increasing distance y from
the interface. Its penetration depth

1

β
=

λ0

2π
√
n2

1 sin2 (Θ1)− n2
2

(1.13)

is typically on the order of the wavelength. The normal component of the pointing
vector that describes the transport of energy by the electric field is purely imaginary.
A second interface, located within the penetration depth of the evanescent field, gives
rise to a propagating light field beyond the second interface. This phenomenon, called
“frustrated total internal reflection”, is used in beam splitters, in which two glass sub-
strates are separated by a defined air gap. A wave hitting the interface at an angle of
45◦ is partially transmitted due to frustrated total internal reflection. The ratio of the
optical power coupled to the second substrate and thus transmitted through the beam
splitter can be adjusted by varying the width of the gap. The phenomenon of frustrated
total internal reflection can also be employed for coupling light to WGMs of monolithic
microresonators. In prism coupling [Bra89] the evanescent field created by total internal
reflection in the prism is spatially overlapped with the evanescent field of a WGM. The
distance has to be chosen on the order of the penetration depth, which, e.g., for a prism
with n = 1.5 and Θ = 45◦ is 1/β = 380 nm. By choosing an appropriate refractive index
of the prism and reflection angle, the wave vectors of the WGM and the incident light
field can be matched resulting in efficient coupling of optical power to the WGM. Other
approaches for coupling light to WGMs use the evanescent fields of side-polished optical
fibers [Dub95] and of ultra-thin tapered optical fibers [Kni97].

1.2.2 Microspheres and microtoroidal resonators

The first monolithic microresonators based on WGMs were realized by melting the tip
of a silica fiber [Bra89]. The molten glass forms a sphere due to surface tension. The
spherical shape and a surface with minimal roughness are maintained after solidification.
In large microspheres with diameters of several 100 µm, quality factors among the highest
ever realized with optical microresonators were measured, only limited by the residual
absorption of silica. For example, a sphere 750 µm in diameter, yielded a loaded quality
factor of 8× 109 at a wavelength of 633 nm [Gor96]. However, an optimal Q/V -ratio is
achieved for resonators with much smaller radii in the range of some tens of micrometers
[Buc03, Kip04a]. Such resonators exhibit a more pronounced evanescent field, related
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1 Basics – optical microresonators

to the stronger curvature of the resonator surface. This leads to a strong intensity
enhancement at the surface of the resonator, providing excellent accessibility, but also
induces surface-related losses. The resonator radius can be decreased to around 15 µm
while maintaining quality factors in the 108 − 109 range. Quality factors Q ≥ 108 are
referred to as ultra-high quality factors (UHQ). For a given radius of the resonator,
the mode volume can be further decreased by changing the shape of the structure.
In a toroidal structure the mode is further compressed in the polar direction [Spi05].
Microtoroidal resonators are produced in two steps from a silicon substrate with a silica
layer of several µm thickness. First, a disc-shaped silica structure with a massive silicon
stem is created by lithography and etching. Next, the structure is heated with a CO2

laser. Due to the relatively high thermal conductivity of silicon, only the edges of the
silica disc that are not in contact with the silicon stem are molten and form a toroidal
structure [Arm03]. In this type of resonator some of the highest values of Q/V have
been reached to date [Kip04a].

1.2.3 Bottle microresonators

The WGM resonator concepts described above typically employ modes in which the
light field propagates along the equator of the structure. While these equatorial WGMs,
have the advantage of a small mode volume they also exhibit a large frequency spacing
between consecutive modes, which scales inversely with the resonator diameter. In con-
junction with the limited tuning range due to their monolithic design, tuning of modes
which combine ultra-high quality factors and small mode volumes in equatorial WGM
microresonators to an arbitrary frequency has therefore not been realized to date. For
this reason, the novel concept of a WGM “bottle microresonator” has recently received
considerable attention [Kak01, War06, War08, Str08, Mur09] because it promises a cus-
tomizable mode structure while maintaining a favorable Q/V -ratio [Sum04,Lou05]. Due
to its highly prolate shape, the bottle microresonator gives rise to a class of whispering-
gallery modes (WGMs) with advantageous properties, see Fig. 1.4. The parabolic radius

profile of the bottle resonator R(z) = R0 ·
(

1− 1/2 (∆k · z)2
)

causes a harmonic effective

potential for the light field along the resonator axis. The light in these “bottle modes”
harmonically oscillates back and forth along the resonator axis between two turning
points which are defined by an angular momentum barrier [Lou05]. The resulting ax-
ial standing wave structure exhibits a significantly enhanced intensity at the so-called
“caustics” of the bottle mode, located at the turning points of the harmonic motion. The
caustics therefore form two well separated coupling ports for coupling light or matter
to the bottle mode. Moreover, the bottle microresonator possesses an equidistant spec-
trum of eigenmodes, labelled by the “azimuthal quantum number” m, which counts the
number of wavelengths that fit into the circumference of the resonator, and the “axial
quantum number” q, which counts the number of axial intensity nodes [Sum04,Lou05].
The frequency spacing between modes with consecutive quantum numbers q (m) is
called the axial (azimuthal) free spectral range and will be denoted ∆νq (∆νm) in the
following. As in equatorial resonators, the azimuthal free spectral range is fixed by the
resonator radius. However, the axial mode spacing only depends on the curvature of
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1.3 Photonic crystal microresonators

Figure 1.4: Concept of the bottle microresonator. In addition to the radial confinement
by continuous total internal reflection at the resonator surface, the axial confinement of
the light is caused by a harmonic effective potential (dashed line) fixed by the curvature
of the resonator profile. The resulting intensity distribution is therefore given by the
eigenfunctions of the quantum mechanical harmonic oscillator [Lou05].

the resonator profile and can thus be made much smaller than ∆νm without signifi-
cantly affecting the resonator’s mode volume. This should enable tuning of the bottle
microresonator by one azimuthal free spectral range which enables coupling of any arbi-
trary frequency to the resonator [Lou05]. Up to now, few groups realized bottle micro-
resonators [Kak01, War06, Poe06, War07, Mur09], but neither quality factors exceeding
5× 105 nor fully tunability has experimentally been demonstrated.

1.3 Photonic crystal microresonators

A completely different approach is chosen in photonic crystal microresonators. In pho-
tonic crystals light confinement is achieved by a spatially periodic modulation of the
refractive index. One distinguishes between one-, two- and three-dimensional photonic
crystals, depending on the dimensionality of the periodic structure. For one- and two-
dimensional photonic crystals the light confinement in the remaining dimension(s) is
achieved by employing the structure that bears the periodic pattern as a waveguide,
in which the light is guided by total internal reflection at its surface. One-dimensional
photonic crystals are well known from dielectric Bragg mirrors, which consist of multiple
layers with a thickness of λ/4 and alternating refractive index. In a certain frequency
band the light is reflected form such a dielectric stack. In a “micropost” cavity, two
highly reflective dielectric mirrors separated by a spacer with a thickness of usually λ/2
form a Fabry-Pérot like cavity with a mode volume on the order of some (λ/n)3. The
interface of the cylindric post like structure guides the light field by total internal reflec-
tion in the region between the Bragg mirrors. As an example, in [Ger98] such a cavity
with a mode volume of 5(λ/n)3 and a quality factor of 5000 was demonstrated. Further
expanding the dimensionality of the periodic structure to two dimensions yields even
smaller mode volumes. A possible realization is a periodic lattice of air holes etched in
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1 Basics – optical microresonators

a thin semiconductor slab. A line defect in such a lattice forms a waveguide. A point
defect, realized by leaving one hole unetched creates a cavity. The light is then confined
in the lattice plane by Bragg reflection and in the third dimension by total internal reflec-
tion at the silicon air interface. The fist realizations of those structures yielded quality
factors many orders of magnitude below the theoretically predicted limit. Nevertheless,
these cavities have steadily been improved. Recently, a photonic crystal cavity with a
mode volume as small as V = 1.7 (λ/n)3 and a quality factor of Q = 1.3× 106 has been
demonstrated [Tan07]. The resulting Q/V value is comparable to those observed in mi-
crotoroidal resonators. Photonic crystal cavities have been employed for low-threshold
lasers [Pai99]. Since they consist of semiconductors, single quantum dot emitters are
readily incorporated in the cavity, enabling applications like strong coupling between a
quantum dot and the cavity mode [Yos04] and single-photon sources [Pel02].
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2 Fundamental properties and fabrication
of bottle resonators and ultra-thin optical
fibers

This chapter presents a theoretical model of light propagation in bottle modes and ultra-
thin optical fibers, followed by a description of the fabrication process of both structures.
First, a wave equation calculation [Lou05] on bottle modes is presented. From this model,
their spatial and spectral properties are derived. In particular, the intensity distribution
and the corresponding mode volume is calculated. Exact knowledge of the latter is of
great importance for optimizing the ratio of Q/V . Next, light propagation in optical
step-index fibers as well as in ultra-thin optical fibers is discussed. This section will only
give a brief overview which is limited to the properties relevant for the understanding
of the ultra-thin fiber coupler that is used for excitation of bottle modes. A detailed
analysis can be found in [Yar91]. Bottle microresonators and ultra-thin optical fibers
are fabricated using a custom built “fiber pulling rig” [War07]. The last section gives a
brief description of the fabrication techniques developed in [Poe06,War07].

2.1 Calculations on bottle modes

2.1.1 Wave equation for bottle microresonators

In [Lou05] the wave equation for a bottle resonator is established and solved for its
eigenfunctions. An approximately parabolic profile

R(z) ≈ R0 ·
(

1− 1/2 (∆k · z)2
)
. (2.1)

of the resonator radiusR along the resonator axis z is assumed as illustrated in Fig. 2.1 (a).
Here, R0 is the maximum radius of the resonator at the position z = 0 and ∆k denotes
the curvature of the resonator profile. The electric and magnetic fields of a bottle mode
have to fulfill the Helmholtz equation(

∇2 + k2
)
· ~E = 0 , (2.2)(

∇2 + k2
)
· ~H = 0 ,

where ∇2 is the Laplace operator and k = ω · n/c = 2πn/λ0 is the wave number
of the electromagnetic field with angular frequency ω and the vacuum wavelength λ0,
propagating in a medium with refractive index n. The refractive index of silica is nSi =

11



2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

Figure 2.1: Sketch of the resonator geometry along (a) and in a plane perpendicular
(b) to the resonator axis. The Helmholtz equation is solved in cylindrical coordinates.
(b) The azimuthal coordinate is denoted by φ. (a) The radial coordinate and the axial
coordinate are denoted by r and z, respectively. A slowly varying parabolic profile of
the resonator radius along the z axis is assumed (see Eq. (2.1)). The radial and axial
(indicated in red) intensity distribution of the modes is derived. Each bottle mode is
located between two caustics at ±zc. The caustic radius Rc can be understood as a
cutoff for propagation along z due to the angular momentum of the bottle mode.

1.467 for a wavelength around λ0 = 852 nm (in the experiments presented in this thesis,
a diode laser with a wavelength around λ0 = 852 is used to excite bottle modes). The
speed of light in a vacuum is denoted by c. In cylindrical coordinates (z: axial coordinate,
r: radial coordinate, φ: azimuthal coordinate) the Laplace operator has the following
form

∇2 =
1

r
∂r + ∂2

r +
1

r2
∂2
φ + ∂2

z . (2.3)

Separation of the wave equation

In [Lou05] the method of adiabatic invariants, well known from the description of charged
particles in magnetic bottles, is used to separate the wave equation. Due to the prolate
shape of the bottle resonator, there is only a small variation in its radius along z, meaning
that dR/dz � 1 in the central region of the structure. The radial component of the
wave vector is given by kr = (dR/dz) · kz. The resonators used in this work have a
diameter D0 = 2R0 of around 35 µm and a typical curvature of ∆k = 0.012 µm−1. The
bottle modes experimentally investigated are located in a region |z| ≤ 10 µm. With
these values one finds |kr(z)| ≤ 2.5 × 10−2|kz(z)|. The z-component of the wave vector
vanishes at the caustics and gets maximal for z = 0. Its maximum value depends on the
spacing of the caustics. The caustic positions considered here, |zc| ≤ 10 µm, ensure that
kφ � kz. This means that the radial component of the wave vector can be neglected
with respect to the axial and azimuthal components kz and kφ.

k ≈
√
k2
z + k2

φ . (2.4)

Due to the cylindrical symmetry, the projection of the angular momentum on the z
axis is conserved ∂zkφ(z)R(z) = 0. Moreover, the value of kz vanishes at the resonator
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2.1 Calculations on bottle modes

caustics with radius Rc, meaning that kφ (±zc) = k. Thus the axial dependency of kφ is
given by

kφ (z) = k ·Rc/R (z) . (2.5)

Due to the cylinder symmetry, the azimuthal part of the wave function is given by expimφ,
with integer m ∈ Z−{0} being the azimuthal quantum number. The z-component of the
angular momentum of a bottle mode is then given by Lz = m~. Furthermore, motivated
by the adiabatic approximation, the wave function is written as a product of the “axial
wave function” Z(z) and the “radial wave function” ~Φ(r,R(z)). The latter only exhibits
a “weak” z dependency via the adiabatic variation of the resonator radius. The wave
equation thus reads (

∇2 + k2
)
· ~Φ (r,R(z))Z (z) eimφ = 0 . (2.6)

By using the approximation ∂2
zΦi = 0 one obtains equations for all three components i

of the wave function

− 1

Z(z)
· ∂2

zZ(z) − kz(z)2 =
1

Φi (r,R(z))
·
(

1

r
∂rΦi (r,R(z)) + ∂2

rΦi (r,R(z))

)
− m2

r2
+ kφ (R(z))2 .

(2.7)

Neglecting the weak z dependency on the left-hand side, the wave equation separates
into two parts. The “radial wave equation” thus reads

∂2
rΦi (r,R(z)) +

1

r
∂rΦi (r,R(z)) +

(
k2
φ (R(z))− m2

r2

)
Φi = 0 . (2.8)

It depends on the radial coordinate and contains R(z) and m as parameters. It has
the form of a Bessel equation, well known from the description of light propagation in
optical fibers [Yar91]. The “axial wave equation” only depends on the z coordinate(

∂2
z + k2

z

)
· Z(z) = 0 . (2.9)

In the following, both equations are solved.

2.1.2 Solving the radial wave equation

In order to derive the electric and magnetic fields propagating in structures with cylindri-
cal symmetry, it is a common strategy to solve for the z- components of the fields [Yar91]
and to derive the other components using Maxwell’s equations. From Maxwell’s curl
equation one obtains the following set of equations when neglecting all z derivatives

Er =
−i
εω

1

r
∂φHz ,

Eφ =
i

εω
∂rHz ,

Hr =
i

µω

1

r
∂φEz ,

Hφ =
−i
µω

∂rEz ,

(2.10)
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

with the electric and magnetic permeabilities of the media ε = εr ·ε0 and µ = µr ·µ0, where
ε0 and µ0 are the vacuum permeabilities and εr and µr are the relative permeabilities.
For silica µr = 1 and εr = n2. Due to the adiabatic change in the resonator radius along
z, this attempt also applies to bottle modes in close approximation.
In order to solve the radial wave equation for the z-components of the fields, one uses
the well known solution of the Bessel differential equation

x2∂2
xy + x∂xy + (x2 − n2)y = 0 . (2.11)

For a fixed value of n there are two linearly independent solutions. The Bessel function
of the first kind Jn(x) and the Bessel function of the second kind Yn(x). By identifying
y = Φi, x = kφ(z) · r and n = m, the general solution for Φi(r, z) is then given by the
following linear combination

Φi(r, z) = A · Jm (kφ(z) · r) +B · Ym (kφ(z) · r) . (2.12)

However, the fact that physical fields of confined modes have to be derived sets some
restrictions to the solutions. From the asymptotic behavior of the Bessel functions, as
well as from their behavior near the resonator surface it can be shown that the wave
functions describing Ez and Hz have to be of the form [War07]

Ez(r, z) ∝ A · Jm
(
k0nRc
R(z)

· r
)
, for r ≤ R(z) . (2.13)

Ez(r, z) ∝ B · Ym
(
k0Rc
R(z)

· r
)
, for r > R(z) . (2.14)

As well as

Hz(r, z) ∝ C · Jm
(
k0nRc
R(z)

· r
)
, for r ≤ R(z) . (2.15)

Hz(r, z) ∝ D · Ym
(
k0Rc
R(z)

· r
)
, for r > R(z) . (2.16)

Whispering-gallery mode resonators support modes of two perpendicular polarizations.
In transverse magnetic modes (TM modes), the electric field is parallel to the resonator
axis and therefore only the components Ez, Hr and Hφ contribute to the electromagnetic
field, whereas in transverse electric modes (TE modes) Hz, Er and Eφ are the only non-
vanishing components. By inserting Ez and Hz in Eq. (2.10) the complete electric field
distribution is obtained. The constants A, B, C and D are calculated using the following
conditions for an electromagnetic field at a dielectric interface between two media with
refractive index n1 and n2 [Mes04].

( ~E2 − ~E1)× ~eN = 0, (n2
2
~E2 − n2

1
~E1) · ~eN = 0 . (2.17)

( ~H2 − ~H1)× ~eN = 0, ( ~H2 − ~H1) · ~eN = 0 . (2.18)
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2.1 Calculations on bottle modes

Here ~E1, ~E2 and ~H1, ~H2 are the electric and magnetic field amplitudes in the media in
direct proximity to the interface. The normal vector ~eN is perpendicular to the interface.
Using the relations

J ′m(x) = 1/2 (Jm−1(x)− Jm+1(x)) ,

Y ′m(x) = 1/2 (Ym−1(x) − Ym+1(x)) ,
(2.19)

one obtains the following conditions at the resonator surface, at z = zc, for TM polar-
ization

Ez : A · Jm(k0nRc) = B · Ym(k0Rc) ,

Hφ : nA · J ′m(k0nRc) = B · Y ′m(k0Rc)
(2.20)

and analog for TE polarization

Hz : C · Jm(k0nRc) = D · Ym(k0Rc) ,

Eφ : C · J ′m(k0nRc) = nD · Y ′m(k0Rc) .
(2.21)

The condition obtained for Er is identical to that for Hz.

Resonance condition

In order to solve these equations, λ0 and Rc can not be independently chosen. The
resonance condition dictates that the optical path length has to be an integer multiple
of the wavelength of the light field coupled into the resonator. In [War07] the resonance
condition for both polarizations is obtained by dividing the expression for Hφ and Ez in
the case of TM polarization and the expressions for Eφ and Hz and in the case of TE
polarization

TM : FTM (λ0, Rc) = n
J ′m (k0nRc)

Jm (k0nRc)
− Y ′m (k0Rc)

Ym (k0Rc)
= 0 , (2.22)

TE : FTE (λ0, Rc) =
J ′m (k0nRc)

Jm (k0nRc)
− nY

′
m (k0Rc)

Ym (k0Rc)
= 0 . (2.23)

In Fig. 2.2 (a), FTM (λ0, Rc) is plotted as a function of Rc exemplarily for TM polar-
ization. The wavelength is fixed to λ0 = 852 nm. For m = 180 a series of resonant
radii and corresponding modes, differing in the number of nodes p along the radial co-
ordinate, are identified, see Fig. 2.2 (b–d). Since the fundamental mode, corresponding
to p = 0 and maximum angular momentum, exhibits the smallest mode volume and
the tightest confinement it will be used for the following calculations. Figure 2.3 shows
the field components for the lowest order, TE polarized radial mode obtained by the
same method. In order to calculate the mode volume, the intensity distribution has to
be normalized to unity. Thus, the amplitudes are normalized using Max (|Ez|) for TM
polarization and Max((|Er|2 + |Eφ|2)1/2) for TE polarization.
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

Figure 2.2: Solving the radial wave equation for TM polarization and m = 180. (a)
In order to identify resonant caustic radii, FTM (λ0 = 852 nm, Rc) is plotted for Rc
ranging from 15 µm to 20 µm and for a fixed wavelength of λ0 = 852 nm. The roots
at Rc = 17.49 µm, Rc = 18.25 µm and Rc = 18.88 µm correspond to radii that
fulfill the resonance condition. Radii Rc < 17.49 are not compatible with an angular
momentum of Lz = 180~. Plots (b–d) show the normalized radial intensity distribution
Inorm(r) = |Ez(r)|2/

∫
|Ez(r)|2rdr for all three radii Rc obtained in (a). The intensity

is normalized with respect to the radial power density in order to allow a comparison of
the peak intensities of the different modes. For the smallest resonant radius, Lz = 180~
coincides with the maximum possible angular momentum Lz,max = ~mmax and the
fundamental radial mode is obtained (b). This mode travels closest to the surface and
offers the strongest confinement. For larger radii, mmax increases and the modes exhibit
p = mmax −m nodes along the radial coordinate.

Figure 2.3: |Er|2/max(|Er|2 + |Eφ|2) (a) and |Eφ|2/max(|Er|2 + |Eφ|2) (b) for the
fundamental radial, TE polarized mode. For a wavelength of λ0 = 852 nm and m = 180
the resonance condition is fulfilled for a radius of Rc = 17.56 µm. Note the discontinuity
of |Er|2 at the surface (dashed line). The radial intensity distribution is proportional

to | ~E|2 = |Er|2 + |Eφ|2. Both field components, Er and Eφ are normalized by dividing

them by the maximum value of | ~E|.
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2.1 Calculations on bottle modes

Figure 2.4: (a) Considering the form of the radial wave equation one can define an
effective potential for the light confined in a resonator mode. The plot shows Veff

for mmax = 180 in a bottle microresonator with Rc ≈ 17.49 µm for a wavelength of
852 nm. (b) Normalized radial intensity distribution Inorm = |Ez|2/max(|Ez|2) of the
corresponding TM mode. The mode is located in the region Veff ≤ 0, whereas for
Veff > 0 the fields are purely evanescent. (c) For larger radii of approximately 25 µm ,
Veff again becomes positive and gives rise to an unbound, propagating light field. Note
the scaling factor of 1026 between (b) and (c). Due the rapid exponential decay of
the intensity outside of the silica resonator structure the losses due to coupling of the
confined fields to the radiating modes are negligible in this case.

Radiation caustic

Whispering-gallery modes are spatially not perfectly confined. Total internal reflection
that occurs on a curved surface is not perfectly lossless. Defining an effective potential
from the radial wave equation, Eq. (2.8), helps to understand this phenomenon

Veff = −kφ (z)2 +
m2

r2
. (2.24)

In Fig. 2.4, Veff is plotted against the radial coordinate at the caustic of the resonator
with Rc = 17.49 µm for m = 180. In the “forbidden” regions, defined by Veff > 0, the
fields are purely evanescent. The confined WGM is located in the region close to the
surface, where Veff ≤ 0. For large radii, where Veff becomes positive again, an unbound
propagating light field exists. The radiation caustic Rrad is defined as the first node
of | ~E|2 outside of the silica resonator structure. Whenever integrating over the radial
intensity distribution, Rrad is chosen as the upper limit for the integral. That means that
only the confined mode and the evanescent field outside of the resonator are considered.

Effective resonator radius and wave number

The z-component of the angular momentum of a bottle mode Lz = m~ can be approx-
imated by Lz ≈ Rc · ~kφ(zc) = Rc · ~k. The absolute value of the wave number is then
given by k ≈ m/Rc. Strictly, because of the modes finite radial width, one has to define
an effective radius Reff = cr ·Rc by introducing an correction factor cr. The exact value of
k is then obtained by radial integration, where 1/r is weighted with n2(r) · |E(r, z = zc)|2
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

and then divided by
∫ Rrad

0 n2(r)|E(z = zc)|2dr for normalization [War07]

k = m/ (crRc) = m

∫ Rrad

0 n2 (r) · |E (z = zc)|2 · (1/r) dr∫ Rrad

0 n2 (r) · |E (z = zc)|2dr
. (2.25)

For the fundamental TM mode, whose radial intensity distribution is shown in Fig. 2.2 (b),
one obtains cr = 0.970 for a caustic radius of Rc = 17.49 µm.

2.1.3 Solving the axial wave equation

Using Eq. (2.4) the axial wave equation can be written as

∂2
zZ +

(
k2 − k2

φ

)
· Z = 0 . (2.26)

In order to solve for the eigenfunctions Z and the eigenvalues km,q, one eliminates kφ via
kφ(z) = k ·Rc/R(z) = m/ (crR(z)) using Eq. (2.25). Moreover, according to the analysis
in [Lou05], the following expression for the resonator profile R(z) is chosen

R(z) = R0/

√
1 + (∆kz)2 . (2.27)

In [Sum04, Lou05], it is shown that a resonator with such a radius profile exhibits
an equidistant mode spacing. For typical bottle microresonator dimensions, for which
(∆kz)2 ≤ 0.014, this expression corresponds to a close approximation to the parabolic
radius profile given in Eq. (2.1). The axial wave equation then takes the form

∂2
zZ +

(
k2 −

(
m

crR0

)2

−
(
m∆k

crR0

)2

· z2

)
· Z = 0 . (2.28)

This differential equation is equivalent to the harmonic oscillator

∂2
zZ + (Ekin − V (z)) · Z = 0 , (2.29)

with the “kinetic energy” Ekin and the “potential energy” V (z). For the bottle micro-
resonator one identifies

Ekin = k2 −m2/ (crR0)2 (2.30)

and

V (z) =

(
∆Em · z

2

)2

, (2.31)

with ∆Em = 2m∆k/ (crR0). The condition that Z be square integrable leads to a
discrete set of energy levels Emq = (q + 1/2)∆Em. The axial quantum number q ∈ N
(non-negative integer) gives the number of nodes in the axial intensity distribution. The
allowed eigenvalues for the wave number are given by

km,q =
m

crRc
=

√
m2

(crR0)2 + (q + 1/2)
2m∆k

crR0
. (2.32)
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2.1 Calculations on bottle modes

The solutions for Z are given by a combination of a Hermite Polynomial Hq and a
Gaussian

Zm,q(z) = Hq

(√
∆Em

2
· z

)
exp

(
−∆Em

4
z2

)
. (2.33)

The last unknown quantities are R0 and zc =
(

(R0/Rc)
2 − 1

)1/2
· ∆k−1. Comparing

k = m/ (crRc) with the eigenvalues km,q leads to a quadratic equation

m2

(crR0)2 +
2m∆k · (q + 1/2)

crR0
− m2

(crRc)
2 = 0 . (2.34)

By choosing q = 1 and m = 180, corresponding to Rc = 17.49 and cr = 0.970 for TM
polarization, the central radius of the resonator considered here (∆k = 0.012 µm−1) , is
fixed to R0 = 17.522 µm. In order to obtain the axial intensity distribution of the four
TM polarized lowest order axial bottle modes (q = 1–4) , the axial wave function Zm,q
is calculated for each mode according to Eq. (2.33) , again using cr = 0.970. Due to
the small radius modulation in the central region of the bottle microresonator structure,
the correction factor cr = 0.970, calculated from the radial intensity distribution of
the TM polarized q = 1 mode, also applies to the higher order axial modes to a close
approximation. Figure 2.5 shows the normalized axial intensity distribution Inorm =
Z2
m,q/max(Z2

m,q) for the q = 1–4 modes. For modes with higher order axial quantum
number the caustic position shifts to larger z and thus Rc decreases. Therefore the
resonance condition changes and the resonances shift to smaller wavelengths. In order
to calculate the resonant wavelengths λq for the higher order modes, Eq. (2.34) is used to
solve for Rc(q). For this purpose the value of cr = 0.970 obtained from the radial wave
function of the respective q = 1 mode is again used. From the resulting values of Rc(q),
λq can be calculated as illustrated in Fig. 2.6. Finally, the radial intensity distribution of
the higher order axial modes is obtained for the given resonator dimensions as described
above.
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

Figure 2.5: Normalized axial intensity distribution Inorm = Z2
m,q/max(Z2

m,q) of the
four lowest order TM polarized axial bottle modes. The axial quantum number q gives
the number of nodes along the resonator axis. The solutions are well known from the
quantum mechanical harmonic oscillator. Note the enhancement of the intensity near
the caustics, where the evanescent field is most pronounced. The two caustics can be
used as two well-separated, symmetric coupling ports where light can be coupled into
and out of the resonator. The dotted lines in (a) indicate the caustic positions ±zc,
which do not coincide with the maxima of Z2

m,q. In the energetically “forbidden” regions
|z| > zc the electric field has to decay exponentially. For a continuously differentiable
electric field, this condition can only be fulfilled if the maxima of the axial intensity
distribution are shifted towards the resonator’s center with respect to ±zc.

20



2.1 Calculations on bottle modes

Figure 2.6: Identifying the resonant wavelengths for the four lowest order, TM po-
larized axial bottle modes. In (a) FTM (λ0, Rc(q)) from Eq. (2.22) is plotted with a
fixed radius Rc(q) for each mode. (b) shows a smaller range of λ. The roots of each
curve mark λq. The spectral mode spacing ∆νq is found to be 397 GHz between the
two lowest order modes. For the higher order modes, it slightly decreases by approxi-
mately 0.1%. This slight deviation from the equidistant mode spacing, expected from
the radius profile given in Eq. (2.27) that is used for solving the axial wave equation, is
ascribed to the approximation of cr when solving Eq. (2.34) for Rc(q).
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

q V180,q (TM) V180,q (TE)

1 1113 µm3 1176 µm3

2 1244 µm3 1314 µm3

3 1330 µm3 1406 µm3

4 1395 µm3 1474 µm3

Table 2.1: Mode volumes for the four lowest order axial modes for both polarizations
in a resonator with R0 ≈ 17.5 µm, a curvature of ∆k = 0.012 and m = 180.

2.1.4 Calculating spectral and spatial properties

Finally, the mode volume and the free spectral range of the bottle microresonator are
calculated from the above findings.

Mode volume

The radial and axial intensity distribution of a bottle mode with quantum numbers q
and m allows one to directly calculate its mode volume Vm,q [Lou05]. For this purpose,
the intensity distribution is normalized to unity Im,q/I

max
m,q and is then integrated over

R3

Vm,q =

∫∫∫ Rrad

0
n2 (r)

Im,q (r, z)

Imax
m,q

rdrdφdz . (2.35)

The upper limit for the radial integral is set to Rrad. Due to the cylindrical symmetry, the
integration over the azimuthal coordinate yields

∫
|eimφ|2dφ = 2π. In order to facilitate

computation of the mode volume, the integral is split into a radial and an axial part

Vm,q ≈ 2π ·
∫ (

Zm,q(z)

Zmax
m,q

)2

dz ·
∫ Rrad

0
n2(r)

(
| ~E (r)|2

max(| ~E (r)|2)

)
rdr . (2.36)

Table 2.1 shows the calculated mode volumes for the lowest order axial modes in a
resonator with R0 = 17.522 µm, a curvature of ∆k = 0.012 and m = 180 for both
polarizations.

Mode spectrum

The axial and azimuthal free spectral range ∆νq = νm,q+1−νm,q and ∆νm = νm+1,q−νm,q
can be derived from the eigenvalues km,q of the wave function. In close approximation
they can be written as

∆νm =
c

2πn
(km+1,q − km,q) ≈

c

2πncrR0
(2.37)

and

∆νq ≈
c∆k

2πn
. (2.38)

For a bottle microresonator with R0 = 17.5 µm and ∆k = 0.012 µm−1 the above formula
yields an axial FSR of ∆νq = 391 GHz that is about a factor of five smaller than the
azimuthal FSR of ∆νm = 1.9 THz.
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2.2 Ultra-thin optical fibers

Figure 2.7: Schematic of an ultra-thin tapered optical fiber. The fiber is produced
from a commercial step-index glass fiber using a heat-and-pull technique. In the thick
fiber ends the mode is guided by total internal reflection induced by the weak refractive
index contrast between core and cladding ncore − nclad � 1. The mode in the ultra-
thin fiber waist is guided due to the refractive index contrast between the cladding and
the surrounding medium nclad − nvac ≈ 0.5. Shaping the transition zone for optimal
coupling between both modes is a prerequisite to obtain high transmission of optical
power through the fiber taper [Lov86,War07].

2.2 Ultra-thin optical fibers

Optical step-index glass fibers consist of a core with refractive index ncore and a cladding
with refractive index nclad. They are commonly made of silica. The core has a slightly
increased refractive index, typically due to doping with germanium. In these fibers the
light is guided by continuous total internal reflection at the core-cladding interface. Due
to the small refractive index contrast ncore−nclad � 1, such waveguides are classified as
“weakly guiding”. Using a heat-and-pull technique optical fibers can be tapered down to
sub-µm diameters [Bir92,Ton03,Bra04,Clo05]. In the sub–µm section, the total internal
reflection then occurs at the interface of the cladding and the surrounding medium nair

or nvac because the core diameter is now negligible with respect to the wavelength of
the guided light. Due to the high refractive index contrast, this case is referred to as
“strongly guiding”. A schematic of such a ultra-thin tapered fiber is shown in Fig. 2.7.
The evanescent field outside the ultra-thin fiber waist exponentially decays at a length
scale of a few hundred nanometers in the optical domain. Due to the strong confinement
of the mode, the intensity inside the fiber and near the fiber surface is much larger
than for a commercial step-index fiber carrying the same power. Therefore these fibers
find applications in various fields from nonlinear optics and ultra-sensitive absorption
spectroscopy to cold atom physics [Leo04, Sti09, Vet10]. In [Kni97] coupling of light
into whispering-gallery modes by frustrated internal reflection using an ultra-thin fiber
was demonstrated for the first time. Today, ultra-thin fiber couplers are routinely used
with WGM resonators. The wave numbers of both the fundamental fiber mode and
the resonator modes can be easily matched by variation of the waist diameter [Kni97].
For a properly chosen fiber diameter the coupling between the resonator mode and
the fundamental fiber mode is dominant and the coupler shows almost ideal single-
mode to single-mode coupling characteristics [Spi03]. Moreover, the scattering losses
introduced by the ultra-thin fiber are negligible. In the following, a brief description of
the mode propagation in step-index fibers and ultra-thin fiber tapers is given, followed
by a description of the fabrication process.
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

2.2.1 Theoretical description of light propagation in glass fibers

In [Yar91] the mode propagation in step-index circular waveguides is described. In this
general approach, a structure with cylindrical symmetry along z, radius a and refractive
index n1, embedded in a medium with refractive index n2 < n1 is assumed. As in the
analysis of bottle modes, first the Helmholtz equation is solved for Ez and Hz. The
other field components are then calculated using Maxwell’s equations. For a mode with
angular momentum along the fiber axis Lz = l~ (with integer l ∈ Z) and the so-called
propagation constant β, one chooses the following ansatz[

Ez
Hz

]
= Ψ(r) · exp (i (ωt− βz + lφ)) . (2.39)

The propagation constant is given by β = k0 · neff , with an effective refractive index
n1 > neff > n2 resulting from the localization of the mode in both media. The fields
have to fulfill the Helmholtz equation(

∂2
r +

1

r
∂r +

1

r2
∂2
φ + ∂2

z + k2

)
·
[
Ez
Hz

]
= 0 , (2.40)

which by exploiting the z and φ dependency from Eq. (2.39), again takes the form of a
Bessel differential equation(

∂2
r +

1

r
∂r +

(
k2 − β2 − l2

r2

))
Ψ(r) = 0 . (2.41)

In the case of a vanishing value of β, i.e., no propagation along the fiber axis, this
equation is identical to Eq. (2.8) describing a WGM mode. Since the sign of k2 − β2 is
opposite in both media two different types of solutions can be found. For r < a, where
h2 = n2

1k
2
0 − β2 > 0 one obtains[

Ez
Hz

]
∝
[
A
B

]
Jl (hr) · exp (i (ωt+ lφ− βz)) . (2.42)

In contrast, for r > a, where q2 = n2
2k

2
0 − β2 < 0 the equation is solved by the modified

Bessel functions of the second kind Kl[
Ez
Hz

]
∝
[
C
D

]
Kl (qr) · exp (i (ωt+ lφ− βz)) . (2.43)

Using Maxwell’s equations the missing field components are then calculated. The coeffi-
cients A,B,C,D are derived from the properties of the fields at the interface. Moreover,
in analogy to the resonance condition for bottle modes, a transcendental equation that
can be used to solve for the propagation constant β is obtained

l2

[(
1

qa

)2

+

(
1

ha

)2
]2(

β

k0

)2

=

(
J ′l (ha)

haJl (ha)
+

K ′l (qa)

qaKl (qa)

)
(
n2

1J
′
l (ha)

haJl (ha)
+
n2

2K
′
l (qa)

qaKl (qa)

)
.

(2.44)
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2.2 Ultra-thin optical fibers

Figure 2.8: The normalized propagation constant β/k0 = neff as a function of the
V -parameter for various solutions of Eq. (2.44). The fundamental HE11 mode exists
for all fiber radii. All other modes are only guided if the fiber radius is larger than a
certain cutoff radius.

For each value of l this equation yields a set of propagation constants βl,m with positive
integer m ∈ N − {0} from which the field distribution of each particular mode can be
calculated using the above equations.

In general, two classes of solutions exist. For l = 0, i.e., for modes with vanishing
angular momentum along the z-axis, the fields are azimuthally symmetric and the modes
are denoted by TE0m (transverse electric) and TM0m(transverse magnetic). In TE0m

modes Hr, Hz and Eφ are the only non-vanishing components, whereas TM0m modes
only consist of Er, Ez and Hφ. For l > 0 the solutions are much more complicated.
These “hybrid modes”, EHlm and HElm, have six nonzero field components. HE11 is
the fundamental mode. As will be shown in the following, this mode exhibits the largest
neff and is the only mode that is guided for arbitrarily small fiber radii a.

These general solutions apply to both, the strongly guiding ultra-thin fiber waist
as well as the weakly guiding step-index fiber. However, for the latter case, simpler
solutions can be found using n1 − n2 � 1. For this condition, matching of the fields at
the interface according to Eq. (2.17/2.18) is simplified and Eq. (2.44) becomes linear in
β. The number of solutions is reduced by a factor of two and the propagation constants
of EHl−1,m and HEl+1,m, that solve the linear equation, become degenerate in this
approximation. Superpositions of the EHl−1,m and HEl+1,m modes then lead to the
linearly polarized LPlm modes. The fundamental “weakly guided” LP01 mode is obtained
from the quasi-liner polarized fundamental HE11 for n1 − n2 � 1.

Figure 2.8 shows the normalized propagation constant neff = β/k0 as a function of the
V -parameter, V = k0a

√
n2

1 − n2
2, for various modes of the fiber waist. The first higher

order modes are the TE01 and the TM01 modes. For V = 2.405 the effective refractive
index neff reaches the value of the refractive index in the optically thinner medium n2

for both modes. As a result, these modes are no longer guided for radii with V ≤ 2.405.
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

The corresponding cutoff radius is given by

acutoff = λ0 ·
2.405

2π
√
n2

1 − n2
2

= 310 nm , for λ0 = 852 nm . (2.45)

This value is also referred to as the single mode cutoff radius because for smaller radii
only the fundamental HE11 is guided.

2.3 Fabrication of bottle microresonators and ultra-thin optical
fibers

I will now describe the fabrication of our ultra-thin optical fibers and bottle micro-
resonators from commercial glass fibers using a heat-and-pull technique. When not
explicitly stated, a step-index single mode fiber with an operation wavelength of 830 nm
(Newport, F-SF) is used. The company specifies a cladding diameter of 125 µm, a mode
field diameter of 5.6 µm and an absorption of 5 dB/km. Before processing the fiber,
the mechanical buffer is removed with a special tool and the fiber surface is cleaned
with acetone (Merck, Aceton UVASOL). The fiber pulling rig used for fabrication of
both structures is schematically shown in Fig. 2.9. A detailed description of the rig, as

Figure 2.9: Schematic of the so-called “fiber pulling rig”, used to fabricate ultra-thin
optical fibers and bottle microresonators. A commercial optical fiber is clamped to two
translation stages. One stage is mounted on top of the other. The fiber is then heated by
an oxygen-hydrogen flame with a width of 1 mm. The upper stage, called “stretcher”,
elongates the heated fiber, while the“translater” moves it relative to the flame (“flame-
brush technique”). Alternatively, a focused CO2-laser beam with a maximum power of
30 W (Synrad, Series 48-2) can be used as a heat source. The laser beam is focused by
a ZnSe lens (f = 48 mm) and only heats a 100 µm – 150 µm wide section of the fiber. A
microscope connected to a CMOS camera allows one to take micrographs of processed
fibers. Moreover, during the fabrication of ultra-thin optical fibers, the transmission of
a diode laser emitting at a wavelength of 850 nm through the fiber is monitored.
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2.3 Fabrication of bottle microresonators and ultra-thin optical fibers

well as of the fabrication of ultra-thin optical fibers and bottle microresonators is given
in [Poe06,War07].

2.3.1 Ultra-thin optical fibers

Using the flame as a heat source, ultra-thin optical fibers with diameters down to 100 nm
can be produced. In order to tailor the shape and slope of the transition zone and to
create a waist of arbitrary length, the effective flame-width is varied during the pulling
process by moving the fiber relative to the heat source. The movement of the translation
stages is controlled via a computer and calculated to yield the desired fiber shape. In this
work, I use fibers with a waist diameter of typically 500 nm. The typical transmission
after fabrication is larger than 97%.

2.3.2 Bottle microresonators

The fabrication process for bottle microresonators consists of two steps. Figure 2.10
shows the structure resulting from each step. First, a few millimeter-long section with
a homogeneous diameter corresponding to the desired resonator diameter is created by

Figure 2.10: Micrographs showing the fabrication of a typical bottle microresonator
in 2 steps, starting from a commercial 125–µm diameter optical step-index fiber (a).
(b) First, a section with a homogeneous diameter of 35 µm is created by simultaneously
heating and stretching the fiber. (c) Next, local heating by a focused CO2-laser beam
and simultaneous elongation creates two microtapers on the fiber waist separated by ap-
proximately 150 µm. The bulge between the microtapers forms a bottle microresonator
of radius D0 = 35 µm.
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2 Fundamental properties and fabrication of bottle resonators and ultra-thin optical fibers

Figure 2.11: Reconstructing the diameter profile of a bottle microresonator. (a) Micro-
graph of a typical bottle microresonator taken after fabrication. Since the customized
image analysis software uses only the information from the blue pixels all other pixels
are deactivated. A flashlight mounted in the fiber pulling rig is used for illumination.
(b) Reconstructed diameter profile with a parabolic fit (red) . Only the data in the
region z = ±35 mum have been considered for the fit. In the central zone where the
mode is guided the resonator profile shows close agreement with a parabola of the form
D(z) ≈ D0 · [1− 1/2 (∆k · z)2

]. The fit yields D0 = 35 µm and ∆k = 0.0135 µm−1.

the flame-brush technique described above. This step is accomplished using the hydro-
gen/oxygen flame or the focused CO2-laser beam. Next, a bulge is formed on the fiber
waist between two microtapers. Each of the microtapers is realized by locally heating
the fiber waist with the focussed CO2-laser beam, while slightly stretching it. The cen-
tral zone of the resulting bulge exhibits a parabolic variation of the fiber diameter and
forms the bottle microresonator. Typical resonator diameters lie in the D0 = 30–45 µm
range. Adjustment of the CO2-laser beam spot size, the microtaper separation, and the
elongation length allows one to precisely tailor the resonator. Typically, curvatures of
∆k = 0.009–0.020 µm−1 are used. In order to create bottle microresonators with curva-
tures of 0.012 or higher, a third fabrication step is applied. The central bulge is heated
to a temperature close to the melting point. The bulge then deforms due to surface
tension, increasing the resonator’s curvature.

Finally, the diameter profile is measured using the microscope in combination with a
customized image analysis software. A typical micrograph taken on a resonator after
fabrication and the inferred profile is shown in Fig. 2.11. The programm successively
scans the pixels of each line of the micrograph and automatically detects the fiber edges.
From this data the profile can be calculated after calibration of the microscope using a
test target with known dimensions. An analysis of the obtained accuracy shows that this
method allows one to determine the local diameter with a precision of ±2 µm and ∆k
with a precision of ±0.001 µm−1 and. The accuracy is mostly limited by the resolution
of the optical microscope. In [Poe06, War07] the profile of bottle microresonators is
reconstructed from the diffraction pattern obtained by shining a collimated laser beam
at the resonator. This method provides a radial resolution much better than 100 nm.
However, it is only applicable to resonators of curvatures around 0.004 µm−1.
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3 Coupling and Characterization of bottle
modes

Efficient coupling of propagating light fields into bottle modes requires phase matched
excitation. In order to match the propagation constants of the input light field and the
bottle mode, one has to make use of an auxiliary dielectric structure. For example, light
can be coupled into WGM modes using the evanescent field generated by frustrated in-
ternal reflection at the surface of a prism [Bra89] or a side-polished optical fiber [Dub95].
In this work, light is coupled into a bottle mode by overlapping its evanescent field with
that of an ultra-thin optical fiber [Kni97]. In doing so the ultra-thin fiber is not in direct
contact with the resonator surface but an air gap of spatial width x is maintained be-
tween the surface of both structures. This “coupling gap” is measured perpendicular to
the resonator axis. Changing x enables flexible adjustment of the strength of coupling
between the light field propagating in the ultra-thin fiber and the bottle mode. The
chapter starts with a description of the experimental setup used to couple light into
bottle modes. A general model of coupling light into a resonator with losses is given,
followed by an experimental investigation of the coupling junction between an ultra-thin
optical fiber and a bottle microresonator. It is shown that light can be coupled into and
out of bottle modes with high efficiency and minimal losses. Next, measurements on the
spatial and spectral properties of bottle modes are presented. Ultra-high quality factors
are observed using a cavity-ringdown technique and the optimal resonator parameters
for highest Q/V -ratios are discussed. Finally, tuning of an UHQ bottle mode to an
arbitrary, predetermined frequency is demonstrated. The combination of all these prop-
erties makes the bottle microresonator a promising candidate for CQED experiments as
discussed in chapter 5 on the basis of the findings presented here.

3.1 Experimental setup

In the following, the mechanical and optical components of the experimental setup used
to excite bottle modes are described. This setup is used throughout this work with only
marginal modifications, which will be pointed out in the respective sections.

3.1.1 Mechanical components

A. Fiber holder After fabrication, the fibers carrying the resonator and the ultra-thin
fiber waists are attached to specialized holders that stabilize the structures and that
allow one to apply mechanical strain along the fiber axis. A schematic of the fiber
holder design is shown in Fig. 3.1. The unprocessed regions on both sides of the fiber
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3 Coupling and Characterization of bottle modes

Figure 3.1: Schematic of the fiber holder design used to manipulate both, the ultra-
thin fibers and the resonator fiber. The picture illustrates the application of mechanical
strain to a bottle microresonator using an integrated piezo-electric bending actuator
controlled by a voltage Upiezo. This design enables the tuning of bottle modes and the
reduction of the vibration amplitude of the ultra-thin fiber waists.

taper are glued to the holder. One end of each fiber is attached to a bending piezo-
electric actuator (Physik Instrumente, PL112.11). A voltage Upiezo of 0 – 30 V can be
applied to the actuator, corresponding to a displacement of 0 – 80 µm. This setup allows
one to strain-tune the resonance frequency of the bottle modes. Moreover, increasing
the strain applied to the ultra-thin fibers reduces vibrations.

B. Positioning of the ultra-thin fibers A positioning system is used to align the ultra-
thin fibers at one of the caustics of a particular bottle mode in close proximity to the
resonator surface. The ultra-thin fibers are mounted perpendicularly to the resonator
axis. The positioning system consists of three orthogonally oriented translation stages
(Physik Instrumente, M-105). The actuator for each translation stage is chosen corre-
sponding to the positioning accuracy and translation range required for the correspond-
ing axis. A photograph of the positioning system is shown in Fig. 3.2. In the following,
the positioning requirements for each axis are discussed.

• Positioning along the resonator axis. For coupling to different axial bottle
modes the position of the ultra-thin fiber can be scanned along the resonator axis
via a servomotor-driven translator (Physik Instrumente, M-232). Since the spatial
modulation of the axial intensity distribution is on the order of a few micrometers,
its resolution of 100 nm is sufficient to precisely place the fiber waist at one of the
two caustics of a given mode for optimal coupling efficiency.

• Control of the coupling gap. The width x of the coupling gap between the
ultra-thin fiber and the resonator has to be in the range of the decay length of
the evanescent fields of both structures, i.e., a few hundred nanometers and is
controlled with a resolution of 10 nm using a piezo-electric actuator (Physik In-

30



3.1 Experimental setup

Figure 3.2: Mechanical system used for positioning an ultra-thin optical fiber (indi-
cated by the red line). Three orthogonally oriented stages driven by a piezo-electric
actuator, a servomotor and a micrometer screw are used to place the ultra-thin fiber at
one of the caustics of the bottle microresonator.

strumente, P-854.00). A voltage of 0 – 100 V corresponds to a travel range of
25 µm. A micrometer screw with a resolution of 1 µm and a travel range of 18
mm is used for coarse control of the coupling gap.

• Translation along the axis of the ultra-thin fiber. The third translation
stage allows one to displace the ultra-thin fiber along its axis. A micrometer screw
is accurate enough to place the 3–5 mm long fiber waist at the position of the
resonator.

C. Microscope An optical microscope is used to image the bottle microresonator. Ex-
cited bottle modes are clearly visible from light scattered due to surface inhomogeneities.
Even the position of an ultra-thin fibers can be clearly identified by light scattered from
the fiber waist. The microscope objective (Mitutoyo, M Plan APO 10x) has a numer-
ical aperture of 2.8 and a working distance of 33.5 mm. It offers a resolution of 1 µm
and its depth of focus is 3.5 µm. Using a lens tube the objective is connected to a
monochromatic CMOS camera with enhanced sensitivity in the near infrared (Allied
Vision Technologies, Marlin F-131B).

D. Setup in “add-drop configuration” The geometry of bottle modes allows one to
simultaneously access the resonator with two ultra-thin fibers, see Fig. 3.3, without the
spatial constraints inherent to equatorial WGMs typically employed in microspheres
and microtoroidal resonators. For bottle modes with axial quantum numbers q ≥ 1,
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3 Coupling and Characterization of bottle modes

Figure 3.3: Schematic of the coupling setup in add-drop configuration. Two ultra-thin
fiber couplers are placed at both caustics of the bottle microresonator. Depending on
its frequency, light propagating in the bus fiber is selectively coupled into the resonator
mode and exits the resonator through a second ultra-thin fiber, referred to as the drop
fiber. The optical powers at the output of the bus fiber P bus

out and the drop fiber P drop
out

are measured using two photodiodes. The red line indicates a possible path of a light
ray in the bottle microresonator.

both caustics are separated by at least 5 µm. This facilitates the use of the bottle
microresonator as a four-port device in so-called “add-drop configuration”. The fiber
that is used to couple light into the resonator is denominated as “bus fiber”. The
second fiber is called “drop fiber”. In this configuration, the bottle microresonator acts
as a filter which frequency selectively transfers light from the bus fiber to the drop
fiber. In communication technology such devices are called add-drop filters and are
used for de-/multiplexing optical signals [Chu99, Ibr02]. The resonator fiber is mounted
vertically (the resonator axis is rotated by 90◦ in the schematic in Fig. 3.3 for illustration
purposes). The bus and the drop fiber can be moved independently using two positioning
systems, as described above. Both ultra-thin fibers lie in the same plane perpendicular
to the resonator. The angle between them can be chosen arbitrarily, taking into account
the spatial constraints due to both positioning systems and the microscope objective.
Figure 3.4 shows a photograph of the complete mechanical setup.
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3.1 Experimental setup

Figure 3.4: Mechanical setup used for operating a bottle microresonator in add-drop
configuration. The bottle microresonator (indicated by the dashed blue line) is mounted
vertically. The bus (dashed green line) and the drop fiber (dashed red line) are mounted
in a plane perpendicular to the resonator axis. Each ultra-thin fiber can be manipulated
using a positioning system as shown in Fig. 3.2. The picture shows a situation in which
both ultra-thin fibers are moved away from the bottle microresonator.

3.1.2 Optical Components

The spatial and spectral properties of bottle modes are investigated by means of a dis-
tributed feedback (DFB) diode laser operating at a wavelength of around 850 nm with a
short-term (< 5 µs) linewidth of 400 kHz (Toptica Photonics, DL 100 DFB 1028). The
frequency of the “probe light” νprobe can be tuned over 1.1 THz by modulation of the
laser diode temperature TLD, while fine tuning over a range of 20 GHz is achieved by
modulating the input current (-3 dB modulation bandwidth of 10 kHz). A schematic
of the optical setup is shown in Fig. 3.5. The laser light field at the bus fiber waist
is matched to the respective bottle mode using a polarization control, consisting of a
quarter- and a half-wave plate. Photodiodes monitor the power transmitted through the
bus fiber and the power transferred to the drop fiber, denoted by P bus

out and P drop
out , re-

spectively. The signals of both photodiodes are recorded using a digital oscilloscope with
a sampling rate up to 4 Gs/s (Agilent Technologies, MS06104A), triggered by the same
arbitrary waveform generator (Agilent Technologies, 33250A) that is used to scan the
laser frequency by current modulation. In order to trace νprobe during a measurement, a
few percent of the probe light power is split off using a half-wave plate and a polarizing
beam splitter cube. This light is then sent through a reference Fabry-Pérot cavity. A
photodiode monitors the transmitted power. The cavity length of 1 m corresponds to a
mode spacing of 150 MHz at a wavelength of 850 nm, which thus provides a frequency
scale that allows one to calibrate νprobe. An acousto-optical modulator (Crystal Technol-
ogy, 3200-121), operated at a frequency of 200 MHz, designated AOM in the following,
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3 Coupling and Characterization of bottle modes

Figure 3.5: Schematic of the optical setup.

is used for fast control of the laser power coupled into the bus fiber Pin. By focusing the
laser into the AOM crystal, it is possible to switch off the probe beam within 35 ns.

3.2 Coupling between bottle modes and ultra-thin optical
fibers

In this section, a general model [Hau84] describing the transfer of optical energy between
an input light field and an optical resonator is applied to the system investigated in this
work. In the experimental part of this chapter the drop fiber is not used. Therefore, the
theoretical discussion is limited to the case of one ultra-thin fiber coupled to a bottle
mode. Nevertheless, the findings are easily transferred to a system operating in add-drop
configuration. This case will be considered in the next chapter.

For the bottle microresonator the coupling between the bottle mode and the ultra-
thin fiber can be tuned by adjusting the width x of the coupling gap. The influence
of the width of this gap on the coupling characteristics and the quality factor of the
bottle mode is discussed. It is shown that at the so-called “critical coupling point” a
complete transfer of the optical power to the resonator mode is possible. Next, the
deviations of the ultra-thin fiber coupler from its ideal behavior, in terms of single
mode coupling characteristics and scattering losses induced by the ultra-thin fiber, is
investigated. Moreover, the influence of the phenomenon of modal coupling is discussed.
In WGM resonators, Rayleigh scattering can cause energy transfer between counter-
propagating modes. In modes with ultra-high quality factors the transfer of energy
between both modes can be much faster than the decay of the intracavity intensity.
This situation is referred to as strong modal coupling. The coupling characteristics and
spectral mode properties of a WGM resonator is altered in the presence of strong modal
coupling.
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3.2 Coupling between bottle modes and ultra-thin optical fibers

Figure 3.6: (a) The coupling junction between the bus fiber and the bottle micro-
resonator can be described by a simple model using few parameters. The “mode am-
plitude” of the bottle microresonator is denoted by a. Whereas s and t are the “input
field amplitude” and the “output field amplitude” of the waveguide. Characteristic
time constants τbus and τ0 describe the transfer of optical energy between both struc-
tures and the intrinsic resonator energy loss. (b) In the experimental characterization
the power transmitted through the bus fiber P out

bus = |t|2 is measured for a given input
power Pin = |s|2 and varying width x of the coupling gap.

3.2.1 Modelling the ultra-thin fiber – resonator coupling junction

In [Hau84] a general formalism that describes the coupling of a resonator to an external
light field is presented. Using this model the coupling junction between a bottle mode
and the bus fiber is described using the parameters schematically indicated in Fig. 3.6.
It is assumed that a bottle mode with resonance frequency ν0 = ω0/2π is excited by a
light field of frequency ω propagating on the waist of the bus fiber. The optical energy W
stored in the mode of the bottle microresonator is obtained from its mode amplitude a
via W = |a|2 = aa∗. The transfer of optical energy between the fundamental HE11 mode
of the bus fiber waist and the bottle mode is described by a characteristic time constant
τbus. This parameter exhibits a strong dependence on the width x of the coupling gap
because it is determined by the spatial overlap between the evanescent fields of both
structures. Similarly, the dissipation of energy through intrinsic resonator losses like
absorption or Rayleigh scattering from bulk and surface inhomogeneities is described by
τ0. The optical power incident through the bus fiber is given by Pin = |s|2 = ss∗ using
the input field amplitude s. From the output field amplitude t, the power transmitted
through the bus fiber is obtained from Pout = |t|2 = tt∗. The bus fiber transmission is
defined as Pin/Pout = |t/s|2. According to [Hau84] the system is then described by the
following differential equation

d

dt
a = i(ω0 − ω)a− 1

2

(
τ−1

0 + τ−1
bus

)
a+ τ

−1/2
bus s . (3.1)
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3 Coupling and Characterization of bottle modes

Note that |s|2 represents optical power in units J/s whereas |a|2 is the optical energy
given in J. The first term describes the fact that power buildup in the resonator is only
possible at a discrete frequency ω0, at which the resonance condition is fulfilled. The
second term describes the decay of the mode amplitude due to intrinsic resonator losses
and the presence of the bus fiber. The third term describes the coupling to the driving
light field incident through the bus fiber. The exact expression describing how τbus

couples a and s in the last term of the above equation, is derived in [Hau84] by using
time reversibility. Next, the equation is solved in the absence of a driving light field

d

dt
W = a∗

d

dt
a+ a

d

dt
a∗ = −

(
τ−1

0 + τ−1
bus

)
W . (3.2)

In this case, the energy stored in the resonator mode decays exponentially due to intrinsic
losses and back-coupling to the bus fiber

W = W0 exp
(
−t
(
τ−1

0 + τ−1
bus

))
= W0 exp (−t/τload) . (3.3)

The overall time constant of the energy decay is then given by τ−1
load = τ−1

bus +τ−1
0 and the

loaded quality factor in the presence of the bus fiber is thus given by Qload = ω0τload. It
is possible to separate the different physical effects that contribute to the loaded quality
factor

Q−1
load = (ωτ0)−1 + (ωτbus)

−1 = Q−1
0 +Q−1

bus (3.4)

and thus to define an intrinsic quality factor Q0 which only includes the intrinsic res-
onator losses. The loss mechanism with the smallest time constant will dominate Qload.

The steady-state solution ( ddta = 0) of Eq. (3.1) is easily found to be

a =
s τ
−1/2
bus

i (ω − ω0) + 1/2
(
τ−1

0 + τ−1
bus

) . (3.5)

As shown in Fig. 3.6, the power transmitted through the bus fiber is used to characterize
the fiber coupler. Thus, in the following, an expression for the bus fiber transmission T =
|t/s|2 is derived. The output field amplitude t, is proportional to the cavity amplitude
and the input field amplitude

t = cs · s+ ca · a . (3.6)

According to Eq. (3.2) the power escaping through the bus fiber Pc in the absence of a
driving field (s = 0) and the power dissipated due to the intrinsic resonator losses P0

are given by

Pc = τ−1
bus |a|

2 and P0 = τ−1
0 |a|2 . (3.7)

From the first of the above equations, it is apparent that ca = τ
−1/2
bus . The second

equation can be used to formulate energy conservation in order to solve for cs

|s|2 − |t|2︸ ︷︷ ︸
power coupled to resonator

=
d

dt
|a|2︸ ︷︷ ︸

energy buildup rate

+ τ−1
0 |a|

2︸ ︷︷ ︸
P0

. (3.8)
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Equation (3.1) is used to eliminate d
dt |a|

2 from above formula

d

dt
|a|2 = −

(
τ−1

0 + τ−1
bus

)
|a|2 + τ

−1/2
bus (a∗s+ as∗) . (3.9)

Inserting Eq. (3.9) into Eq. (3.8) yields

|s|2 − |t|2 = −τ−1
bus |a|

2 + τ
−1/2
bus (a∗s+ as∗) . (3.10)

Using a = (t− css) τ1/2
bus , obtained from Eq. (3.6), yields cs = −1 and thus

t

s
= −1 + τ

−1/2
bus

a

s
. (3.11)

Inserting Eq. (3.5) finally yields

t

s
=

1/2
(
τ−1

bus − τ
−1
0

)
− i (ω − ω0)

1/2
(
τ−1

bus + τ−1
0

)
+ i (ω − ω0)

. (3.12)

The transmission T, written as a function of drive frequency and fiber–resonator gap, is
thus

T (ω, x) =1−

[
1−

(
τbus(x)−1 − τ−1

0

τbus(x)−1 + τ−1
0

)2
]
·

1/4
(
τbus(x)−1 + τ−1

0

)2
1/4

(
τbus(x)−1 + τ−1

0

)2
+ (ω − ω0)2

.

(3.13)

As a function of the frequency of the driving field the resonance appears as a Lorentzian-
shaped dip in the bus fiber transmission. Its FWHM (full width at half maximum) is
∆ω = τ−1

bus + τ−1
0 = τ−1

load, corresponding to a spectral linewidth of ∆ν = (2π · τload)−1.
This means that the loaded quality factor can also be inferred from the FWHM linewidth
of the resonance in the signal transmitted through the bus fiber

Qload = ω0 · τload =
ν0

∆ν
. (3.14)

The on-resonance transmission Tres(x) = T (ω = ω0, x) is given by

Tres(x) =

(
τbus(x)−1 − τ−1

0

τbus(x)−1 + τ−1
0

)2

. (3.15)

Progressively decreasing the gap between the bus fiber and the resonator reduces τbus.
This leads to a decrease in Qload, which is apparent in a broadening of the Lorentzian-
shaped resonance dip. Moreover, it is common to classify different coupling regimes
dependent on the ratio τ0/τbus [Cai00b].
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3 Coupling and Characterization of bottle modes

1. under-coupled regime: τbus > τ0. For a large width x of the coupling gap, for
which τbus � τ0, Tres is close to unity and increases with x. Only a fraction of
the power incident through the bus fiber is transferred to the resonator, where it
is dissipated.

2. critical coupling: τbus = τ0. For one particular gap size the coupling time
constant matches that of the intrinsic losses and the power incident through the bus
fiber is completely dissipated in the resonator. The “cavity leakage field” coupling
back from the resonator to the waveguide and the waveguide field transmitted past
the coupling junction have equal amplitudes but a phase shift of π. The vanishing
transmission can thus be understood as destructive interference of both fields with
equal amplitude. The corresponding quality factor is given by

Qcrit =
ω0τ0

2
=
Q0

2
. (3.16)

3. over-coupled regime: τbus < τ0. A further reduction of the gap results in a
recovery of the transmission. In this regime, the amplitude of the cavity leakage
field is larger than that of the transmitted waveguide field.

In order to complete this discussion, Eq. (3.5) is used to solve for the energy stored
inside the bottle mode on resonance Wres = |a (ω = ω0)|2 as a function of τ0/τbus. The
result is plotted in Fig. 3.7. The energy stored inside the bottle mode W = |a|2 (for an
arbitrary detuning ω − ω0 and an arbitrary value of τbus) can as well be obtained from
the spatial integral over the electric energy density E = n2ε0| ~E(~r)|2/2 [Yar91]

|a|2 = 1/2

∫
R3

n2ε0| ~E(~r)|2d~r =
ε0E

2
0

2

∫
R3

n2(~r)|~Ψ(~r)|2d~r . (3.17)

Figure 3.7: Energy stored inside a bottle mode on resonance Wres = |a (ω = ω0)|2 as
a function of τ0/τbus. A maximum value of Pin · τ0 is reached at critical coupling. This
value corresponds to the power incident through the bus fiber integrated during the
intrinsic energy storage time τ0.
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3.2 Coupling between bottle modes and ultra-thin optical fibers

Here, E0 is the peak value of the electric field strength and ~Ψ(~r) = ~Φ (r, z))Z (z) eimφ

is the wave function of the mode as calculated in section 2.1 with its maximum value
normalized to unity. The integral of above equation is identical to the definition of the
mode volume, yielding

|a|2 = ε0E
2
0Vm,q/2 . (3.18)

Using the relation between the electric field and the intensity I0 = n2cε0|E0|2/2 [Hec89,
Yar91] yields

I0 =
|a|2n2c

Vm,q
. (3.19)

The absolute intensity distribution of the bottle mode is given by I(~r) = I0|~Ψ(~r)|2.
The peak value Icrit

0 of the bottle mode’s intensity distribution on resonance under the
condition of critical coupling can now be expressed using the ratio of Q0/Vm,q. For this
purpose one inserts the value of the energy stored inside the bottle mode |a(ω = ω0)|2 =
Pinτ0 at critical coupling, obtained from Fig. 3.7 , into equation 3.19

Icrit
0 = Pin

n2λ0

2π

Q0

Vm,q
. (3.20)

3.2.2 Experimental characterization of the ultra-thin fiber coupler

The properties of the ultra-thin fiber coupler are experimentally investigated and com-
pared with the above theoretical results. The bus fiber is placed at the caustic of a
q = 2 bottle mode of a 36–µm diameter resonator while continuously scanning νprobe

over the mode’s resonance frequency. By carefully adjusting x, critical coupling is re-
alized as shown in Fig. 3.8. In a separate measurement taken on a q = 1 mode of a

Figure 3.8: Spectrum of a bottle mode with q = 2 in a 36–µm diameter resonator. A
Lorentzian fit (red line) shows close agreement with the measured line shape. From the
fit one obtains ∆ν = 8.5 MHz and Tres < 1% The measured line shape corresponds to
a quality factor of Qcrit = 4.1× 107.
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3 Coupling and Characterization of bottle modes

Figure 3.9: Transmission on resonance Tres for various values of the width x of the
coupling gap. Critical coupling is achieved for x = 680 nm. The data shows close
agreement with the theoretical prediction from the model. The measurement is taken
for a q = 1 mode in a resonator with a diameter of 35 µm. The red line shows a fit to
the data according to the model presented in previous section, assuming an exponential
variation of τbus(x).

35–µm diameter resonator, x is varied while νprobe is continuously swept over the reso-
nance. Figure 3.9 shows Tres for various values of x ranging from 1.3 µm to the point at
which the bus fiber touches the resonator due to vibrations. The latter situation can be
identified by the resulting sudden drop in the off-resonant transmission. For small gap
sizes, the deviation of the transmitted signal from unity becomes smaller than the noise
level of the photodiode. Thus Tres can not be extracted from this data. The gap size is
calculated from the voltage applied to the piezoelectric actuator using the manufacturers
specifications, ∆x = ∆Upiezo ·0.25 µm/V. For this bottle mode, the residual transmission
at critical coupling is 4%. In fact, different modes show different values of Tres at critical
coupling (usually smaller than 5%). A finite transmission at critical coupling can be
caused by a slight mismatch of the polarizations in the fiber waist and the resonator
mode. However, for modes with small ∆ν this effect seems more pronounced. This leads
to the conclusion that the finite laser linewidth contributes to this effect in a regime in
which ∆νprobe � ∆ν is no longer fulfilled.

For small gap sizes in the strongly over-coupled regime, Tres recovers to values close
to unity. From the measurement presented in Fig. 3.9 a maximum value of Tres = 0.96
is obtained in this regime. In the next section, a lower limit for the losses introduced by
the coupling junction between the fiber taper and the bottle microresonator is estimated
using this value.

3.2.3 Losses introduced by the ultra-thin fiber coupler

As shown above, it is possible to almost completely recover the transmission in the
over-coupled regime. The light detected at the photodiode in this case is completely
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3.2 Coupling between bottle modes and ultra-thin optical fibers

transferred to the resonator and back to the coupling fiber. This shows that it is possible
to enter a regime in which the coupling between the resonator mode and the fundamental
mode of the fiber coupler is much stronger than the intrinsic resonator losses. Moreover,
it reveals that the losses introduced by the fiber coupler itself are almost negligible.
Both facts are very important when optical energy has to be transferred between two
ultra-thin fiber waveguides in the filter and switching applications presented later.

Following the analysis in [Spi03], I now introduce the “coupling rate” κbus = τ−1
bus

which describes the coupling between the fundamental HE11 mode of the bus fiber and
the resonator mode, the “rate of coupling to intrinsic loss channels” κ0 = τ−1

0 and the
“rate of coupling to parasitic loss channels” κpara = τ−1

para. The physical origin of κpara

is, e.g., scattering at the resonator–fiber coupling junction. Another possible parasitic
loss mechanism is coupling between the resonator mode and higher order waveguide
modes, from which the light is lost in the tapered fiber transitions. For the experiments
presented in this work, the bus fiber only sustains the fundamental HE11 mode. Thus,
the only possible loss channel is the coupling to radiating modes by scattering at the
coupling junction.

In order to gain an intuitive understanding of the coupling rates introduced above,
I refer to Eq. (3.7). This equation shows that in the absence of a driving field, the
power coupled from the resonator mode to a particular loss channel, characterized by
a characteristic decay time τ , is proportional to τ−1. It is also useful to introduce the
coupling parameter K. It is defined by the ratio of coupling between the fundamental
bus fiber mode and the bottle mode to the coupling to all other loss channels

K(x) =
κbus(x)

κpara(x) + κ0
. (3.21)

The transmission on resonance through the bus fiber can be expressed by the coupling
parameter [Spi03]

Tres(x) =

(
1−K
1 +K

)2

. (3.22)

In the presence of parasitic losses, the critical coupling point (K = 1) is shifted towards
the resonator surface, where τ−1

bus = τ−1
0 + τ−1

para is fulfilled. By inverting Eq. (3.22) it is
possible to calculate the coupling parameter from Tres .

K =

(
1±
√
Tres

1∓
√
Tres

)
, (3.23)

where the upper signs apply for transmissions in the over-coupled regime, whereas the
lower signs apply for transmission values from the under-coupled regime. By defining

K−1 = K−1
I +K−1

P , (3.24)

the coupling parameter can be split into an intrinsic part KI = κbus/κ0 and a parasitic
part KP = κbus/κpara. The so-called “ideality” I quantifies the parasitic losses with
respect to the coupling rate κbus,

I(x) =
κbus(x)

κpara(x) + κbus(x)
=

1

1 +K−1
P

. (3.25)

41



3 Coupling and Characterization of bottle modes

Figure 3.10: Spatial variation of the coupling parameter calculated from Tres. The
solid line (red) is a fit of the form K0 · exp (−x/γ0) with γ0 = 130 nm. A maximum
value of K = 98 is obtained close to the resonator surface. The horizontal dashed line
indicates the critical coupling point for which K = 1.

For I = 1 the ultra-thin fiber coupler introduces no parasitic losses. Since the power
coupled into the resonator mode is determined by the overlap of the exponentially de-
caying evanescent fields outside the resonator and the coupling fiber waist, κbus(x) =
κ0
bus exp (−γ0x) is expected to decrease exponentially with x, whereas κ0 is constant.

This means that KI also varies exponentially with x. As long as the parasitic losses are
smaller than the intrinsic losses, K is dominated by KI (as obvious from Eq. (3.24)) and
log(K(x)) shows a linear behavior. In [Spi03] a deviation from this linear behavior was
observed due to coupling to one higher order waveguide mode. Figure 3.10 shows the
variation of K with the width x of the coupling gap, calculated from the measurement
presented in Fig. 3.9 using Eq. (3.23). As expected from the single mode properties of
the ultra-thin fiber coupler, log (K) shows no deviation from the linear behavior. In
the strongly over-coupled regime K reaches a maximum value of 98, consistent with an
ideality of I ≥ 0.99. It follows that the scattering losses introduced by the coupling
junction are negligible.

Finally, the overall loss rate of the light stored inside the resonator κpara+κ0 compared
to the coupling rate κbus is quantified using

Ebc(x) =
κbus(x)

κpara (x) + κ0 + κbus (x)
=

1

1 +K−1
(3.26)

In the absence of a field incident through the bus fiber this quantity can be intuitively
understood as the “back-coupling efficiency”, which describes the probability that a
photon stored in the resonator is coupled back into the fundamental mode of the bus
fiber rather than being dissipated by intrinsic or parasitic losses. Figure 3.11 shows a
plot of Ebc as a function of the width x of the coupling gap. These results show that
using a tapered fiber coupler, one can enter a regime in which the coupling between
the propagating light field and the bottle mode is much larger than the intrinsic (and
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Figure 3.11: Dependency of Ebc on the width x of the coupling gap. In the under-
coupled regime almost all of the light stored inside the mode is dissipated and Ebc

exhibits values close to zero. For critical coupling (indicated by the vertical dashed
line) a value of Ebc = 0.5 is reached. In the over-coupled regime, κbus becomes much
larger than κ0 and κpara and a maximum value of Ebc = 0.99 is measured. The red line
corresponds to the values obtained for K from the fit in Fig. 3.10.

parasitic) losses. This is a prerequisite for realizing highly efficient filter and switching
functionalities as will be demonstrated in the next chapter.

3.2.4 Modal coupling

In WGM resonators, sub-wavelength surface inhomogeneities and refractive index fluc-
tuations induce Rayleigh scattering. On the one hand, this phenomenon contributes to
the intrinsic resonator losses and, on the other hand, it introduces a coupling between
counter-propagating modes. Assuming that the light is initially coupled into a mode
with quantum numbers (q,m) and a mode amplitude acw, optical energy can be trans-
ferred to the counter-propagating mode with quantum numbers (q,m′ = −m) and mode
amplitude accw (The indices cw and ccw stand for clockwise and counter-clockwise sense
of rotation). Due to the cylindrical symmetry of the system, both modes are initially
degenerate and have the same resonance frequency ω0. They only differ in the sign of
the z component of the angular momentum m~. Mathematically, the transfer of optical
energy between counter-propagating modes is described by the time constant τscat. The
“mode-coupling parameter” Γ = (τ0/τscat) then describes the ratio of the optical power
transferred to the respective counter-propagating mode and the power that is dissipated
due to intrinsic losses. Modal coupling is only observable in the regime of strong cou-
pling of the counter-propagating modes Γ ≥ 1. In analogy to the coupled harmonic
oscillator model, the new eigenmodes are symmetric and antisymmetric superpositions
of the initially degenerate modes with new eigenfrequencies centered around ω0. Due
to the minute Rayleigh scattering in WGM resonators, this effect is only observable
for UHQ modes. A record value of Γ = 31 has been observed for an UHQ mode in a
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microsphere of 30 µm diameter [Kip02]. Besides the quality factor there are many pa-
rameters that affect the modal coupling rate. The probability that a photon, scattered
in an arbitrary direction, is transferred to the counter-propagating mode, is higher for
resonators with smaller diameters [Kip02]. The surface roughness is the prime source
of Rayleigh scattering and strongly depends on the fabrication process. Bottle micro-
resonators typically exhibit only small modal coupling parameters. In the experiments
described in the following, typically modes with Γ ≤ 2 are used. Therefore, the influence
of the modal coupling will be small. Nevertheless, it has to be considered in some points
throughout this work. Therefore, in the following, the altered mode properties and
coupling characteristics in the presence of modal coupling will be investigated accord-
ing to [Hau84, Gor00, Kip02, Kip04b]. The analysis is similar to that performed above.
Therefore, only the most important equations will be given. Equation (3.1) can be ex-
tended for both modes by adding a term for the inter-modal energy transfer [Kip02].
This yields two coupled differential equations for the mode amplitudes of the degenerate
modes

d

dt
acw = i(ω0 − ω)acw −

1

2

(
τ−1

0 + τ−1
bus

)
acw −

i

2
τ−1

scataccw + τ
−1/2
bus s , (3.27)

d

dt
accw = i(ω0 − ω)accw −

1

2

(
τ−1

0 + τ−1
bus

)
accw −

i

2
τ−1

scatacw . (3.28)

Since the scattering into the respective counter-propagating mode only results in a redis-
tribution of energy, the corresponding coefficient i/(2τscat) has to be purely imaginary.

Using the total lifetime of photons in the resonator τ =
(
τ−1

0 + τ−1
bus

)−1
the solutions in

the steady-state (da/dt = 0) are given by [Kip04b]

acw = κs
i (ω0 − ω) + 1

τ

− (ω0 − ω)2 − τ2
scat + 1

τ2
+ i (ω0 − ω) 1

τ

, (3.29)

accw = κs
−2iτscat

− (ω0 − ω)2 − τ2
scat + 1

τ2
+ i (ω0 − ω) 1

τ

. (3.30)

The mode amplitudes of the new symmetric and antisymmetric eigenmodes can then be
constructed in the following way

us =
1√
2

(acw + accw) , (3.31)

uas =
1√
2

(acw − accw) . (3.32)

Both eigenmodes are mutually orthogonal standing waves with an azimuthal intensity
distribution proportional to cos (mφ)2 and sin (mφ)2 respectively. The new eigenfre-
quencies are

ω = ω0 ±
1

2τscat
or ν = ν0 ±

1

4πτscat
. (3.33)

Ideally, the linewidth of both eigenmodes is still given by ∆ω = τ−1
bus + τ−1

0 = τ−1,
corresponding to a spectral linewidth of ∆ν = (2πτ)−1. However, experimentally one
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Figure 3.12: Modal coupling in a bottle microresonator. The measurement shows
a q = 1 mode in a bottle microresonator with a diameter of 35 µm in the under-
coupled regime. The fit (red line) is a superposition of two Lorentzian profiles with
∆ν of 1.4 MHz and 2.5 MHz and a spectral separation of 2.3 MHz. The observation
of distinct linewidth can be explained by the fact that both eigenmodes are mutually
orthogonal standing waves. For this reason they sense different parts of the resonator
surface and thus experience different losses.

often observes distinct linewidth for both modes. This observation can be understood
from the mutually orthogonal azimuthal intensity distribution of the symmetric and the
antisymmetric eigenmode. Both modes sense different parts of the resonator surface
and therefore experience different losses. Figure 3.12 shows the typical line shape in
the under-coupled regime in the presence of modal coupling measured for a 35–µm
diameter bottle microresonator. The counter-propagating mode couples to the ultra-
thin fiber as well. Therefore, besides the power transmitted through the fiber taper in
the direction of the incident wave |t|2, a certain amount of power |r|2 is reflected from
the coupling junction. The corresponding amplitudes are again given by the interference
of the cavity leakage field and the field incident through the ultra-thin fiber, resulting

in t = −s+ τ
−1/2
bus acw and r = τ

−1/2
bus accw. From these quantities, the transmission T and

reflectance R = |r/s|2 can be calculated. A more detailed analysis [Kip02,Kip04b] shows
that due to the additional losses caused by the coupling of the counter-propagating mode
to the waveguide, the critical coupling point is shifted. In the absence of modal coupling,
the critical coupling point is defined by K = 1 or τbus = τ0. However, this condition is
modified for strong modal coupling

Kcrit =
τ0

τbus
=
√

1 + Γ2 ⇒ τbus =
τ0√

1 + Γ2
. (3.34)

This means that, in order to achieve vanishing transmission, τbus has to be reduced by
moving the fiber waist closer to the resonator with respect to the situation in the absence
of modal coupling.

Knowledge of τcrit and τscat allows one to calculate the intrinsic quality factor [Kip04a]
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Q0 = ω0τ0 = ω0
2

τcrit

(
1

τ2
crit

− 1

τ2
scat

)−1

. (3.35)

In the absence of modal coupling one again obtains Q0 = 2ω0τcrit = 2Qcrit which is
consistent with the result from Eq. (3.16).

3.3 Spatial characterization of bottle modes

In order to characterize the spatial properties of bottle modes, an erbium-doped res-
onator with diameter D0 = (36 ± 2) µm and curvature ∆k = (0.015 ± 1) µm−1 is
fabricated from the 50–µm diameter core of a standard Er3+-doped multimode fiber
(CorActive, Er637). The cladding is removed by wet etching using hydrofluoric acid.
When resonantly exciting bottle modes at a wavelength around 850 nm, the erbium ions
emit fluorescence light at a wavelength around 540 nm in an two-photon up-conversion
process [Kli00, Cai00a]. This green fluorescence is then observed using the optical mi-
croscope. The pump light at a wavelength of 850 nm is blocked by a short-pass filter
with a cutoff wavelength of 600 nm (Thorlabs, FES0600). Depending on the position
of the bus fiber along the resonator axis and the laser frequency, different axial modes
can be individually excited, as shown in Fig. 3.13. Due to its limited depth of focus, the
microscope will only sharply image a certain part of the resonator along the direction
of imaging. Therefore, using an image-processing software (CombineZM), each picture
shown in the Fig. 3.13 has been generated from a stack of micrographs obtained by
varying the focal plane in order to increase the effective focal depth.

For a quantitative analysis, the spatial dependency of the power emitted by the fluores-
cent Er3+ ions along the resonator axis is extracted from the figures using custom image
analysis software. Figure 3.14 shows the extracted data together with the axial intensity
distribution of the pump field at a wavelength of 850 nm calculated from Eq. (2.33) for
the given resonator geometry. The maxima and minima of the spatial distribution of the
measured fluorescence intensity are expected to coincide with the nodes and antinodes of
the WGM that guides the pump light at a wavelength of 850 nm. However, the relation
between pump power guided in the mode and the power emitted via fluorescence is non-
linear for an up-conversion process. Therefore, the relative hight of the distinct intensity
maxima of the pump mode’s axial intensity distribution is not expected to be reproduced
by the data. Moreover, the nodes of the pump light’s axial intensity distribution are not
apparent from the measured fluorescence intensity. Possible explanations are the limited
resolution of the microscope as well as reflection of the light emitted by the Er3+ ions
at the resonator surface. For the calculation, I used the measured resonator radius R0

= 18µm as well as cr = 0.97 and m = 180, which are consistent with a high angular
momentum WGM mode for the given radius. The position of the nodes and antinodes
in the calculated intensity distribution compares best with the data for a curvature of
0.016 µm−1, which is consistent with the independently measured curvature.

The results confirm the axial standing wave structure of the bottle modes by quan-
titatively reproducing the position of the nodes and antinodes of the resonator mode
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as calculated in chapter 2.1.3. Moreover, the enhanced light intensity at the caustics is
qualitatively observed. In the following, the spectral characteristics of bottle modes are
investigated.

Figure 3.13: Experimental micrographs of the q = 1–4 and q = 11 bottle modes
visualized via the up-converted green fluorescence of dopant erbium ions in a 36–µm
diameter bottle microresonator.
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Figure 3.14: Fluorescence intensity along resonator axis (blue dots), extracted from
Fig. 3.13, plotted together with the calculated intensity distribution of the mode guiding
the pump light at a wavelength of 850 nm (red lines). Both intensities are normalized
to unity for better comparability.
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Identifying different axial modes in standard bottle microresonators. The measure-
ments described in the following are exclusively carried out on resonators fabricated from
standard silica fibers which are not doped with Er3+ ions. When aligning the bus fiber
with the resonator and scanning the laser frequency over a certain spectral range, excita-
tion of bottle modes is observed via the characteristic dips in the bus fiber transmission
and through light scattered by surface inhomogeneities of the bottle microresonator. By
moving the bus fiber along the resonator axis distinct axial modes can be excited. For
a given mode the axial quantum number is determined by again translating the bus
fiber along the resonator axis between both caustics of the mode, while recording the
spatial modulation of the coupling efficiency. For a constant width of the coupling gap
the coupling coefficient κbus = τ−1

bus then varies according to the modes axial intensity
distribution. A change in the coupling coefficient results in a change of the transmission
on resonance Tres, according to Eq. (3.15). By starting in the under-coupled regime for
|z| > zc the “coupling point” is shifted towards critical coupling at the modes intensity
maxima and Tres decreases. In contrast, at the intensity nodes the transmission almost
recovers to unity. The same method was used in [Lin10] to measure the polar intensity
distribution of microspheres and microtoroidal resonators.

3.4 Quality factor of bottle modes

As pointed out above, a primary task of a resonator is to enhance the intensity of a
light field. As apparent from Eq. (3.20), this enhancement is proportional to the ratio
of quality factor to mode volume Q/V . The mode volume is given by the geometry of
the resonator and is not directly accessible by measurements. It has to be calculated
as described in section 2.1.4. The following section deals with the measurement of the
quality factor of bottle modes and the optimization of Q/V .

Techniques for measuring the quality factor

The analysis in section 3.2.1 showed that the quality factor of a bottle mode can be
either measured in the time domain or in the frequency domain. As apparent from
Eq. (3.14), Qload can be inferred from the temporal decay of the intracavity energy τload

or from the FWHM linewidth ∆ν of the Lorentzian-shaped resonance dip. Due to the
reciprocal relation between both quantities, their combination enables the measurement
of the quality factor over a wide range of magnitudes. In the following, I describe the
experimental realization of these techniques.

Linewidth measurement. Since the quality factor is inversely proportional to ∆ν, mea-
suring the latter provides a good method to determine moderate to high quality factors.
For this purpose, νprobe is scanned over the resonance frequency of a critically coupled
bottle mode. Using a digital oscilloscope, Pout and the power transmitted through the
reference cavity are recorded. The latter is used to calibrate the frequency scan and to
plot Pout versus νprobe. Fitting a Lorentzian to the data then yields ∆νload. For accurate
measurements, some conditions have to be fulfilled:
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• The observed resonance in P bus
out is obtained by a convolution of the excitation lasers

spectral power density (Lorentzian with FWHM ∆νprobe) and the ideal Lorentzian-
shaped resonance given in Eq. (3.13). The linewidth of the resulting Lorentzian
is then given by ∆ν + ∆νprobe. Consequently, the condition ∆νprobe � ∆ν has to
be fulfilled. The short-term linewidth of the laser used here, is around ∆νprobe ≈
400 kHz [War07]. For a loaded quality factor of Qload = 108 the resulting error in
the measured linewidth will be 10%.

• The amplitude of acoustic fluctuations in the resonance frequency of the laser
resonator and the bottle mode have to be significantly smaller than ∆ν.

• The power Pin has to be much smaller than the threshold power of thermal bista-
bility1 which scales as Q−2. The detectors used here require a minimum input
signal of several tens of µW in order to obtain a suitable signal to noise ratio. This
sets a lower limit to the linewidth (typically 1 MHz) that can be measured without
distortion of the line shape.

Accordingly, these constraints make spectral measurements only reliable for quality fac-
tors smaller than Qload = 108.

Cavity-ringdown measurement. For precise measurements of ultra-high quality fac-
tors, the so-called cavity-ringdown technique is used. The decay of the energy stored in
the resonator in the absence of a driving field is described by Eq. (3.3). Inserting this
equation into Eq. (3.7) yields the temporal decay of Pout

Pout = W0 τ
−1
bus · exp (−t/τload) , (3.36)

where W0 is the energy stored in the resonator at t = 0. This means that by rapidly
switching off the probe beam after resonant excitation of a bottle mode, it is possible to
monitor the exponential decay of the intracavity energy through the output port of the
bus fiber. The probe beam can be switched off within 35 ns using an AOM. Therefore,
it is possible to measure Qload ≥ 108, corresponding to τload ≥ 45 ns. In order to
observe the cavity-ringdown, νprobe is slowly scanned over a resonance while monitoring
Pout. The oscilloscope is triggered to the falling slope of the photodiode signal, with the
trigger level set to a value corresponding only to a few percent residual transmission.
When the bottle mode under investigation is resonantly excited, the oscilloscope starts
the data acquisition. A special trigger output of the oscilloscope simultaneously disables
the radio frequency output of the AOM’s driver unit. Figure 3.15 shows the typical
behavior of Pout in such a measurement.

1 For a detailed description of thermal bistability see section 4.2.1
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Figure 3.15: Typical cavity-ringdown measurement taken on a 38–µm diameter bottle
microresonator. (a) and (b) show the signal from the photodiode measuring the power
transmitted through the bus fiber with its maximum value normalized to unity for
different time intervals. The frequency of the probe laser light νprobe is swept over a
resonance. For t = 0 ns the transmission reaches a value corresponding to the trigger
level of the oscilloscope, indicated by the dashed line in (a). The laser power is switched
off within 35 ns, see dashed lines in (b), via a TTL pulse sent by the oscilloscope to the
AOM driver. The time delay of 240 ns is due to the electronics of the oscilloscope and the
AOM driver and the velocity of the acoustic wave travelling in the AOM crystal. After
completely switching off the probe laser power, the transmission has partially recovered
and then exponentially decays to zero. At critical coupling, the waveguide field and the
“cavity leakage field” destructively interfere due to their identical amplitudes and the
phase-shift of π (see section 3.2.1). After completely switching off the input field, the
intracavity intensity can thus be monitored via the cavity leakage field.
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3.4.1 Prerequisites for ultra-high quality factors in WGM resonators

According to Eq. (3.4), the loaded quality factor is determined by the inevitable losses
due to the coupling to a waveguide and due to intrinsic losses. The latter are caused
by the resonator material, the resonator surface and imperfections of the total internal
reflections at a curved surface

Q−1
0 = Q−1

mat +Q−1
surface +Q−1

rad . (3.37)

In order to achieve highest quality factors, it is necessary to have a closer look at the
origin of these intrinsic losses.

Material-related losses

The material-related losses in silica stem from absorption and Rayleigh scattering. The
latter is induced by density fluctuation at a sub-micron scale. Since it is hard to dis-
tinguish these effects, the absorption coefficient α includes both effects. Silica has a
minimum in its absorption coefficient at a wavelength of 1550 nm, at which both loss
mechanisms contribute equally. For a shorter wavelength, the Rayleigh scattering is
dominant due to its (1/λ)4 dependence [Mes04]. For a wavelength larger than 1550
nm the losses are dominated by infrared absorption. Moreover, for a wavelength in the
1000 – 1500 nm region, some resonances due to absorption by OH contaminants are
observed. Using Lambert-Beer’s law, the corresponding quality factor is given by

Qmat =
2πn

αλ0
. (3.38)

This means that for resonators with Q > 108 the material absorption coefficient should
be α < 0.11 m−1. Low-OH fused silica has a absorption coefficient as low as α =
4.5 · 10−4 m−1 [Lin91]. For the fiber from which bottle microresonators are produced in
this work (Newport, F-SF) the absorption is specified with 5 dB/km, which corresponds
to α = 1.2 · 10−3 m−1. A bottle mode travels close to the surface of the resonator in a
region that is formed from the outer cladding of the initial fiber. For a mode guided in
a standard fiber, this part only weakly contributes to the absorption. Due to the lack of
detailed insight into the manufacturing process, it is not clear that the specified value is
also valid for the absorption in the outer cladding. In order to rule out the possibility
of a limitation of Q by contaminations in this part of the fiber, plastic-clad fibers with
a pure silica core of 200 µm diameter (CeramOptec, PWF200T) were used on a trial
basis for resonator fabrication. The attenuation is specified to be around 7 dB/km at
λ0 = 850 nm, a value almost identical to that of the F-SF fiber. The cladding is stripped
off and only the pure silica core is used to fabricate the resonator. No influence on the
quality factor is observed. As a conclusion, other loss mechanisms should be dominant
here.

Absorption-limited quality factors were observed in microspheres of very large diam-
eter. A loaded quality factor of 8 × 109 was measured for a sphere with a diameter of
750 µm at a wavelength of 633 nm [Gor96]. In a sphere with 680 µm diameter Vernooy
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et al. observed a quality factor of 7.2× 109 at λ0 = 850 nm [Ver98a]. In order to obtain
high Q/V , however, one has to fabricate resonators with a much smaller diameters. For
smaller resonator diameters, the electric field strength at the resonator surface becomes
more and more pronounced and surface-related loss mechanisms begin to dominate the
quality factor.

Surface-related losses

For resonator diameters below 50 µm, surface effects like scattering at surface inhomo-
geneities and water adsorption, as well as surface contamination by dust particles have
a significant effect on the overall intrinsic quality factor. In [Kip04a], a strong decrease
in the quality factor was observed for microtoroidal resonators fabricated with diam-
eters below 35 µm. In microspheres and microtoroidal resonators a very low surfaces
roughness is achieved due to the production process, in which the material forming the
resonator is first heated beyond the melting point and then solidifies forming a very
smooth surface. Atomic force microscopy reveals a rms surface roughness of 2 nm mea-
sured over a 20 nm square for a microsphere [Ver98a]. For bottle microresonators the
fabrication process is somewhat different. During the fabrication, the material is only
heated to a point at which its viscosity is low enough to allow deformation because the
cylindrical shape of the fiber would not be stable if the material was heated to the melt-
ing point. For some resonators a post-annealing step is added after fabrication. During
this step, the resonator temperature is increased to a temperature close to the melting
point, for which the resonator starts to deform and slightly increase in curvature due to
surface tension (also see section 2.3.2). However, no influence on the quality factor was
observed. In [Gor96] a rapid drop in the quality factor as well as a shift in resonance
frequency in the first 5 minutes after fabrication were measured. This process shows
the characteristic time scale of hydration, a chemical process in which OH groups are
chemically bound to a SiO2 surface [Ada77,Bur90]. A further degradation in the quality
factor within 20–30 min after production is referred to adsorption of atmospheric water
at the hydrated surface. In this work, no measurements of the quality factor for times
shorter than 30 min after production are performed. A degradation of the quality factor
at a time scale of some hours up to few days is observed when the resonator is kept under
ambient conditions. By setting up the experiment in a laminar flow box (Spetec, FBS24)
it is possible to maintain UHQs for many weeks. The class H14 filter of the laminar flow
box provides a filter efficiency of 99.995% for particles with diameters larger than 120
nm.

Radiative loss

The total internal reflection that occurs at a curved surface is not lossless. As already
pointed out in section 2.1.2, the form of the effective radial potential of the bottle
microresonator Veff gives rise to a propagating field for radii beyond Rrad, see Eq. (2.24).
The evanescent field leaking out of the resonator couples the WGM to propagating light
fields, causing radiative losses. A quantitative analysis [Dat92, Buc03] found that Qrad
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decreases approximately exponentially with the resonator diameter. For a wavelength
of 852 nm and a resonator diameter of 30 µm, Qrad is as high as 2 × 1021, and for a
resonator with 14 µm diameter, Qrad only decreases to 4× 108. Both values are several
orders of magnitude higher than what is experimentally observed for the corresponding
diameter because absorption and surface-related losses dominate the quality factor by
far.

3.4.2 State of the art – Q/V in microresonators

This section gives an overview of the values of Q/V achieved in different microresonators.
The highest values to date have been observed in microtoroidal resonators and in pho-
tonic crystal cavities. In most publications, the value of Q0/V is stated. In view of
possible applications the value of Qcrit/V or Qload/V is a more meaningful quantity and
will therefore be considered here, as far as possible. In WGM resonators it is often desir-
able to work under the condition of critical coupling which results in a maximum of the
intracavity intensity and vanishing bus fiber transmission. Photonic crystal cavities and
Fabry-Pérot microresonators lack the possibility of flexibly adjusting the coupling rate
and are mostly operated in the under-coupled regime. For these structures, the value
Qload/V will be considered, even though a precise comparison is difficult.

WGM resonators. One of the highest values ofQ/V to date have been realized in WGM
resonators. An intrinsic quality factor of Q0 = 4×108 was obtained by a cavity-ringdown
measurement in a microtoroidal resonator with a diameter of 29 µm at a wavelength
of λ = 1550 nm. For these cavity dimensions, the mode volume was calculated to be
V = 180 µm3 [Kip04a]. A typical value of the mode-coupling parameter for microtoroidal
resonators with these dimensions is Γ ≈ 30 [Kip04a]. The loaded quality factor at
critical coupling would thus reduce to Qcrit = 1.2 × 107. This results in an value of
Q0/V = 2.5× 106 (λ/n)−3 which reduces to Qcrit/V = 7.5× 104 (λ/n)−3 in the case of
critical coupling.

Photonic crystals. Photonic crystal cavities confine light to volumes near the funda-
mental limit on the order of λ3. To date, only moderate quality factors in the 105 –
106 range have been observed for such ultra-small mode volume devices [Wei06, Asa06,
Tan07]. A photonic crystal cavity with a mode volume as small as V = 1.7 (λ/n)3 and
a quality factor of Qload = 1.2 × 106 has been demonstrated in [Tan07]. A value of
Q0 = 1.3 × 106 for the intrinsic quality factor of the cavity was stated, indicating that
the measurement of Qload was taken in the strongly under-coupled regime. The cavity
design is based on a two-dimensional photonic crystal slab in which a line defect serves
as a waveguide. Implementation of the cavity is achieved by local width modulation of
the line defect. Above values correspond to a ratio of Qload/V = 7.1 × 105 (λ/n)−3,
which, to my knowledge, is the highest observed in a photonic crystal cavity to date.
The performance of photonic crystals in terms of the ratio Q/V is therefore comparable
with microtoroidal resonators.
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Fabry-Pérot microresonators. The mode volume of a Fabry-Pérot resonator depends
on the distance between the mirrors and can thus be significantly diminished by de-
creasing the latter. However, the quality factor roughly scales with this distance.
In [Hoo00] a Fabry-Pérot resonator with an optimized ratio of Q/V is used. The cav-
ity had a length of 10.9 µm and a beam waist of w0 = 14 µm. For a wavelength of
λ = 852 nm, V = 1680 µm3 and Q = 1.2 × 107 are achieved. This results in a ratio of
Q/V = 4400 (λ/n)−3 which is 1–2 orders of magnitude smaller than the values reported
for microtoroidal resonators and photonic crystal cavities.

Bottle microresonators. Previous experimental work has demonstrated that bottle
microresonators are readily fabricated from standard optical glass fibers [Kak01,War06,
Poe06, War07, Mur09]. In [Kak01, War06, Poe06, War07] the values for D0 ranged from
12 µm to 16 µm . Theoretically, these dimensions should be large enough to avoid
radiative losses and thus to reach Q factors in the 107–109 range [Buc03]. However, the
experimentally observed Q factors were smaller than 104 in [Kak01]. In [Poe06,War07]
the highest measured quality factor was around 4 × 105 in the under-coupled regime.
In [Mur09] a bottle microresonator with a diameter of 185 µm was fabricated from
a 125–µm diameter fiber using the arc discharge of a fusion splicer to heat the fiber.
The bulge forming the bottle microresonator is created by simultaneously heating and
compressing the fiber. Despite the large diameter, this resonator yielded quality factors
not exceeding 5 × 105. Due to their small quality factors along with moderate mode
volumes, the bottle microresonators realized prior to the work presented here were not
compatible with microtoroidal resonators and photonic crystal cavities in terms of Q/V .

3.4.3 Experimental results – UHQ in bottle microresonators

In this work, ultra-high quality factors are measured for bottle microresonators fabricated
using the technique presented in section 2.3.2 and using the setup described in section 3.1
in combination with the cavity-ringdown technique described above. The polarization
of the mode under investigation can be obtained by investigating its frequency tuning
characteristics. When applying a mechanical strain σ to the resonator two classes of
modes are observed that show different tuning speeds ∆ν/σ. The tuning characteristics
for modes of different polarizations is discussed in section 3.5.1. Figure 3.16 shows the
ringdown measurement taken on a TE polarized mode with an axial quantum number of
q = 1 in a resonator with a diameter of D0 = 35 µm and a curvature of ∆k = 0.012 µm−1.
The ringdown time constant τcrit = (82±0.45) ns directly yields Qcrit = (1.8±0.01)×108.
Using Eq. (3.35), one obtains Q0 = (3.6± 0.02)× 108 for the negligible modal splitting
observed for this mode. This ultra-high intrinsic quality factor is comparable to the
values reported for microtoroidal resonators of the same diameter [Kip04a]. At critical
coupling, the quality factor measured here is about one order of magnitude larger than
the corresponding value for microtoroidal resonators [Kip04a].

As described in section 3.4.1, the influence of different parameters on the quality factor,
e.g., material and fabrication technique, have been investigated. The only parameter
that significantly affects the quality factor is the resonator diameter. Figure 3.17 shows
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Figure 3.16: Cavity-ringdown measurement of the q = 1 bottle mode in a bottle
microresonator with a diameter of 35 µm and a curvature of ∆k = 0.012 µm−1. The
measurement was performed at critical coupling for a wavelength near 850 nm and trans-
verse electric (TE) polarization. The exponential fit (red line) according to Eq. (3.36)
yields τcrit = (82± 0.45) ns.

Qcrit for D0 ranging from 16 µm to 105 µm. For resonator diameters below 35µm the
quality factor decreases rapidly, whereas for larger diameters it is almost constant. The
highest value of Qcrit = 2.9 × 108 is measured for D0 = 105 µm. This observation is in
agreement with the results obtained with microtoroidal resonators [Kip04a].

Optimizing Q/V

Next, Qcrit/V is analyzed for the various resonator diameters used in Fig. 3.17. The
mode volume is calculated according to section 2.1.4 using the same parameters (∆k =
0.012 µm−1 and q = 1) as for the 35–µm diameter resonator on which the measurement
presented in Fig. 3.16 was carried out. The calculated mode volume as well as Qcrit/V
are shown in Fig. 3.18. According to this analysis optimal ratios of Qcrit/V are expected
for diameters in the range of 35–45 µm. For D0 < 35 µm, Qcrit/V is governed by the
rapid decrease of Qcrit. For larger diameters, the mode volume slowly increases, thus
leading to a decrease in Qcrit/V . The q = 1 mode in the D0 = 35 µm resonator for
which the UHQ was measured in Fig. 3.16 exhibits Qcrit/V of 3.0 × 104 (λ/n)−3. For
comparison, this is about one order of magnitude smaller than the value of Qload/V
obtained for the photonic crystal cavity in [Tan07] (which is measured in the strongly
under-coupled regime) and only about a factor of two smaller than the value for Qcrit/V
observed in microtoroidal resonators [Kip04a].
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Figure 3.17: Quality factor Qcrit as a function of resonator diameter D0. For resonator
diameters ranging from 30 – 105 µm, ultra-high quality factors are measured using a
cavity-ringdown technique. Due to the small errors on the order of 0.5%, no error
bars are shown. The quality factor of 4 × 105 for D0 = 16 µm is inferred from the
linewidth of the mode. The red line is a guide to the eye. Modes with varying axial
quantum numbers in resonators with different curvatures of the resonator profile were
used. However, for a given resonator diameter, a dependency of the quality factor on
the axial quantum number and on the curvature of the resonator profile is not observed.

Figure 3.18: (a) Calculated mode volumes for different resonator diameters. The
calculation assumed TE polarization, an axial quantum number of q = 1 and a curvature
of ∆k = 0.012 µm−1. (b) Qcrit/V obtained from the calculated mode volumes shown
in (a) and the radial dependency of Qcrit presented in Fig. 3.17.
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3.5 Tunability of bottle modes

In this section, the tunability of UHQ bottle modes is investigated. Tunability is a critical
issue in applications which require the coupling of light of an arbitrary, predetermined
frequency into a mode of the resonator. As an example, in CQED experiments the
resonance frequency of a UHQ bottle mode has to be matched to an atomic transition
frequency.

3.5.1 Fundamentals of tuning the resonance frequency of bottle modes

By changing the optical path length of the resonator, it is possible to shift the resonance
frequency ν0 by ∆ν0. The optical path length depends on the resonator geometry and
the refractive index. In the following analysis, the curvature of the resonator is neglected
and it is treated as a cylinder of Radius R0. The frequency shift that corresponds to a
change ∆n in the refractive index and a change ∆R in the resonator radius is then given
by [Lon03]

∆ν0

ν0
≈ −∆R

R0
− ∆n

n
. (3.39)

There are two principle methods of tuning the resonance frequency. They are discussed
in the following.

Thermo-optic tuning. Due to the thermo-optical effect, the refractive index of the
resonator material depends on its temperature. Silica exhibits a relatively small thermo-
optic coefficient of ∂n/∂T ≈ 1.3 · 10−5K−1 [Lon03]. Changing the temperature of the
resonator material by 1 K will thus only change the resonance frequency by ∆ν0/ν0 =
−9× 10−6, i.e, by 9 ppm of the optical frequency.

Elasto-optic tuning. Applying mechanical strain to the resonator fiber changes the
resonator radius as well as the refractive index. The Poisson coefficient σ describes the
relation between lateral contraction ∆R/R0 and relative length change ∆L/L of the
resonator fiber

∆R

R0
= −σ · ∆L

L
, (3.40)

where the Poisson coefficient for silica is σSiO2= 0.17 [Bor68].

The refractive index change experienced by a glass fiber due to a force along its axis is
calculated using the elasto-optic tensor. For TM modes, the light field exhibits parallel
polarization with respect to the strain applied. Using the components p11= 0.126 and
p12= 0.26 of the elasto-optic tensor [Bor68] the relative change in refractive index is
given by

∆n

n
= −n

2

2
(p11 − 2σp12)

∆L

L
= −0.04 · ∆L

L
. (3.41)

For TE polarization, one obtains, in the same way, ∆n/n = −0, 14 · (∆L/L) [Lon03].
The overall relative change in resonance frequency for both polarizations is then given
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by

TM:
∆ν0

ν0
= 0.21 · ∆L

L
,

TE:
∆ν0

ν0
= 0.31 · ∆L

L
.

(3.42)

Strain tuning is only possible within the elastic regime of silica. Hooke’s law relates the
relative length change to the applied strain ε, via the modulus of elasticity,

ε = ESi02 ·
∆L

L
. (3.43)

For silica the latter takes a value of ESi02 = 72 GPa. The strain is calculated by the
force applied by the piezo-electric actuator divided by the cross-section of the resonator
structure. Silica’s typical damage threshold of 3 GPa [Gla91], sets the maximum appli-
cable relative length change to ∆L/L = 0.042 and therefore should in principle allow
one to tune the resonance frequency by 1.3% of the optical frequency, i.e., 4.5 THz.

3.5.2 State of the art – tuning WGM resonators

While equatorial WGMs, like microtoroidal resonators and microspheres, have the ad-
vantage of having small mode volumes, they also exhibit a large frequency spacing be-
tween consecutive modes. In small WGM resonators, the azimuthal free spectral range
is typically very large. According to section 2.1.4, changing m by one for a 35–µm diam-
eter WGM changes its resonance frequency by ∆νm ≈ 1.9 THz, i.e., about one percent
of the optical frequency. Due to its monolithic design, tuning a WGM microresonator
over such a large range is a critical issue. Electrical thermo-optic tuning of equatorial
WGMs in a 75–µm diameter microtoroidal resonator over more than 300 GHz has been
demonstrated [Arm04] for a wavelength of 1550 nm. This corresponds to 35% of the
azimuthal FSR and to 0.15% of the optical frequency. Using a strain tuning technique,
tuning over 400 GHz for λ = 800 nm has been demonstrated for a 80–µm diameter
microsphere, limited by the mechanical damage threshold of the resonator [Kli01]. This
corresponds to 50% of the azimuthal FSR and 0.12% of the optical frequency. Recently,
strain-tuning of a so-called “microbubble resonator” with a diameter of 200 µm over 690
GHz has been demonstrated [Sum10b]. For a wavelength of 1550 nm, this corresponds
to 2.2 azimuthal FSRs. Microbubble resonators consist of a bulge on a microcapillary
created from a silica tube [Sum10a]. Due to the small wall thickness in the section
forming the resonator, which is on the order of 1–2 µm, mechanical strain can be ap-
plied very efficiently to this structure, leading to the impressive frequency shift of 0.35%
of the optical frequency. Unfortunately, the azimuthal FSR is only smaller than the
demonstrated tuning range for microbubble resonator of diameters larger than 90 µm.
Moreover, the highest quality factor achieved in these structures is 1.5× 106. Therefore,
these resonators are not suitable for applications for which high Q/V -ratios are required.

In summary, fully tunability of whispering-gallery modes combining ultra-high quality
factors and small mode volumes has not been achieved prior to the work presented here.
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3 Coupling and Characterization of bottle modes

Figure 3.19: Tuning the bottle microresonator. Using a piezo-electric actuator to
elastically elongate a bottle microresonator of 35 µm diameter and ∆k = 0.012 µm−1,
the TE polarized q = 1 and q = 2 bottle modes are strain-tuned. The tuning range of
700 GHz of the q = 1 mode exceeds the observed axial FSR of ∆νq = 425± 8 GHz.

3.5.3 Experimental results – tuning an UHQ bottle microresonator

The bottle microresonator offers a solution for the problem described above. According
to Eq. (2.38), its axial FSR only depends on the curvature of the resonator profile and
can thus be made much smaller than its azimuthal FSR without significantly affecting
the mode volume. It is therefore sufficient to tune the bottle microresonator over one
axial FSR in order to ensure that an arbitrary predetermined frequency will coincide
with the resonance frequency of an appropriately chosen bottle mode. However, in order
to keep the mode volume small it is desirable to work with a low axial quantum number
q, thereby minimizing the separation between the two caustics. In the following, tuning
of a bottle mode over one axial FSR is presented in a 35–µm diameter resonator with a
curvature of ∆k = 0.012 µm−1. Based on this measurement, I then introduce a tuning
scheme that enables tuning of the bottle microresonator to any arbitrary frequency by
bridging the azimuthal FSR using a set of lowest order axial bottle modes.

Strain tuning of a bottle mode over one axial FSR is demonstrated using the setup
described in section 3.1. The measurement, presented in Fig. 3.19, is carried out with the
same q = 1 mode which yielded the UHQ in Fig. 3.16. The resonance frequencies of the
TE polarized q = 1 and q = 2 bottle modes are measured for varying mechanical strain.
For this purpose, the bus fiber transmission in a small spectral region is continuously
monitored by rapidly scanning the laser current. The spectral positions of both modes
are then identified by manually scanning the laser over the whole tuning range by means
of the laser diode temperature TLD. Next, Upiezo is stepwise increased by 0.5 V. For
each voltage increment, the temperature change of the laser diode that is necessary to
compensate for the induced shift in the resonance frequency is measured. The reference
cavity is used to calibrate νprobe as a function of TLD. The results are shown in Fig. 3.19.
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3.6 Conclusion

The observed tuning range of 700 GHz is 1.6 times larger than the measured axial FSR
of ∆νq = (425 ± 8) GHz. This corresponds to a frequency shift of 0.2% of the optical
frequency. The experimentally measured axial FSR of ∆νq = (425± 8) GHz is in close
agreement with the theoretical value of (391 ± 33) GHz, calculated from the measured
curvature of the resonator profile using Eq. (2.38). The maximum strain applied to the
resonator in this measurement, limited by the travel range of the bending actuator, can
be inferred from the frequency shift using Eq. (3.42) and Hooke’s law and is about 15%
of the typical damage threshold of silica. Figure 3.20 schematically illustrates tuning of
the examined UHQ bottle microresonator to an arbitrary frequency using only the four
lowest order axial bottle modes.

3.6 Conclusion

To summarize, in this chapter the first experimental realization of bottle microresonators
exhibiting ultra-high quality factors is presented. In conjunction with the mode volumes
calculated in section 2.1.4, this results in ratios of Qcrit/V that align with the highest
values reported from other types of microresonators. Tuning of bottle modes which com-
bine ultra-high quality factors and small mode volumes to an arbitrary, predetermined
frequency has been demonstrated for the first time in monolithic microresonators. More-
over, the coupling characteristics between a bottle microresonator and an ultra-thin fiber
coupler have been investigated. The nearly lossless coupling mechanism enables highly
efficient light transfer into and out of the bottle modes. By changing the gap between
the ultra-thin fiber and the bottle microresonator, the coupling rate can be varied with
high flexibility. At the critical coupling point, the light field launched into the ultra-thin
fiber is completely transferred to the bottle mode. Moreover, by further decreasing the
coupling gap, it is possible to enter a regime in which the coupling between the ultra-
thin fiber and the bottle mode dominates the intrinsic losses of the mode. This is a
prerequisite for realizing highly efficient filter functionality, as will be demonstrated in
the following chapter.
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Figure 3.20: Bottle microresonator tuning scheme for the resonator with D0 = 35 µm
and ∆k = 0.012 µm−1, for which tuning over one axial FSR was demonstrated in
Fig. 3.19. For this resonator dimensions ∆νm = 1.9 THz is calculated to be five times
larger than the measured value of ∆νq = 425 GHz. (a) Assuming the measured tuning
range (indicated by the green shaded areas) of 700 GHz, the q = 1 – 4 bottle modes
allow one to fully bridge the azimuthal FSR of the bottle microresonator. This makes
any arbitrary frequency accessible by strain tuning the nearest mode with q = 1 – 4
and m properly chosen. (b) Calculated axial intensity distribution of the TE polarized
q = 1 – 4 bottle modes for the resonator dimensions given above. These modes exhibit
the smallest possible separation between the two caustics and thus yield the smallest
mode volumes ranging from 1180 µm3 to 1470 µm3 for a wavelength of λ = 850 nm.
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4 From high efficiency add-drop filters to
all-optical switches

This chapter starts with an experimental examination of the performance of the bottle
microresonator in add-drop configuration. Next, the nonlinear properties of the bottle
resonator in this configuration are characterized. Due to the third-order susceptibility,
χ(3), of silica, the refractive index of the resonator material depends on the intracavity
intensity I via the Kerr effect n = n+n2× I, where n2 ∝ χ(3) is the nonlinear refractive
index. A variation of the intracavity intensity then modifies the optical path length of
the cavity and thus changes the transmission properties of the microresonator. This
effect is often used in the field of “all-optical switching”, i.e., the control or redirection
of the flow of light using a second light field. For a given input power, the nonlinear
shift of the resonance frequency in units of the resonator linewidth is proportional to
n2Q

2/V . Therefore the power at which switching occurs is proportional to V/(n2Q
2).

The advantageous combination of a moderate value of n2 and a very low absorption
coefficient in silica allows one to observe all-optical switching at record-low powers in
bottle microresonators. Finally, it is shown that the same set-up can also be operated
for all-optical routing and as an optical memory.

4.1 High efficiency narrow-band add-drop filter

In this section, the linear optical properties of the bottle microresonator coupled to two
ultra-thin fibers, as shown in Fig. 3.3, are examined.

4.1.1 Model – a bottle microresonators coupled to two ultra-thin optical
fibers

In order to describe the power transfer between the bus and the drop fiber, the model of
the resonator–fiber coupling junction, presented in chapter 3.2.1 is extended according
to Fig. 4.1. The system is then described by the following equation [Hau84]

d

dt
a = i (ω0 − ω) a− 1

2

(
τ−1

0 + τ−1
bus + τ−1

drop

)
a+ τ

−1/2
bus s . (4.1)

In this case, the loaded quality factor is given by

Q−1
load = Q−1

0 +Q−1
bus +Q−1

drop = 1/ (ω0τ0) + 1/ (ω0τbus) + 1/ (ω0τdrop) . (4.2)

The power optical power at the output of the drop fiber P drop
out = |e|2 is given by the

square of the output field amplitude. In analogy to the previous analysis, one derives
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4 From high efficiency add-drop filters to all-optical switches

Figure 4.1: A bottle microresonator, coupled to two ultra-thin fibers. The model
described in section 3.2.1 is extended by introducing two parameters accounting for the
influence of the drop fiber. Its “output field amplitude” is denoted by e and the time
constant of the energy transfer between the resonator mode and the drop fiber is τdrop.

the “normalized output amplitudes” at both fiber outputs as

e

s
= τ

−1/2
drop

a

s
=

(τdrop · τbus)
−1/2

1/2
(
τ−1

bus + τ−1
0 + τ−1

drop

)
+ i (ω − ω0)

(4.3)

and

t

s
=

1/2
(
τ−1

bus − τ
−1
0 − τ−1

drop

)
− i (ω − ω0)

1/2
(
τ−1

bus + τ−1
0 + τ−1

drop

)
+ i (ω − ω0)

. (4.4)

The transmitted and the dropped powers normalized to the input intensity are calculated
from T = |t/s|2 and D = P drop

out /Pin = |e/s|2. Both quantities are related via the ratio
of the intrinsic loss rate to the drop fiber coupling rate [Rok04]

(1 +Qdrop/Q0)D = 1− T , (4.5)

meaning that in order to achieve efficient power transfer between the fibers, the light has
to be coupled into the drop fiber much faster than it is dissipated inside the resonator.
The highest transfer efficiency between the bus and the drop fiber is obtained for critical
coupling, defined by

τ−1
bus = τ−1

0 + τ−1
drop , (4.6)

resulting in a vanishing value for T . Inserting Eq. (4.6) and Eq. (4.2) into Eq. (4.5),
the transfer efficiency for critical coupling E = D (T = 0) between both ultra-thin fiber
tapers is then given by

E = 1− 2Qload/Q0 . (4.7)

This means that, in order to achieve high transfer efficiencies, one has to significantly
reduce Qload which in turn leads to a decrease in the frequency selectivity of the add-drop
filter. More details are given in section 4.1.3.
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4.1 High efficiency narrow-band add-drop filter

The experiments presented in the following are carried out under the condition of
critical coupling. Therefore, the value Qload stated for a bottle microresonator will
always refer to the overall quality factor at critical coupling. This means that Qload and
Qcrit, as well as ∆νload and ∆νcrit are equivalent. Nevertheless, I will use Qload and ∆νload

for the bottle microresonator in add-drop configuration whenever I want to emphasize
that the corresponding values at critical coupling are a function of the variable coupling
to the drop fiber.

4.1.2 State of the art – UHQ add-drop filters

In the past, microresonator-based add-drop filters have been extensively studied [Vah04,
Ill06, Hee08]. However, most of these devices featured low to moderately high Q res-
onators and their Q2/V values were comparatively low. Consequently, high optical pow-
ers are required for potential non-linear applications. Moreover, high transfer efficiencies
in resonator-based add-drop filters can only be obtained if the resonator-waveguide cou-
pling rate dominates the resonator loss rate. This implies a further reduction of the
Q factor of the loaded resonator. To my knowledge, the only add-drop filters based on
ultra-high quality factor microresonators so far have been realized with WGMs. Transfer
efficiencies of 93% at a loaded quality factor of 3.3 × 106 have been demonstrated us-
ing a 65–µm diameter microtoroidal resonator coupled to two ultra-thin fibers [Rok04].
The intrinsic quality factor of this resonator was Q0 = 1× 108 for a wavelength around
1550 nm.

4.1.3 Experimental realization

In order to realize the add-drop configuration, the waists of two ultra-thin fibers with
a diameter of 500 nm are placed at the axial position of the caustics of one particular
resonator mode. The mechanical and optical setup is identical to the one described in
section 3.1. Except when stated otherwise, the measurements described in the following
are performed under the condition of critical coupling in order to obtain the highest
possible power transfer on resonance. First, the bus fiber–resonator gap is adjusted in
the absence of the drop fiber. By reducing the gap between the drop fiber and the
resonator, light can be coupled into the second waveguide and is monitored by another
photodiode, see Fig. 4.2. According to Eq. (4.6) the bus fiber gap has to be adjusted
simultaneously in order to maintain critical coupling. In order to verify the relation in
Eq. (4.7), the frequency of the probe laser is scanned over a bottle mode with an axial
quantum number q = 2 and an intrinsic quality factor of Q0 = 1.8 × 108 in a 36–µm
diameter resonator. The powers at both output ports are monitored. The performance
of the resonator is characterized independently of the losses in the transitions of the
ultra-thin fibers. The measured powers are corrected for these losses and one obtains the
powers at the waist of the bus fiber P bus

out and the drop fiber P drop
out , immediately following

the resonator-fiber coupling junction. The input power Pin is also corrected in order to
obtain its value at the fiber waist just before the coupling junction. In the following, this
correction is carried out whenever solely the resonator performance is to be characterized.
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4 From high efficiency add-drop filters to all-optical switches

Figure 4.2: Resonant power transfer between two ultra-thin optical fibers coupled to
the evanescent field of a bottle mode with ultra-high intrinsic quality factor. The plot
shows the powers at the waists of the bus fiber P bus

out (purple dots) and the drop fiber

P drop
out (blue dots) while the frequency of the probe laser is swept over the resonance. A

loaded quality factor of Qload = 7.2 × 106 and a power transfer efficiency E = 0.93 is
inferred by fitting a Lorentzian to both signals (yellow curves).

In contrast, when demonstrating applications like all-optical switching or routing, the
power launched into the input of the bus fiber and the powers at the outputs of the bus
and the drop fiber are quoted. In subsequent measurements, the gap between the drop
fiber and the resonator is reduced while the bus fiber gap is simultaneously adjusted
to maintain the condition of critical coupling. Figure 4.2 shows one such measurement
for a particular gap size. From a Lorentzian fit, a linewidth of ∆νload = 49 MHz is
determined, corresponding to a loaded quality factor of Qload = 7.2×106, and a transfer
efficiency of E = 93% between the fiber waists. The overall transfer efficiency Etot,
including the losses at the taper transitions to the ultrathin fiber waists, remains as high
as Etot = 90%. Figure 4.3 shows the power transfer efficiency between the fiber waists
versus Qload as inferred from above measurements. Fitting Eq. (4.7) to this data yields
an intrinsic quality factor of Q0 = 1.8× 108. In summary, the performance of the device
in terms of combining high efficiency filter functionality, high loaded quality factor and
single mode fiber operation lines up with the best to date [Rok04].
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4.2 Optical Kerr bistability at microwatt power levels

Figure 4.3: Power transfer efficiency between both fiber waists at the critical coupling
point as a function of Qload. The data shows close agreement with the theoretical
linear prediction, however, for high loaded quality factors, a slight modal splitting is
observed, leading to an underestimation of the quality factor. Excluding the three
rightmost data points, a fit of Eq. (4.7) (blue line) yields an intrinsic quality factor of
Q0 = 1.8×108. The red arrow indicates the data point extracted from the measurement
shown in Fig. 4.2.

4.2 Optical Kerr bistability at microwatt power levels

In all measurements presented so far, the bottle microresonator was operated in the linear
regime. Heating of the mode volume caused by absorption, or a third order susceptibility
χ(3) of the resonator material introduce a nonlinear behavior, where ν0 depends on the
intracavity intensity via the thermo-optic or the Kerr effect. Nonlinear resonators show
hysteretic, bistable behavior in the frequency dependency of the intracavity power or in
the power at the resonator outputs as a function of the input power for a fixed frequency.
At time scales larger than the thermal relaxation time of a mode, the nonlinear Kerr
frequency shift is usually several orders of magnitude weaker than the one caused by the
thermo-optic effect. Due to the sub-picosecond response time of the Kerr effect [Liu05],
this situation can be inverted for fast modulations of the intracavity intensity [Rok05].

In the following section, bistability in bottle microresonators is experimentally inves-
tigated and then employed for all-optical switching applications. First, the principle of
all-optical switching is explained and it is shown that resonator-based all-optical switch-
ing schemes offer the possibility of drastically lowering the switching power. The relevant
material properties are discussed and material-related figures of merit are introduced.
By slightly adapting the model from section 4.1, the bistable behavior in bottle micro-
resonators caused by the Kerr effect can be described. The origin of the bistable behavior
is investigated and the time scales on which the bistability is exclusively due to the Kerr
effect is identified. In this regime, the obtained results are in close agreement with the
findings from the model. Moreover, the performance of the bottle microresonator as an
all-optical switch in terms of switching threshold and switching speed is experimentally
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4 From high efficiency add-drop filters to all-optical switches

investigated. The measured switching powers of 50 µW are, to the best of my knowledge,
the lowest values ever achieved for all-optical switching via the Kerr effect. However,
the bandwidth of this ultra-low power all optical switch is limited to 5 MHz. Higher
switching speeds can only be achieved by significantly increasing the switching thresh-
old. Coating the bottle microresonator with a nonlinear polymer might offer a solution
to this problem. Such a system is a promising candidate for the realization of all-optical
switches with a bandwidth of up to several GHz and at the same time only moderate
power requirements in the sub-Watt range.

4.2.1 Fundamentals – thermal and Kerr nonlinearity in microresonators

Thermal bistability

Bistability due to the thermo-optic effect is well known in WGM resonators [Bra89,
Ill92]. This thermal bistability is readily observed when slowly scanning νprobe over the
resonance frequency of a mode. If the intracavity intensity exceeds a certain threshold,
the line shape T (νprobe) depends on the sign of dνprobe/dt. Figure 4.4 shows this effect
observed in a 35 µm bottle microresonator with a loaded quality factor in the 107–108

range. The power in the bus fiber waist is on the order of several tens of µW. In [Tre98],
Kerr bistability in a 50–µm diameter microsphere with a quality factor of 2 × 108 was
observed using the technique described above. In order to suppress the thermo-optic
effect, the microsphere was cooled to cryogenic temperatures. At a threshold power
around 10 µW, a resonance frequency shift on the order of the linewidth was observed.

Figure 4.4: Thermal bistability in a bottle microresonator. Depending on the sign of
dνprobe/dt, the transmission T (νprobe) shows two distinct values for a given frequency
νprobe. For dνprobe/dt < 0 (right side of the graph) the resonance frequency shift due to
heating of the mode volume by absorption has the same sign as the change of the laser
frequency. The resonance frequency is therefore pulled along with the laser frequency
scan causing a broadening of the line shape. In contrast, a scan over the same frequency
range with dνprobe/dt > 0 (left side of the graph) shows a reduction of the linewidth
with respect to the line shape measured for powers Pin below the threshold of thermal
bistability.
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4.2 Optical Kerr bistability at microwatt power levels

Origin of the Kerr nonlinearity

An electric field ~E of angular frequency ω1 propagating in a dielectric medium generates a
polarization ~P . For high intensity fields, the polarization is a complicated function of the
electric field and can be derived using a Taylor expansion [Mes04]. The i-th component
of the polarization ~P can be written as a function of the components Ej (j = 1, 2, 3) of
the electric field using the susceptibility tensors χ(m) of order m = 1, 2, 3 ...

Pi(r, t) = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ε0χ

(3)
ijklEjEkEl... . (4.8)

In the case of low intensities or weak higher order susceptibilities, χ(2) and χ(3), the
polarization and the electric field show a linear relation. In this regime of linear optics,
the medium is fully characterized by its refractive index n =

√
1 + χ(1) and its absorption

coefficient α. Otherwise, the higher order terms must be taken into account. The second
term gives rise to polarizations P (ω = 2ω1) and P (ω = 0) and is thus responsible for
phenomena well known as second harmonic generation and optical rectification [Mes04].
An additional wave with a frequency ω2 incident into the nonlinear medium causes
polarizations at the sum and difference frequencies P (ω = ω1 + ω2), P (ω = ω1 − ω2).
These processes will only efficiently generate an electric field at the given frequency if a
constant phase between the incident electric fields and the generated field is maintained.
Due to dispersion of the refractive index, this phase matching condition is generally not
fulfilled.

In this work, the focus lies on the optical Kerr effect which is related to the third term
on the right hand side of Eq. (4.8). Three fields at frequencies ω1, ω2 and ω3 generate
polarizations at frequencies ω = ±ω1 ± ω2 ± ω3,

Pi(ω) = ε0χ
(3)
ijkl(ω, ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) . (4.9)

In the degenerate case, where ω1 = ω2 = ω3, this results in a polarization with frequency
ω = 3ω1 (third harmonic generation) and an additional contribution at the frequency of
the driving field ω = ω1. Since in the latter case all fields oscillate at the same frequency,
the phase matching condition is automatically fulfilled without any further precautions
to be taken. The overall polarization at the frequency of the driving field is then given
by

P (ω1) = ε0

(
χ(1) + χ(3)(ω1, ω1, ω1,−ω1)|E(ω1)|2

)
E(ω1) . (4.10)

This gives rise to an intensity-dependent susceptibility at the frequency ω1 and thus to
a change in the refractive index

n = n1 + n2 · I , (4.11)

with the linear refractive index n1 =
√

1 + χ(1) and the nonlinear refractive index n2 ∝
χ(3). This phenomenon is known as the Kerr effect. In a pump–probe experiment a
strong pump field at frequency ω2 can also induce a polarization at the frequency of a
weak probe field ω1,

P (ω1) = ε0

(
χ(1) + χ(3)(ω1, ω1, ω2,−ω2)|E(ω2)|2

)
E(ω1) , (4.12)
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Figure 4.5: All-optical switch using a medium with high third order susceptibility
placed in one arm of a Mach-Zehnder interferometer. A nonlinear phase shift of π is
necessary in order to fully modulate the intensity at the output.

resulting in an refractive index change at the probe frequency. This situation is called
cross-phase modulation, while in the case of only one beam incident into the nonlinear
material one also speaks of self-phase modulation.

All-optical switching using the Kerr effect

The basic principle of all-optical switching is presented in Fig. 4.5. The nonlinear phase
shift induced by the propagation of a free laser beam through a nonlinear material is
translated into a intensity modulation by incorporating the nonlinear medium into a
Mach-Zehnder interferometer. For sufficiently high input powers the relative phase shift
between both interferometer arms, introduced by the Kerr effect, reaches a value of π.
The optical power is thus switched between both output ports.

In order to obtain a switch with small dimensions and moderate power requirements,
the material, regarding its linear and nonlinear properties α, n2, and α2 (two-photon
absorption coefficient), has to be chosen carefully. In an absorbing medium, the nonlinear
phase shift ΦNL of a wave propagating in z direction is a function of the spatially varying
intensity, described by

dI = −(αI + α2I
2) · dz . (4.13)

The overall nonlinear phase shift at a given position z in the nonlinear medium is then
obtained by integration

ΦNL =

∫ z

0

2π

λ
n2I(z)dz . (4.14)

If the linear absorption is the dominant loss mechanism α � α2I the solution of both
differential equations is given by

I(z) = I0 exp (−αz) and ΦNL = 2π
n2I0

λα
(1− exp (−αz)) . (4.15)

For an critical intensity I2π = αλ/n2 a phase shift of 2π is obtained for z → ∞. In
contrast, if the nonlinear absorption dominates one obtains

I(z) =
I0

1 + α2I0z
and ΦNL = 2π

n2

λα2
ln (1 + α2I0z) . (4.16)
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material λ n2 α α2 I2π T
(nm) (m2W−1) (m−1) (mW−1) (Wmm−2)

SiO2 852 2.5·10−20 4.5·10−4 - 1.7 · 104 � 1
Pb:SiO2 1064 2.2·10−19 0.5 7.2·10−15 2 · 106 30

As0.38S0.62 1303 4.2·10−18 1.5 <1.6·10−12 5 · 105 >2

GaAs 1064 -3·10−17 100 2.5·10−10 4 · 106 0.1
Al0.18Ga0.82As 1555 1·10−17 10 <1·10−12 1.5 · 106 >6

DANS 1319 8·10−18 40 8·10−13 7 · 106 7.5
PPV 800 1·10−15 100 8·10−10 8 · 104 1.6

MEH-PPV 1080 2.2·10−17 12 2·10−10 6 · 105 0.2

Table 4.1: Linear and nonlinear material properties together with the figures of
merit for all-optical switching for some glasses, semiconductors and polymers as given
in [Lee02]. The stated values were measured for distinct wavelengths, at which the
materials show favorable figures of merit. Pb:SiO2 is known as lead silicate, As0.38S0.62

belongs to the chalcogenide glasses, DANS (4-dialkylamino-4´-nitro-stilbene) and PPV
(polyphenylenevinylene) are nonlinear polymers.

In the literature it is common to characterize a Kerr material by I2π = αλ/n2 and the
two-photon figure of merit T = n2/(λα2) [Lee02, Koy02]. The material is considered
well suited for all-optical switching applications if it exhibits a small value for I2π and if
T � 1. Typical values for both figures of merit for glasses, semiconductors and polymers
are listed in [Lee02]. Table 4.1 gives an overview. The values of the nonlinear polymer
MEH-PPV (poly[2-methoxy-5-(28-ethylhexyloxy)-1,4-phenylenevinylene]) is taken from
[Koy02], those of SiO2 from [Buc03] and [Tay96].

The values listed in the table show that the intensities required for all-optical switching
according to the scheme proposed above are very high, even for materials with high n2,
which typically suffer from strong linear absorption. Nevertheless, such switches have
been realized. In [Kim93] a 1.65 cm long and 1.8 µm thick waveguide fabricated from
spin-coated films of the side-chain polymer DANS was incorporated in one arm of an
Mach-Zehnder interferometer. A mode locked Nd:YAG laser, providing 90 ps pulses, was
necessary to achieve a nonlinear phase shift of ΦNL = 0.5π. The peak power coupled
to the waveguide was estimated to be 39 W which corresponds to a peak intensity of
4.5 × 106 Wmm−2 at the input of the waveguide. By placing the nonlinear medium
inside a resonator and employing its intensity enhancement, the power requirements can
be significantly reduced.

Resonator enhanced all-optical switching

Figure 4.6 gives an overview of different resonator-based all-optical switching (AOS)
schemes. The schemes are exemplary illustrated for an Fabry-Pérot (FP) resonator, see
(a). In two-wavelength all-optical switching, as illustrated in Fig. 4.6 (b), a nonlinear
resonator containing a medium that exhibits a strong third order nonlinear susceptibility
is used for routing an input signal between its output ports by use of another, high-
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intensity pump beam. The weak signal beam is initially detuned from resonance and
most of the light is reflected. A high-intensity pump beam shifts the optical path length
of the resonator by cross-phase modulation. If the resonance frequency shift is properly
chosen, the signal beam is resonantly transmitted. In single-wavelength AOS, illustrated
in Fig. 4.6 (c), the same effect is achieved by modulating the intensity of the signal
beam. In the initial situation, only a small fraction of the optical power is coupled
into the resonator mode. By increasing the input intensity, the resonance frequency is
altered due to the Kerr effect. This in turn decreases the detuning between the resonator
and the signal light field. Thus a larger fraction of the incident power is coupled to the
resonator. When the intracavity intensity reaches a critical value, the resonator is pulled
in resonance with the frequency of the signal light field in an self-amplified process. The
case of single-wavelength AOS in a Fabry-Pérot cavity is readily transferred to a switch
utilizing a bottle microresonator, as shown in Fig. 4.6 (d). The reflected power that does
not enter the cavity in the case of an FP resonator corresponds to the power transmitted
through the bus fiber for a bottle microresonator. The power transmitted through the
FP on resonance corresponds to the power transferred to the drop fiber. The one- and

Figure 4.6: Different resonator enhanced all-optical switch schemes. (a) The schemes
are illustrated for an FP resonator, which exhibits two input ports (I1 and I2) and
two output ports (O1 and O2) and therefore forms an add-drop device comparable to a
bottle microresonator coupled to two ultra-thin fibers. A resonant signal at frequency
ν1 incident into I1 is transmitted through the resonator and thereby transferred to
O2. A signal detuned from resonance at frequency ν2 is reflected into O1. (b–c) By
introducing a Kerr material into the FP, a signal beam initially detuned from resonance
can be switched between O1 and O2, employing an intense pump beam or by modulation
of the intensity of the signal beam itself. (d) Transfer of the single-wavelength all-optical
switching scheme to a bottle microresonator, fabricated from a nonlinear material.
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two-wavelength schemes are neither directly comparable nor do they provide the same
functionality. This work focuses on one-wavelength all-optical switches. In the following,
the advantages and disadvantages of resonator-based switching schemes are discussed in
detail. Although this discussion is in principle valid for all types of microresonators, the
focus will lie on monolithic WGM resonators.

Reduction of the switching threshold. I will now derive an expression for the threshold
power, allowing one to define a figure of merit for resonator-based single-wavelength all-
optical switching.

The nonlinear shift of the resonance frequency, required for optical switching, ∆ν0,
scales as 1/Qcrit. At critical coupling, a shift of the resonance frequency of the linewidth
∆νcrit is sufficient to switch between 80% and 0% transmission through a waveguide
coupled to a WGM resonator. The required relative resonance frequency shift1 is then
given by

∆ν0/ν0 = −∆νcrit/ν0 = −1/Qcrit (4.17)

and can therefore be made very small for UHQ bottle resonators. Moreover, the strong
enhancement of the intracavity intensity leads to large nonlinear resonance frequency
shifts for only moderate input powers. The intracavity intensity at critical coupling
is given by Icrit

0 = Pin(n2λ0/π)(Qcrit/Vm,q). This formula is derived from Eq. (3.20),
assuming Q0 = 2Qcrit, and is therefore only valid in the absence of the drop fiber. For
an initial detuning between the optical frequency of the probe laser light and the optical
resonance frequency of the bottle mode δν0 = νprobe−ν0 = −∆νcrit, 20% of Pin is inserted
into the resonator. For example, in a microresonator with a mode volume of 1000 µm3

and a quality factor of Q0 = 108, a power of Pin = 1 mW launched into the bus fiber then
corresponds to a intracavity intensity of 2 MW/mm2. The relative nonlinear resonance
frequency shift is given by

∆ν0/ν0 = −∆n/n ≈ −0.2Pin
n2nλ0

π

Qcrit

Vm,q
. (4.18)

By combining Eq. (4.17) and Eq. (4.18), an estimation for the threshold power at which
switching occurs is obtained assuming an initial detuning of δν0 = −∆νcrit,

Pthr =
5π

n2nλ0

V

Q2
crit

. (4.19)

Taking into account only linear losses, the relation Qmat = 2πn/(αλ0) = 2Qcrit, valid
for monolithic resonators, can be used to define a material-related figure of merit for
resonator-based all optical switching

Pthr =
5α2λ0Vm,q
πn2n3

. (4.20)

Table 4.2 gives an overview of Pthr for the nonlinear materials from Tab. 4.1. The

1 An increase in the intracavity intensity gives rise to a positive refractive index change and thus to a
negative resonance frequency shift, leading to the minus sign in Eq. (4.17). Therefore, in order to
achieve all-optical switching, the frequency of the signal light field has to be set to a value smaller
than the initial resonance frequency ν0, as illustrated in Fig. (4.6).
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material λ n2 α Qmat Pthr

(nm) (m2W−1) (m−1) (W)

SiO2 852 2.5·10−20 4.5·10−4 2.4 · 1010 3.5 · 10−9

(3.6 · 108) (1.6 · 10−5)

Pb:SiO2 1064 2.2·10−19 0.5 2.0 · 107 3.9 · 10−4

As0.38S0.62 1303 4.2·10−18 1.5 7.7 · 106 8.0 · 10−5

GaAs 1064 -3·10−17 100 2.1 · 105 1.3 · 10−2

Al0.18Ga0.82As 1555 1·10−17 10 1.3 · 106 6.9 · 10−4

DANS 1319 8·10−18 40 1.9 · 105 1.0 · 10−1

PPV 800 1·10−15 100 2.0 · 105 8.2 · 10−4

MEH-PPV 1080 2.2·10−17 12 8.2 · 105 2.5 · 10−3

Table 4.2: Estimated switching threshold Pthr and absorption limited quality factor
Qmat for the same nonlinear materials as presented in Tab. 4.1. A mode volume of
1000 µm3, typical for WGM microresonators, is assumed. The values given in brackets
for SiO2 are the quality factor experimentally observed in an 35 µm silica bottle micro-
resonator, limited by surface-related losses and the resulting threshold power. Even
when assuming this value, Pthr in silica is at least a factor of 5 smaller than the values
for all other materials.

nonlinear refractive index of silica is two to three orders of magnitude lower than for
common nonlinear materials. At the same time, however, silica exhibits a very low
absorption coefficient of α = 4.5× 10−4 m−1 at a wavelength of 852 nm [Buc03], which
enables the ultra-high quality factors observed in silica WGM resonators. Therefore,
the n2Q

2/V -ratio of ultra-high Q silica WGM microresonators ranks among the highest
that can be realized, making them ideal candidates for all-optical switching applications
at ultra-low powers. In a silica bottle microresonator with a quality factor of Qcrit =
1.8× 108 and a mode volume of 1000 µm3, the required power for all-optical switching
is expected to be as low as Pthr = 16 µW. Figure 4.7 shows the diameter dependency of
Q2

crit/V in order to identify the optimal bottle resonator diameter for all-optical switching
experiments.

Limitations in switching speed. The trade-off in resonator-based switching schemes is
a limited speed at which the switch can be operated. The exponential build-up and decay
of the intracavity intensity with the time constant τload results in a −3 dB bandwidth
B given by

B =
1

2πτload
= ∆νload . (4.21)

That means that for a modulation of Pin the energy build-up inside the resonator and
thus the nonlinear resonance frequency shift drops by a factor of two at a modulation
frequency corresponding to the bandwidth.
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4.2 Optical Kerr bistability at microwatt power levels

Figure 4.7: The ratio Q2
crit/V for bottle microresonators of various diameter D0. This

graph is based on the data from Fig. 3.18. The optimal ratio is obtained for resonators
of diameters around 40 µm.

4.2.2 Model – Kerr bistability in bottle microresonators

In order to model the Kerr bistability in a bottle microresonator in add-drop configu-
ration, a term that describes the shift in the resonance frequency ∆ω0(I) depending on
the intracavity intensity I(t) is added to Eq. (4.1)

d

dt
a(t) = i(ω0 + ∆ω0(I)− ω)a(t)− 1

2

(
τ−1

0 + τ−1
bus + τ−1

drop

)
a(t) + τ

−1/2
bus s(t) . (4.22)

In the following, the intracavity intensity is modelled as a boxcar function of the radial
coordinate within the FWHM radii r1 and r2 of the normalized radial intensity dis-
tribution I(r)/Imax of the fundamental mode in an 35–µm diameter resonator. Using
Eq. (3.19) for the peak value of the intracavity intensity yields

I(t) =
|a(t)|2c n2

Vm,q
·
∫ r2
r1
I(r)/Imax · rdr∫ r2

r1
rdr

= 0.81
|a(t)|2cn2

Vm,q
. (4.23)

The nonlinear resonance frequency shift can thus be written as

∆ω0(t) = −ω0
n2I(t)

n
= −1.62 · πn · n2c

2

λ0Vm,q
|a(t)|2 ≡ −cKerr|a(t)|2 , (4.24)

assuming a nonlinear refractive index of n2 = 2.5 × 10−20 W/m2 at a wavelength of
λ0 = 852 nm. For a given “cold” laser–resonator detuning δω0 = ω − ω0, i.e., the laser–
resonator detuning for vanishing input powers, one obtains

d

dt
a(t) = −i(cKerr|a(t)|2 + δω0 )a(t)− 1

2

(
τ−1

0 + τ−1
bus + τ−1

drop

)
a(t) + τ

−1/2
bus s(t) . (4.25)

In order to investigate the bistable behavior, the input wave amplitude is modelled as

s (t) =
√

1/2 · Pmax (1− cos (2πt/T )) , for 0 ≤ t ≤ T and

s (t) = 0 , for t > T and t < 0 .
(4.26)
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Pin thus corresponds to a sin2-shaped pulse with a FWHM pulse duration of τpulse = T/2.
For critical coupling, i.e., τ−1

bus = τ−1
0 + τ−1

drop, the time constants can be expressed using

the loaded quality factor, Q−1
load = 1/ (ω0τ0) + 1/ (ω0τbus) + 1/ (ω0τdrop), and the intrinsic

quality factor Q0

τ−1
0 =

ω0

Q0
,

τ−1
drop =

ω0

2Qload
− ω0

Q0
,

τ−1
bus =

ω0

2Qload
.

(4.27)

Equation (4.25) is then numerically solved for a(t) with 0 ≤ t ≤ T using the boundary
condition a(0) = 0. The relevant quantities are inferred from

Pin (t) = |s (t)|2 ,

P bus
out (t) = |−s (t) + τ

−1/2
bus a (t)|2 ,

P drop
out (t) = τ−1

drop|a (t)|2 ,

δω (t) = δω0 + cKerr|a (t)|2 .

(4.28)

Here, δω = δω0 − ∆ω0 is the instantaneous laser–resonator detuning when the pulse is

applied. Note that P drop
out is proportional to the intracavity energy. Figure 4.8 shows

the result of the numerical calculation for a bottle mode with a mode volume of V =
1000 µm3. Its intrinsic quality factor of Q0 = 1.8 × 108 is assumed to be reduced
to Qload = 1.7 × 107 due to the coupling to both ultra-thin fibers. Moreover, a cold
resonator–laser detuning of one linewidth δω0 = −∆ωcrit, a pulse duration of τpulse =
1.25 µs and a peak power Pmax = 0.51 mW is assumed. For the given parameters, the
value of Pmax was chosen by trial and error. It was stepwise increased until δω reached
positive near-zero values in the central region of the pulse of Pin. In order to reveal the
bistable behavior, P bus

out and P drop
out are plotted as a function of Pin. The result is shown

in Fig. 4.9
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4.2 Optical Kerr bistability at microwatt power levels

Figure 4.8: (a) P bus
out and P drop

out modelled for a sin2-shaped pulse of the input power
Pin. A resonator with parameters Q0 = 1.8× 108, Qload = 1.7× 107 and V = 1000 µm3

is assumed. (b) Evolution of the laser–resonator detuning δω. The cold laser–resonator
detuning at t = 0 has a value of δω0 = −∆ωcrit. When Pin exceeds a threshold P1,
dδω/dPin reaches a critical value and the Kerr effect “pulls” the resonator mode into
resonance with the laser frequency. At the peak value of Pin, the detuning reaches
positive values. When Pin decreases again, at a power P2, the intracavity intensity
(∝ P drop

out ) has sufficiently decreased to reach zero detuning. From this point onward,
the resonator rapidly returns to the initial situation. The exact values of the threshold
powers are defined by dP bus

out /dPin = 0. Between the two switching events, the trans-
mission through the bus fiber is strongly reduced due to critical coupling. At the same
time, due to the near-zero values of δω, the intracavity power is high and a large fraction
of Pin is transferred to the drop fiber output.
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Figure 4.9: (a) P bus
out and (b)P drop

out as a function of Pin. The system shows a pronounced
hysteretic behavior and, for a certain range of Pin, exhibits two stable states. The
bistable regime is defined as the region between the powers Plow and Phigh, where both,

P bus
out and (b)P drop

out , show different values depending on the sign of dPin/dt. Note that
the threshold powers, P1 and P2, do not coincide with the borders of the bistable region.
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4.2.3 State of the art – optical switching at ultra-low powers

In the following, an overview of the performance of state-of-the-art all-optical switches,
based on various microresonator designs, in terms of their switching threshold is given.
Not all experiments cited here, are aimed at achieving lowest possible values for the
switching threshold P1. Often, a compromise between the switching threshold and the
bandwidth is chosen. Given the Q−2

load dependency of P1 and the Q−1
load dependency of the

bandwidth B, I will consider the constant ratio P1/B
2 as a figure of merit, thus ensuring

a fair comparison between different systems. The lowest bistable switching thresholds
were reported for photonic crystal cavities using the thermo-optic effect [Not05,Wei07].
The lowest measured value of P1 = 6.5 µW was observed in a photonic crystal micro-
resonator made of GaAs [Wei07]. The bandwidth of such a thermo-optical switch is,
however, only on the order of 1 MHz because the thermal relaxation times in photonic
crystal cavities amount to at least 100 ns [Not05, Har09]. These switches thus offer a
the lowest switching threshold but are fundamentally limited in their switching speed
and yield a value of P1/B

2 = 6.5 µW/MHz2. Moreover, to my knowledge, no add-drop
functionality has been experimentally realized with photonic crystal cavities so far. This
limits their use in all-optical signal processing to “ON-OFF” switching of the power in
one channel while switching of signals between two channels is not possible. Thermo-
optical bistability has also been observed in silicon ring-resonators at a switching thresh-
old of 1.3 mW [Alm04a]. Here, the bandwidth was found to be 500 kHz, which results
in a P1/B

2-ratio of 5200 µW/MHz2 that is three orders of magnitude worse than for
photonic crystals. Optical switching can also be achieved using free carrier nonlinearities
induced by one- or two-photon absorption in semiconductors. Many of the corresponding
experiments rely on the above-mentioned two-wavelength pump-probe optical switching
schemes [Van02, Ibr03, Alm04b] and will not be discussed here further. However, free
carrier nonlinearities were also employed to realize single-wavelength optical switching
in bistable semiconductor etalons, see [Pey85] and references therein. In these devices,
typical switching threshold powers exceed 1 mW while the bandwidth ranges around
100 MHz, limited by the carrier recombination time and/or diffusion speed. For exam-
ple, values of P1 = 8 mW and B = 160 MHz or P1 = 2 mW and B = 80 MHz were
reported in [Pey85] and [He93], respectively. In both cases, this yields the same value
of P1/B

2 = 0.3 µW/MHz2. However, due to their relatively high intrinsic losses, the
bistable etalons are not suited for operation in transmission. Operation in reflection
mode therefore limits their use in all-optical signal processing to ON-OFF switching.
Moreover, the physical mechanism leading to the nonlinearity is strongly wavelength-
dependent. The devices therefore have to be optimized for operation at a particular
wavelength. The Kerr effect, on the other hand, prevails over a much larger spectral
range.
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4.2.4 Experimental Setup

Figure 4.10: Measuring the nonlinear response in the transmission properties through
two ultra-thin fibers coupled to a bottle mode in add-drop configuration, induced by a
modulation of the input power Pin. An arbitrary waveform generator, triggered by the
experiment control, sends an sin2-shaped pulse to the modulation input of the AOM’s
driver unit which controls the power of the radiofrequency signal PAOM that is sent
to the AOM. The initial cold laser–resonator detuning δν0 is set using a side-of-fringe
power lock technique, where the signal transmitted through the bus fiber is fed back to
the current modulation input of the laser using a PI control loop. In the “scan mode”
the laser frequency is constantly swept over the resonance. A monitor output of the PI
control module allows one to choose a “set point”. In the “lock mode”, the PI control
module controls the laser diode current in order to keep the error signal at this set-point.
Its value is chosen corresponding to the desired value of the laser–resonator detuning.
The PI control module allows one to change the sign of δν0 by inverting the input signal.
A sample-and-hold circuit “freezes” the lock during the pulse. A directional coupler at
the inputs of both ultra-thin fibers allows one to measure the losses in the fiber tapers
in order to obtain the power levels Pin and Pout in the ultra-thin fiber waists.

In the following, the bistable behavior of the transmission properties of the bottle
microresonator caused by the nonlinearity of the resonator material, as predicted by
the model, is investigated. The mechanical and optical components of the setup used
here are identical to the setup for the characterization of the add-drop filter in the
previous section. P bus

out and P drop
out are measured as a function of Pin at a fixed cold
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laser–resonator detuning δν0 = δω0 /(2π). As in the model, the input power is pulsed
with a sin2-shaped envelope using an acousto-optic modulator. A peak power of up
to a few milliwatts and pulse durations ranging from τpulse = 30 ns – 10 ms were
employed. The crucial point of this measurement is to set an initial laser–resonator
detuning, before the pulse is applied and to let the system evolve freely during the pulse
in order to monitor the nonlinear resonance frequency shift via a change in the bus and
drop fiber transmission. The principle of the measurement is schematically illustrated
in Fig. 4.10. Before the input power is modulated using an AOM (Crystal Technology,
3200-121, 200 MHz), whose driver unit is controlled by an arbitrary waveform generator
(Agilent Technologies, 33250A), δν0 is set to a predetermined value using a side-of-fringe
power lock technique [Car05]. The output signal of the photodiode measuring the power
transmitted through the bus fiber (“error signal”) is fed back to the current modulation
input of the laser via a PI control loop. The −3 dB bandwidth limit of the control loop
is 10 kHz, limited by the bandwidth of the current modulation of the laser controller.
The photodiode signal is fed through a so-called sample-and-hold circuit (custom made,
denotation: SHC), which “freezes” the feedback signal at its instantaneous value while
the pulse is applied in order to visualize the nonlinear shift in the resonance frequency.
In the “sample mode” it constantly acquires the photodiode signal. In the “hold mode”,
which is activated by a TTL pulse, the last measured value before the arrival of the pulse
is maintained at its output.

4.2.5 Experimental observation of optical bistability and switching in bottle
microresonators

In order to verify the findings from the above model, a q = 2 mode with an intrinsic
quality factor of 1.8 × 108 is used in add-drop configuration. The gap between the
resonator and the drop fiber is chosen to yield a loaded quality factor of Qload = 1.7×107

at critical coupling. The set-point of the lock corresponds to a negative detuning of
δν0 = νprobe − ν0 = −1.2 × ∆νcrit. This corresponds to a 15% reduction of the optical
power transmitted through the bus fiber. In order to obtain an error signal with a
sufficient signal-to-noise ratio, input powers of 2–10 µW are used when locking the laser
frequency to the resonance frequency of the bottle microresonator. Figure 4.11 (a) shows
the powers at the bus and drop fiber waists for a sin2-shaped modulation of Pin with a
FWHM pulse duration of τpulse = 1.25 µs. Between the two switching events 84% of Pin

is transferred to the drop fiber. Figure 4.11 (b) shows the hysteretic behavior in P bus
out

and P drop
out as a function of Pin.

Note that the model presented in section 4.2.2 only allows one to numerically solve
the differential equation that describes the bottle microresonators detuning δω(t) and

its mode amplitude a(t) from which the powers P bus
out (t) and P drop

out (t) are calculated.

Analytical expressions for P bus
out (t) and P drop

out (t) for a given variation in the input power
are therefore not known. Consequently, experiment and model can only be compared
qualitatively. Nevertheless, the results are in close agreement with the predictions from
the model, both in terms of the threshold power P1 and the characteristic evolution of
the bus and drop fiber transmissions during the pulse, see Fig. 4.8 and Fig. 4.9. The
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Figure 4.11: Optical bistability in a bottle microresonator. In order to characterize
the bistable behavior of bottle modes, the input power is pulsed and the laser frequency
is initially detuned from resonance by δν0 = −1.2×∆νcrit. (a) Response of the system to
a sin2-shaped pulse with a FWHM duration of τpulse = 1.25 µs (green). The plot shows

Pin (green), P bus
out (blue) and P drop

out (purple). As soon as Pin exceeds a certain threshold,
the light is resonantly switched to the drop fiber via the Kerr effect. (b) By plotting

P bus
out and P drop

out versus Pin for the data shown in Fig. 4.11 (a) (identical color coding),
bistable behavior is apparent for Pin ranging from Plow ≈ 1.0 mW to Phigh ≈ 1.8 mW.
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modelled threshold power is only a factor of three smaller than the measured value. This
deviation is attributed to the simple approximation of the intensity distribution of the
bottle mode in Eq. (4.23).

4.2.6 Physical origin of the bistability

The close agreement of above measurements with the predictions from the model strongly
suggests that that the Kerr effect is at the origin of the bistable behavior observed at
the µs time scale. Nevertheless, in order to faithfully distinguish between switching
due to the Kerr effect, that in principle exhibits a sub-picosecond response time, and
the thermal-optic effect, additional measurements are necessary. First, the thermal
relaxation time τtherm of bottle modes is determined. Second, the dependency of the
threshold power P1 is measured as a function of τpulse in order to precisely identify the
time scales at which the nonlinearity is exclusively due to the Kerr effect.

Measuring the thermal relaxation time.

The thermal relaxation time of a bottle mode is measured by tracing its resonance
frequency shift over time after an abrupt change of the intracavity power. Figure 4.12
shows the setup used for this measurement. During the whole measurement the laser–
resonator detuning δν is kept constant by the side-of-fringe power lock technique. Using
an AOM (Crystal Technology, 3200-121, 200 MHz), whose driver unit is controlled by an
arbitrary waveform generator, Pin is modulated by applying a single 70 ms rectangular
pulse. During this pulse Pin is abruptly changed from a level of a few mW, necessary
to maintain the lock, to several tens of mW. Due to absorption, the resonator material
heats up in the area where the bottle mode is located and the resonance frequency shifts.
This shift can be traced via the “control signal” UPI of the PI control module sent to
the laser current modulation input in order keep δν constant.

Simultaneously a second AOM modulates the laser power at the bus fiber output.
The arbitrary waveform generator (AWG in the following) controlling the driver unit
of this AOM (Crystal Technology, 3110-197, 110 MHz), generates a signal that is in-
verted with respect to the one applied to the AOM at the bus fiber input. In order to
achieve synchronization between both AWGs, they are connected via their trigger in-
and outputs. First, with the bus fiber, removed from the resonator, the time delay and
amplitudes of both AWG outputs are adjusted in order to keep the power detected at
the photodiode constant when the pulses are applied. This ensures that the photodi-
ode signal, that serves as the “error signal” for the PI control loop, only changes when
the transmission through the ultra-thin waist of the bus fiber, T = Pout(t)

bus/Pin(t),
changes due to a variation in δν . Next, the bus fiber is critically coupled to the bottle
mode under investigation and νprobe is locked to the resonance with an appropriately
chosen detuning δν . The pulse is again applied and the control signal is monitored. Us-
ing the reference cavity, the laser frequency shift dνprobe for a given change in the control
signal dUPI is calibrated. This calibration yields dνprobe/dUPI = (−6 ± 0.3) MHz/mV
for the given setup. Since the resonator is only heated in a small area close to its sur-
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Figure 4.12: Setup for measuring the thermal relaxation time of a bottle mode. During
the measurement, a sudden step in Pin is applied using an arbitrary waveform generator
that controls the power modulation input of the AOM’s driver unit (PAOM denotes the
power of the radiofrequency signal sent to the AOM). During the modulation of Pin, the
laser–resonator detuning δν is kept constant by the side-of-fringe power lock technique
described in section 4.2.4. The control signal sent from the PI control module to the
laser current modulation input is then proportional to the resonance frequency shift
and the change in the temperature of the mode volume induced by the sudden increase
in the intracavity intensity. Due to the variation in Pin, the power measured directly
behind the bus fiber output is no longer a suitable error signal for the lock because
it not exclusively depends on δν . Therefore, the step in Pin is compensated using a
second AOM in front of the photodiode. This ensures that the signal detected at the
photodiode is proportional to the transmission through the ultra-thin waist of the bus
fiber UPD ∝ P bus

out (t)/Pin(t).

face, the shift of its resonance frequency ∆ν0 is exclusively due to the thermo-optic
effect. Using Eq. (3.39) for the resonance frequency shift induced by a change in the
refractive index, the thermo-optic coefficient ∂n/∂T and assuming dνprobe = dν0 one
obtains dTmode/dνprobe = −n/v0 (∂n/∂T )−1 = −3.2 · 10−10 K/Hz. Figure 4.13 shows
the relative temperature of the mode volume Tmode, calculated from the control signal
of the PI control loop, together with the transmission through the bus fiber, calculated
from the signal detected at the photodiode UPD for the same q = 2 mode used for the
measurement presented above and a detuning of δν = ∆νcrit. This measurement yields
a thermal relaxation time of τtherm = 13 − 15 ms, consistent with results obtained for
the thermal relaxation time in microspheres [Tap02].
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Figure 4.13: Measuring the thermal relaxation time of the mode volume of a q = 2
bottle mode with a linewidth of ∆νcrit = 6.5 MHz. (a) A rectangular 70 ms pulse in Pin

heats the mode volume of the bottle mode. This pulse is compensated using a second
AOM behind the bus fiber output, so that the photodiode signal detected behind this
AOM is proportional to the transmission T = P bus

out (t)/Pin(t) through the ultra-thin bus
fiber waist. This signal is used as the error signal for the PI control loop that keeps the
resonator–laser detuning constant. (b) Bus fiber transmission during the measurement
calculated from the photodiode signal. In order to obtain the bus fiber transmission,
the signal is normalized to its value measured with the bus fiber pulled away from the
resonator and the lock disabled. The set point of the lock corresponds to δν = ∆νcrit and
T = 0.8. The maximum and minimum values of T = 0.95 and T = 0.4 observed reveal,
that the PI control loop maintains a laser–resonator detuning between δν = 2.2×∆νcrit

and δν = 0.4 × ∆νcrit during the measurement. (c) The temperature of the mode
volume, Tmode, as calculated from the control signal fed from the PI control loop to the
laser current modulation input. Exponential fits (black curves) yield relaxation time
constants of τ = (15.40± 0.04) ms for the heating of the mode volume, when the pulse
is applied, and of τ = (12.78± 0.05) ms for its cooling, after the pulse. The maximum
relative temperature change of approximately 70 mK corresponds to a shift in ν0 of
34×∆νcrit.
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Figure 4.14: Dependency of the threshold power for optical bistability on the FWHM
duration of the input pulses. This measurement is taken without the drop fiber. For
pulse durations shorter than 100 µs, the quasi-instantaneous Kerr effect dominates the
thermo-optical effect due to the finite thermal relaxation time (τtherm ∼ 15 ms) of the
resonator mode. ON-OFF switching of the transmission through the bus fiber via the
Kerr effect is achieved at a threshold power of 50 µW.

Identifying the Kerr regime

Again using the setup show in Fig. 4.10, the threshold P1 as a function of τpulse is
measured. For simplicity, the drop fiber is omitted in this measurement. The mea-
surement results are shown in Fig. 4.14. For short pulse durations below 50 µs, the
threshold power at the resonator fiber coupling junction has a constant value of about
P1 = 50 µW. For longer pulses, a strong decrease of the threshold power is observed.
This is attributed to the onset of thermal effects which are known to dominate over the
Kerr effect for pulse durations that are longer than the thermal relaxation time of the
resonator mode [Rok05]. The fact that P1 does not depend on the pulse duration for
short pulses is a strong indication that the quasi-instantaneous Kerr effect is the prevail-
ing non-linear mechanism and that thermal effects can be neglected for high switching
speeds. For pulse durations τpulse � τtherm, switching is therefore exclusively due to
the Kerr effect. For pulse durations τpulse � τtherm, one expects a second plateau of P1.
However, such pulse durations are inaccessible in this experiment because the drift of the
laser–microresonator detuning in the absence of active stabilization is too large at these
time scales. The threshold of P1 = 50 µW, measured here, is consistent with powers for
which Kerr bistability was previously observed in microspheres with comparable quality
factors at cryogenic temperatures via deformation of the line shape [Tre98] and with the
threshold power estimated using Eq. (4.19).
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Figure 4.15: Variation of the switching threshold as a function of the resonator band-
width. The solid line is a square-law fit (P1 = a0B

2) to the experimental data, con-
firming the quadratic dependency. This means that P1/B

2 is constant at a value of
a0 = (4.75± 0.20) µW/MHz2.

4.2.7 Switching speed

In principle, the Kerr effect allows one to realize extremely high switching speeds,
corresponding to bandwidth in the THz regime, due to its sub-picosecond response
time [Liu05]. In resonator-based switching schemes, however, the speed is limited by the
−3 dB bandwidth of the resonator, given by B = ∆νload = ν0/Qload. This means that
the switching speed can be raised at the expense of reducing Qload which will in turn
increase the switching threshold, P1 ∼ Q−2

load. The set-up used here, allows one to inves-
tigate this mechanism. By changing the gap between the resonator and the drop fiber
while simultaneously adjusting the bus fiber gap to maintain critical coupling, Qload can
be varied over a wide range. Figure 4.15 shows the dependency of P1 on B. As expected,
the ratio of P1/B

2 is constant at a value of (4.75±0.20) µW/MHz2. All-optical signal
processing is thus possible within the rage of bandwidth accessible with this method,
albeit at higher threshold powers. For example, a switch with a bandwidth of 1 GHz
will require a threshold power of around 4.75 W.

4.2.8 Discussion

The threshold power for all-optical ON-OFF switching of P1 = 50 µW inferred from
the measurement in Fig. 4.14, is to the best of my knowledge, the smallest value ever
reported for single-wavelength switching via the Kerr effect. Moreover, the figure of
merit for resonator-based switching schemes P1/B

2 = 4.75 µW/MHz2 of the bottle
microresonator aligns with the systems discussed in section 4.2.3 and is only around one
order of magnitude higher than the lowest value stated there. However, as demonstrated
in section 4.2.5, the bottle microresonator can also be employed for switching between
two fiber outputs, albeit at higher threshold powers. In contrast, for the systems with
comparable P1/B

2-ratios discussed above, only ON-OFF switching of the transmission
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through a single waveguide was demonstrated. Switching signals between two fiber out-
puts is an essential prerequisite for all-optical signal processing, as will be demonstrated
next.

4.3 All-optical signal processing in bottle microresonators

In the following, all-optical signal processing functionalities are realized using the system
characterized above, together with the setup depicted in Fig. 4.10. Routing of the signal
beam is achieved by setting Pin to a value either below or above the bistable regime.
Moreover, for a value of Pin, chosen within the bistable regime, two stable states at the
outputs are possible. The actual state only depends on the history of the system. This
enables the realization of an optical memory.

In the experiments that will be presented next, the system is operated at switching
rates around 1 MHz. At the end of this section, the possibility of extending this all-
optical signal processing functionalities to GHz rates while maintaining moderate input
powers is discussed. It is shown that coating the bottle microresonator with a nonlinear
polymer presents a promising route towards high-bandwidth all-optical signal processing.

4.3.1 State of the art – optical routing and memories

All-optical routing

As pointed out above, all previous bistable single-wavelength schemes only demonstrated
ON-OFF switching. Single-wavelength all-optical routing of a pulsed signal was demon-
strated in an interferometric switch incorporating a microring resonator [Hee04]. Intense
laser pulses, corresponding to peak powers of 40 W, were necessary to operate this device.

Optical memory

Single-wavelength optical memories have so far been realized with microring resonators
using thermally induced bistability [Alm04a] and with etalons using free carrier nonlin-
earities [He93]. In both cases, only ON-OFF functionality was demonstrated since no
drop channel was implemented.

4.3.2 All-optical routing and optical memory in bottle microresonators

First, routing of a continuous wave signal between two output channels using a single-
wavelength scheme is demonstrated. The loaded quality factor is chosen to be Qload =
1.5×107 at critical coupling, which corresponds to a reduction in the intrinsic quality fac-
tor of Q0/Qload = 12, ensuring a reasonably high power transfer efficiency of E = 0.83 .
The laser frequency is initially locked to the mode with a detuning of δν0 = −1.2×∆νcrit

from resonance. The desired temporal profile of Pin is stored in the memory of the com-
puter controlled arbitrary waveform generator and is applied together with a pulse sent
to the sample-and-hold circuit disabling the lock during the experiment. As already
mentioned above, in order to characterize the performance of the system as a whole,
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4.3 All-optical signal processing in bottle microresonators

Figure 4.16: Demonstration of all-optical routing using the optical Kerr bistability in
a bottle microresonator. Pin is varied between two levels which are located below and
above the bistable regime, delimited by Plow and Phigh, (schematically indicated by the
dashed lines) as shown in the inset. At the same time, the power at the outputs of the
bus fiber and the drop fiber is monitored. As soon as the input power exceeds Phigh,
70% of the incident light is transferred to the output of the drop fiber. Lowering the
input power below Plow, again reverses the situation at the outputs.

the powers quoted here refer to the values launched into the input of the bus fiber and
detected at the outputs of the bus and the drop fibers. For simplicity, the notation used
above is kept and these values are denoted by Pin, P bus

out and P drop
out . Consequently, Plow

and Phigh also refer to values at the input of the bus fiber. Figure 4.16 shows the realiza-
tion of all-optical routing, for which the signal beam is repeatedly switched between the
bus and the drop fiber at a rate of 1 MHz. When abruptly changing Pin from a value
below to a value above the bistable regime, about 70% of the power launched into the
bus fiber exits the drop fiber. The modulation depth between the HIGH-state and the
LOW-state power levels at both outputs is 9 dB. To the best of my knowledge, this is the
first time that a continuous wave signal has been routed between two output channels
using a single-wavelength scheme.

Due to its bistability, the system used here can also be operated as a so-called “optical
memory”. For this purpose, an operating power Pin = Pbist of approximately 2 mW,
which is centered in the bistable regime, is chosen, see Fig. 4.17. At this power, the
system exhibits two stable output states. Changing Pin to a power higher than Phigh

or lower than Plow switches between these two states. When returning to Pbist, the
system then stays in the chosen state. In contrast to the systems cited above, the
optical memory realized here is a true add-drop device, meaning that it allows one to
route a signal between its two output ports. Since the optical memory is operated in
the bistable regime, it is quite sensitive to thermal fluctuations and drifts. Therefore,

89
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Figure 4.17: Demonstration of optical memory functionality in a bottle microresonator
using the Kerr effect. For an input power level (green) in the bistable regime (as indi-
cated by the arrow) the power at the outputs of the bus fiber (blue) and of the drop fiber
(purple) exhibits two stable states. The output state is chosen by temporarily lowering
(raising) Pin below (above) the bistable regime, which is schematically indicated by the
dashed lines.

the residual absorption of the signal light field currently limits the storage time of this
optical memory to the sub-microsecond range. A similar limiting effect has also been
reported for optical memory based on etalons using free carrier nonlinearities [He93].

4.3.3 Towards high-bandwidth all-optical signal processing using coated
bottle microresonators

As pointed out above, the bandwidth of the bottle microresonator can in principle be
increased to the GHz range, making it an interesting device for applications in telecom-
munication. However, in order to do so, the quality factor has to be reduced by several
orders of magnitude, meaning that the favorable ratio of α2/n2 of silica that is responsi-
ble for the ultra-low switching powers observed above, is no longer beneficial. Therefore,
in high-bandwidth applications, a higher value of n2, even when accompanied by a higher
absorption, can improve the performance of the switch in terms of the P1/B

2-ratio. In
the following, a silica bottle microresonator coated with the nonlinear polymer MEH-
PPV, whose properties are given in Tab. 4.2, will be investigated under this aspect.
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Estimating the performance of a MEH-PPV coated bottle microresonators

First, the radial intensity distribution at the caustics of a bottle microresonator with
caustic radius Rs = 17.5 µm and a polymer coating of thickness d is calculated by
solving the radial wave equation at the caustics. From the intensity distribution of the
modes it is possible to infer the enhancement of the nonlinear refraction with respect to
an uncoated silica resonator (d = 0). The discussion is limited to TM modes, because
in waveguides of MEH-PPV, n2 is found to be higher if the light is polarized parallel
with respect to the substrate carrying the polymer [Koy06]. Moreover, the calculation
is performed for a wavelength of 1080 nm, for which n2 of MEH-PPV is maximal. The
overall radius of the coated resoantor is denoted by Rp = Rs + d. The refractive indices
are given by ns = 1.467 and np = 1.65 [Koy06] in both materials. The radial wave
function in silica and in the surrounding air are identical to that of an uncoated system.
In the polymer, the general solution of the radial wave equation, given by Eq. (2.12),
has to be considered

Ez ∝ A · Jm (ks · r) , for r ≤ Rs . (4.29)

Ez ∝ B · Jm (kp · r) + C · Ym (kp · r) , for Rs ≤ r ≤ Rp . (4.30)

Ez ∝ D · Ym (k0 · r) , for r ≥ Rp. (4.31)

The wave numbers in the different media are given by ks = nsk0 and kp = npk0. For the
following calculation, the coefficient B in the second of the above equations is set to unity.
In order to solve for the wavelength for which the resonance condition is fulfilled, one
again uses the continuity of Ez and its derivative Hφ = −i/(µω)∂rEz at both interfaces.
In analogy to Eq. (2.22) for an uncoated resonator, one obtains a set of two equations

F1(λ,C) =
nsJ

′
m (ksRs)

Jm (ksRs)
− np (J ′m (kpRs) + CY ′m (kpRs))

Jm (kpRs) + CYm (kpRs)
= 0 , (4.32)

F2(λ,C) =
Y ′m (k0Rp)

Ym (k0Rp)
− np (J ′m (kpRp) + CY ′m (kpRp))

Jm (kpRp) + CYm (kpRp)
= 0 . (4.33)

The solutions are given by the intersection of F1(λ, C)=0 and F2(λ, C)=0 in the two-
dimensional parameter space (λ, C). A counter plot of F1(λ, C)=0 and F2(λ, C)=0
helps to identify the lowest order radial modes. Both equations are then numerically
solved with properly chosen start values for λ and C. Next, the amplitudes A and D
can be derived from the continuity of Ez at the interfaces. In order to allow one to
compare between the solution for different film thickness d for a constant value of Pin,
the intensity distributions are normalized

Inorm(r, d) =
|Ez(r, d)|2∫ Rrad

0 |Ez(r, d)|2rdr
. (4.34)

For each thickness d, the enhancement of the nonlinear refraction with respect to an
uncoated resonator (d = 0) can be calculated by

f =

∫ Rrad

0 n2(r)Inorm(r, d)rdr∫ Rrad

0 n2(r)Inorm(r, 0)rdr
. (4.35)
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Figure 4.18: Normalized intensity distribution of the fundamental radial modes at
wavelengths around 1080 nm in a 35-µm silica WGM resonator coated with a polymer
exhibiting a nonlinear refractive index that is 815 times higher than that of the res-
onator material. The nonlinear refraction is enhanced by a factor f with respect to the
uncoated silica resonator.

Figure 4.18 shows the radial intensity distribution calculated for different thicknesses
of the polymer coating ranging from d = 0 to d = 800 nm for wavelengths around
1080 nm. Note the “radial compression” of the mode and the enhanced relative peak
intensity which is maximal for the plots with d = 300 nm and d = 500 nm. Finally, the
performance of a bottle microresonator coated with a 800 nm thick polymer film at a
wavelength of 1080 nm is estimated. Assuming an absorption limited intrinsic quality
factor of Q0 = 8× 105 for the polymer (Tab. 4.2), which, according to Eq. (4.7), would
reduce to Qload = 4× 104 in an add-drop filter with transfer efficiency of 90%, results in
a bandwidth of B = 7 GHz. For the uncoated 36–µm diameter silica resonator for which
P1/B

2 = 4.75 µW/MHz2 was measured, the same bandwidth requires a threshold power
of P1 = 233 W. Using Eq. (4.19), the corresponding switching threshold for a resonator
with a 800 nm thick MEH-PPV coating would then reduce to P1 = 268 mW, resulting
in P1/B

2 = 5.3 nW/MHz2.
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First experimental results in fabrication of MEH-PPV coated bottle microresonators

The polymer coated bottle microresonators used in this work were fabricated using a dip
coating technique. The resonator fiber is vertically immersed into a solution of MEH-
PPV in toluol or chloroform with concentrations of 5–10 weight percent. After a time
tim, the fiber is pulled out of the solution at a defined speed vw of several mm/s. By
variation of the solvent, the polymer concentration, tim and vw, coatings with a maximal
thickness of 140 nm are realized. The film thickness is measured by scratching the
film with a needle and scanning the surface perpendicular to the scratch with a surface
profiler (KLA Tencor, P-16+).

The spectral properties of the coated resonators are investigated with the DFB laser
at a wavelength of 850 nm. In a resonator with a coating of d = (95 ± 5) nm thick-
ness, typical quality factors of 3 × 105 to 5 × 105 are observed for TM polarization.
From a loss coefficient of 200 m−1, measured in MEH-PPV waveguides at the given
wavelength [Koy02], an absorption limited quality factor of 6 × 104 is calculated. The
measured quality factors are significantly higher than this value. Assuming the radial
intensity distribution of the fundamental mode for d = 95 nm, see Fig. 4.19 (a), this
can be explained by its small spatial overlap with the polymer film. If the modes un-
der investigation are higher order radial modes, the actual overlap between the radial
intensity distribution, see Fig 4.19 (b), and the polymer, as well as the intensity at the
resonator surface would even be smaller. This would lead to relatively high quality fac-
tors even for high surface roughness. In turn, this higher order modes would not show a
significant enhancement of the nonlinear refraction. Unfortunately, the available powers
of few mW are not sufficient to investigate the threshold power for optical bistability

Figure 4.19: (a) Normalized radial intensity distribution of the fundamental radial
mode for a wavelength around 850 nm in a silica WGM resonator with a diameter of
35 µm and a polymer coating of thickness d = 100 nm. At this wavelength the overlap
of the radial intensity distribution with the polymer film is larger than for the same
coating thickness and λ = 1080 nm (Fig. 4.18). (b) Higher order radial mode in the
same resonator. The overlap of the radial intensity distribution with the polymer film is
much smaller than for the fundamental radial mode. This results in both, less absorption
and a smaller enhancement of the nonlinear refraction. Moreover, the intensity at the
surface is about a factor of two smaller than for the fundamental mode.
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4 From high efficiency add-drop filters to all-optical switches

for the measured quality factors. Such a measurement would be necessary in order to
ensure that the modes under investigation are indeed fundamental radial modes with an
intensity distribution that significantly overlaps with the polymer.

4.4 Conclusion

In this chapter, I investigated optical add-drop filters and all-optical switches which are
based on bottle microresonators, evanescently coupled to two sub-micron diameter fibers.
The ultra-thin fiber coupling method introduces only very small losses and allows one
to adjust the fiber-resonator coupling at will by varying the fiber-resonator gap. This
enabled a systematic study of the power transfer efficiency of the add-drop filter as a
function of its linewidth or, equivalently, its quality factor. Close agreement between the
data and the theoretical prediction was found and a power transfer efficiency of up to
93% was realized for a filter linewidth of only 49 MHz, corresponding to a loaded quality
factor as high as 7.2× 106.

The favorable ratio of absorption losses to nonlinear refractive index of silica, enabled
the observation of optical bistability due to the Kerr effect at a record low threshold
of 50 µW. Single-wavelength all-optical switching of light between two standard optical
single mode fibers with an overall efficiency of 70% was demonstrated at rates of up
to 1 MHz. This bandwidth depends on the loaded quality factor of the resonator and
increases when this quality factor decreases. However, the increased bandwidth comes
at the expense of an increased switching threshold. The corresponding dependency was
investigated, yielding a close agreement with the predicted square law. Moreover, it
was shown that the bottle microresonator coupled to two fibers can also be operated as
an optical memory that allows switching between its two bistable states with a single-
wavelength signal which was accordingly routed to one of the two output ports. Finally I
proposed the possibility to apply this all-optical signal processing functionalities to GHz
rates used in modern telecommunication devices, while at the same time maintaining
moderate threshold powers.
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5 Outlook – bottle microresonators in
cavity quantum electrodynamics

The field of cavity quantum electrodynamics (CQED) was initiated in 1946 when E.M.
Purcell suggested that by coupling a system exhibiting a magnetic transition at radio
frequencies to a resonant electrical circuit the rate of spontaneous emission can be sig-
nificantly enhanced [Pur46]. In modern CQED experiments, single atoms interact with
optical cavity modes in the regime of strong coupling, in which the atom-cavity interac-
tion is much larger than the dissipative mechanisms given by the cavity field decay rate
and the atomic dipole decay rate. Possible future applications of optical CQED systems
include the realization of quantum networks [Kim08] and quantum computation [Dua04].
In this chapter, first a brief overview of the theoretical description of the interaction of
a single atom with a single cavity mode as described by the Jaynes-Cummings model
is given. The spectral characteristics of a real atom-cavity system in the presence of
dissipation, probed by a weak light field can be derived using the density matrix for-
malism. The coupling rate between a cesium (Cs) atom and a bottle mode is calculated
based on the wave functions and mode volumes derived in chapter 2. It is shown, that in
conjunction with the quality factors demonstrated in chapter 3, light matter interaction
deep within the strong coupling regime should be possible. The bottle microresonator
in add-drop configuration, according to the findings from chapter 4, compares favorably
to state-of-the-art CQED systems based on Fabry-Pérot resonators or microtoroidal res-
onators. In particular, it offers a unique combination of excellent CQED parameters,
tunability, frequency stability and advantageous coupling characteristics to external light
fields. Finally, nonlinearities at the single-photon level in a strongly-coupled cavity–atom
system are discussed.

5.1 Strong coupling between one atom and a bottle mode

5.1.1 Jaynes-Cummings model

The interaction between a single two-level atom and a cavity mode is described by the
Jaynes-Cummings model [Coh92, Ber94, Dot07]. The Hamiltonian for an atom coupled
to a cavity mode consists of three terms, that describe the cavity, the atom and their
interaction

H = Hatom +Hcavity +Hint . (5.1)

The eigenstates of the atom are denoted by |g〉 (ground state) and |e〉 (excited state).
Both states are energetically separated by ~ωa = hνa, where νa is the optical resonance
frequency of the atom. The atomic raising and lowering operators σ† = |e〉 〈g| and
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σ = |g〉 〈e| describe the excitation and de-excitation of the atom. The cavity mode
is described by the photon number states |n〉. The energy spacing between adjacent
states is determined by the optical resonance frequency of the cavity, νc, via hνc = ~ωc.
The energy of the cavity field can be derived form Hcavity = ~ωc

(
a†a+ 1/2

)
, where the

photon number operator is the product of the field creation and annihilation operators
a† and a. The dipole interaction between the electric field of the cavity mode and the
atomic dipole moment, ~d, is described by the coupling rate g. It is a function of the
position ~rat of the atom with respect to the cavity field that is given by ~E (~r) = E0

~Ψ (~r),
where E0 is the peak cavity field strength and ~Ψ is the spatial mode function, which is
normalized to unity. The peak value of the coupling rate as well as its spatial variation
is then given by

g0 =
E0d

2~
and g(~r) = g0|~Ψ (~r)| . (5.2)

Using the rotating wave approximation, the Hamiltonian can then be written as

H = ~ωaσ†σ + ~ωc
(
a†a+ 1/2

)
+ ~g

(
σ†a+ σa†

)
. (5.3)

Diagonalizing H yields the new eigenstates and energy eigenvalues of the coupled system
on resonance (ωc = ωa = ω)

|±, n〉 = (|g〉 |n〉 ± |e〉 |n− 1〉) /
√

2 , (5.4)

E±,n = n~ω ±
√
n~g . (5.5)

In the absence of the dipole interaction, the states |g〉 |n〉 and |e〉 |n− 1〉 have identical
energies n~ω. As is apparent from Eq. (5.5), the interaction lifts this degeneracy and
shifts the energy of the new eigenstates. Their energy splitting 2~

√
ng is called Rabi

splitting. The Rabi frequency Ωn = 2
√
ng describes the coherent transfer of energy

between the cavity and the atom.

5.1.2 Density matrix formalism

In a real cavity-atom system that is not isolated from the environment, energy is dissi-
pated due to the leakage of photons from the cavity and spontaneous emission from the
atom to propagating modes. Intuitively, it is clear that the properties of the isolated
cavity-atom system described above are experimentally only observable when the rate
of energy transfer between the atom and the cavity, described by g, is much larger than
the cavity field decay rate κ = 1/(2τcrit) = ωc/2Qcrit, and the transverse atomic dipole
decay rate γ⊥. Note that the cavity field decay rate and the transverse atomic dipole
decay rate only show half the value of the energy decay rates τ−1

crit and Γ = 2γ⊥, which
determine the linewidth of the cavity mode and of the atomic transition. Quantitatively,
the so-called regime of strong coupling between an atom and the cavity mode is defined
via g2/(κγ) � 1. In a simple picture, in this regime a photon can be exchanged be-
tween the cavity and the atom many times before it is lost due spontaneous emission
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or its finite lifetime in the cavity. Rigorously, the coupled system in the presence of
dissipation and a weak driving laser field ε(t) = ε0 exp (iωprobet) with angular frequency
ωprobe = 2πνprobe, used to probe the spectral properties of the system, is described by
the density matrix formalism [Coh92,Ber94,Dot07]. The Jaynes-Cummings Hamiltonian
now includes driving of the cavity by the probe laser and its from in a frame rotating at
ωprobe is given by

H = ~ (ωa − ωprobe)σ
†σ + ~ (ωc − ωprobe) a

†a+ ~g
(
a†σ + aσ†

)
+ ~ε0(a+ a†) . (5.6)

The dissipation is considered using the collapse operator Ĉ =
√

2γ⊥σ+
√

2κa. The time
evolution of the system is described by the equation

dρ

dt
= Lρ , (5.7)

using the atom–cavity density operator ρ and the Liouvillian L, which is given by

Lρ = − i
~

[H, ρ] + ĈρĈ† − 1

2
Ĉ†Ĉρ− 1

2
ρĈ†Ĉ . (5.8)

In general, a steady-state solution for ρ(g, κ, γ⊥) is computed numerically. The expec-
tation value of a given operator Ô is then obtained from 〈Ô〉 = Tr(ρÔ). The following
discussion will be restricted to the case of resonance between the cavity and the atom.
The steady-state solution of Eq. (5.7) can then be derived analytically for the case of
a weak driving field [Ros03]. The probability of finding a photon in the cavity and the
population of the excited state of the atom is given by ρ11 and ρ22, respectively. The
solution is only valid for a weak driving field, where ρ11, ρ22 � 1. For the following
discussion, ρ11 is of special interest. In the case of ωc = ωa = ω and using the notation
∆ωprobe = ωprobe − ω, it is given by

ρ11 =
ε2

0

(
γ2
⊥ + ∆ω2

probe

)
∆ω4

probe +
(
κ2 + γ2

⊥ − 2g2
)

∆ω2
probe + (κγ⊥ + g2)2 . (5.9)

5.1.3 Calculating the coupling rate

Next, the spectral characteristics of a system consisting of a single atom and a bottle
mode will be investigated. In CQED experiments, it is common to use alkali atoms due
to their simple energetic structure which makes them behave similar to a single-electron
system. This can be intuitively understood by the simple shell model. Alkali metals have
only one electron in the outer shell, which only weakly interacts with the electrons from
the fully occupied inner shells. In the following, the D2 (62S1/2 → 62P3/2) transition
in 133Cs is considered. It exhibits a resonant wavelength of λ0 ≈ 852.35 nm and a
transverse dipole decay rate of γ⊥ = 2π · 2.61 MHz. The corresponding transition dipole
matrix element is 〈J = 1/2| er |J ′ = 3/2〉 = 3.80 · 10−29 Cm. The hyperfine structure of
the 62S1/2 state and the 62P3/2 state gives rise to σ transitions between states (F,mf →
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F ′,m′f = mf ± 1) driven by circularly polarized light fields and π transitions of the
form (F,mf → F ′,m′f = mf ), driven by linearly polarized light fields. In both cases,
the dipole selection rules require that F ′ − F = 0, ±1. Since the bottle microresonator
exclusively supports linearly polarized modes only, the latter case is taken into account
here. The transition (F = 4,mf = 0 → F ′ = 4,m′f = 0) exhibits the largest dipole

moment of d =
√

5/18 〈J = 1/2| er |J ′ = 3/2〉 = 2.00 · 10−29 Cm [Ste98]. For a realistic
analysis, the 35–µm diameter resonator, whose TE polarized q = 1 mode exhibited
Qcrit = 1.8 × 108 in the measurements presented in section 3.4.3 is considered. The
corresponding cavity decay rate is κ = 2π · 0.98 MHz. The last missing parameter for
calculating the spectrum of the coupled system is the coupling rate g. Thus, in the
following, the coupling rate for the first excited state of a coupled atom–cavity system
is calculated. The energy of a bottle mode containing one photon is given by

W = ~ωc . (5.10)

Comparing this equation with the expression for the electric energy of a bottle mode,
W = 1/2ε0E

2
0Vm,q , derived in section 3.2.1 yields

E0 =

√
2~ωc
ε0Vm,q

. (5.11)

The peak value of the coupling rate, according to Eq. (5.2), is then calculated to be

g0 = d

√
2π2c0

hε0λ0Vm,q
. (5.12)

This means that the maximum coupling rate is only affected by the mode volume of the

resonator, g0 ∝ V
−1/2
m,q . The mode volumes V180,1 for the TM and TE polarized bottle

modes in a 35–µm diameter resonator are given in Tab. 2.1. Together with a dipole
moment of 2.0 · 10−29 Cm this yields

TM: g0 = 2π · 104 MHz and TE: g0 = 2π · 101 MHz . (5.13)

Figure 5.1 shows the radial dependency of the coupling rate for both modes calculated
from g(r) = g0|~Ψ(r, z = zmax)|. The z coordinate is chosen to coincide with the maximum
in the axial intensity distribution located at zmax < zc, according to Fig. 2.5. For a bottle
resonator an atom can not be placed at the peak of the electric field strength which is
located inside the silica structure. Therefore, the coupling rate close to the surface of
the resonator is the crucial value. At the surface, the coupling rates for both modes
reduce to

TM: gsurf = 2π · 40.1 MHz and TE: gsurf = 2π · 50.0 MHz . (5.14)

These values result in a ratio of g2/(κγ⊥) of 630 and 980, respectively, enabling light-
matter interaction deep within the regime of strong coupling. The discontinuity in the
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5.1 Strong coupling between one atom and a bottle mode

Figure 5.1: Calculated radial dependency of the coupling rate g for the fundamental
TM (a) and TE (b) polarized q = 1 bottle modes in a 35–µm diameter resonator.

Figure 5.2: Spatial variation of the coupling rate close to the resonator surface for
the TE polarized mode from Fig. 5.1 (b). At the surface, (vertical, dashed line) g has
a maximum value of gsurf = 2π · 50.0 MHz which decreases with the distance from
the surface d. For the given parameters, an exponential decay, according to g(d) =
gsurf · exp (−d/d0), with spatial decay length d0 = 142 nm (dashed, black line) is a good
approximation of the result of the rigorous calculation in the region of interest given by
a Bessel function.

TE polarized electric field at the resonator surface leads to a enhancement of g close
to the surface by a factor of 1.25, despite its slightly larger mode volume and therefore
smaller value of g0 as compared to the TM polarized bottle mode. Figure 5.2 shows
the spatial variation of the coupling strength close to the resonator surface for the TE
polarized mode. Unfortunately, an atom adsorbed on the resonator surface will show
drastically altered spectral properties and strong coupling can only be obtained with a
sufficiently large spacing between the atom and the resonator surface. For microtoroidal
resonators it was found that the atom is strongly perturbed by the van der Waals (vdW)
interaction for distances up to 45 nm from the surface [Aok06]. Thus, the exact value of
the coupling rate for the given experimental spacing has to be calculated from gsurf and
the spatial decay length d0.

Figure 5.3 (a) shows ρ11 as a function of the probe laser detuning for a Cs atom
coupled to the TE polarized mode with parameters as discussed above. Figure 5.3 (b)
shows ρ11 for the equivalent mode, but with the quality factor reduced by a factor of
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Figure 5.3: Probability of finding a photon in a bottle mode ρ11, with (g = 2π ·50 MHz,
red line) and without (g = 0, blue line) interaction between the bottle mode and
the atom. In (a) the parameters are set to ε0 = 2π · 0.3 MHz, κ = 2π · 0.98 MHz,
γ⊥ = 2π ·2.61 MHz. In (b) κ = 2π ·24.4 is increased according to Qcrit = 7.2×106 MHz
which is a typical value for a bottle microresonator in add-drop configuration.

25 to Qcrit = 7.2 × 106 MHz. This reduction in the quality factor would yield a power
transfer efficiency of E ≈ 0.96 in add-drop configuration, while maintaining κ = 2π ·24.4
and g2/κγ⊥ ≈ 40. In the absence of an interaction between the atom and the bottle
mode, ρ11, which is proportional to the intracavity energy |a|, has a Lorentzian–shaped
profile with a FWHM of ∆ω = τ−1

crit = 2κ, consistent with the results obtained in
section 3.2.1. In the presence of the atom, the spectrum consists of two peaks separated
by an angular frequency of 2g. The ratio between the maximum values of ρ11 with and
without interaction is given by (κ/(κ+γ⊥))2. Assuming a spectral linewidth of the weak
probe light field of around 1 MHz and ∆ωprobe = 0, the contrast between the intracavity
energy with and without interaction is larger than ρ11(g = 2π ·50 MHz)/ρ11(0) = 1/1000,
for both cases observed in Fig. 5.3.

5.2 Comparing bottle microresonators with state-of-the-art
CQED systems

Cavity quantum electrodynamics with single atoms has been intensively studied using
Fabry-Pérot microresonators. Dielectric cavity mirrors with reflectivity on the order
of 99.9997% [Khu08], allow one to enter the strong coupling regime for waist sizes on
the order of few tens of micrometers and mirror separations on the same length scale.
The modular design of an FP resonator enables free tunability over a longitudinal free
spectral range and therefore ensures matching of a appropriate cavity mode with the
atomic transition frequency. The cavity field is easily accessible and atoms can be
placed and trapped within it by using, e.g., optical dipole traps. However, these system
also suffer from a number of drawbacks. The losses of the dielectric mirror coatings
are on the order of their transmission and, therefore, the coupling of light into and
out of the cavity is inefficient. Dielectric mirror coatings with the required reflectivity
are cutting-edge technology and very costly. Moreover, the modular design, which eases
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tunability, requires active stabilization of the mirror separation on a sub-picometer length
scale [Khu08].

In the following, bottle microresonators are compared with resonators optimized for
single atom CQED experiments, i.e., FP resonators and microtoroidal resonators.

5.2.1 Placing and trapping atoms within the mode volume

The mode of an FP resonator, which is located in free space between both mirrors,
is easily accessible. In early experiments, transits of atoms dropped from a MOT lo-
cated above the cavity through the mode volume were observed by altered transmission
properties of a weak probe beam resonant with the cavity mode and the atomic transi-
tion [Mab96] caused by the Rabi splitting. In [Boc04], a single atom was trapped in an
FP microresonator using an intracavity dipole trap created by an auxiliary cavity mode
far detuned from the atomic resonance frequency. Due to the standing wave structure
of the intracavity field, such a dipole trap forms several potential wells along the cavity
axis. A Raman scheme was used in order to further cool the atomic motion and thus to
prevent variation in the coupling strength g(r) along the cavity axis. The cooling beams
were shone in at an angle of 90◦ with respect to the cavity axis. Using this method,
the axial position was stabilized to ∆z = 33 nm while the transverse localization was
∆ρ = 5.5 µm. For this system, it was possible to measure the Rabi splitting for a single
atom placed in the cavity in a single sweep of the probe laser frequency over the systems
resonance. Another approach for controlled insertion of atoms into an FP cavity is to
use an external standing wave dipole trap, perpendicularly oriented to the cavity axis.
For this purpose two counter-propagating laser beams are tightly focused into the cavi-
ties mode volume. The potential wells of the resulting standing wave can be shifted in
space by detuning the relative frequency of the counter-propagating beams. The trapped
atoms are moved along with the potential wells and thus can be inserted and retrieved
from the cavity [Hij07, For07, Khu08]. In [Hij07] the coupled atom–cavity system was
used as a triggered single-photon source. A single atom was available for single-photon
production for 8 seconds on average.

In contrast, for whispering-gallery mode resonators, the peak value of the electric
field is located inside the resonator material. Coupling of an atom to the microresonator
mode is only possible via the evanescent field. The spatial decay of the coupling strength
outside the resonator takes place on a length scale of few hundred nanometers. This is
much smaller than the accuracy with which a single atom can be positioned by con-
ventional optical methods. Therefore, up to now, only transits of atoms through the
evanescent field were observed for WGM microresonators. In [Aok06], strong coupling
between the mode of a microtoroidal resonator and a single Cs atom was observed. The
transmission of a weak probe beam, critically coupled to the microresonator using an
ultra-thin fiber coupler and resonant with the atomic transition, was monitored while
releasing a cloud of 106 atoms from a MOT placed 10 mm above the resonator. Single
atom transits through the evanescent field of the microtoroidal resonator showed up as
a recovery of the probe transmission through the ultra-thin fiber. Atom transit times on
the order of few microseconds have been observed. In [Ver97] a scheme of confining an
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atom to a circular orbit in close proximity to a microsphere by using two modes, oppo-
sitely detuned from the atomic resonance frequency, is proposed. The red detuned light
field creates an attractive potential, whereas the blue detuned light field compensates
the vdW attraction close to the surface. Another promising method for placing an atom
at a sufficiently small distance from the resonator surface is offered by ultra-thin fiber
based dipole traps [Vet10]. In these devices, atoms are trapped in the evanescent field
surrounding the fiber waist created by two pairs of counter-propagating beams, again
oppositely detuned from the atomic resonance. The strong exponential spatial decay
of the evanescent field which impedes the coupling of atoms to the light field of the
microresonator, allows one to control the radial position of the atoms with outstanding
accuracy in the case of the trap. Moreover, this trap is fully compatible with the bottle
microresonator concept. The ultra-thin waist of the trapping fiber can be placed at one
caustic of the resonator and can in addition be used to couple light into and out of the
bottle mode used for the CQED experiment.

5.2.2 Coupling strength

The CQED parameters for bottle modes, as calculated above, align with FP micro-
resonators and microtoroidal resonators. The performance of FP resonators is discussed
exemplary for two cavities. In both works, the D2 transition of Cs was used. In [Hoo00]
a cavity with a finesse of F = 4.8× 105, corresponding to Q = 1.2× 107, and a length of
10.9 µm yields (g0, κ, γ⊥) = 2π·(110, 14.2, 2.6) MHz corresponding to g2/(κγ⊥) = 330.
For the cavity used in [Khu08] a finesse of F = 1× 106, corresponding to Q = 3.8× 108,
and a cavity length of 160 µm, result in parameters (g0, κ, γ⊥) = 2π·(13, 0.4, 2.6) MHz
and g2/(κγ⊥) = 160.

The microtoroidal resonator for which strong coupling was observed in the experiment
described above had a diameter of 44 µm and a quality factor of Qcrit = 1.9 × 107

[Aok06]. The observed coupling parameters are (g, κ, γ⊥) = 2π·(50±12, 17.9, 2.6) MHz,
corresponding to g2/(κγ⊥) = 54.

5.2.3 Tunability and frequency stability

As mentioned above, the modular design of FP resonators enables full tunability. The
FP microresonator from [Khu08] consists of two mirrors separated by 160 µm. Changing
the mirror separation by 0.5 µm using a piezoelectric actuator, results in a resonance
frequency shift of 1.2 FSRs (1.1 THz). On the other hand, once the cavity is tuned to the
atomic transition, the mirror separation has to be actively stabilized using the Pound-
Drever-Hall (PDH) technique. Due to the high finesse of F = 1× 106, the cavity length
has to be controlled better than δL = λ/(2F) = 0.4 pm in order to stabilize the cavities
resonance frequency within its linewidth of 0.9 MHz (Q = 3.8×108). In contrast, due to
their monolithic design, WGM resonators exhibit an excellent passive frequency stability,
but limited tunability. For the experiments with microtoroidal resonators in [Aok06],
stabilization of the laser frequency by manually changing the resonator temperature
using a Peltier element was sufficient in order to observe strong coupling of Cs atoms and
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a mode with κ = 2π·17.9 MHz (Qcrit = 9.7× 106). However, temperature tuning of the
resonance frequency was only possible within a fraction of the FSR. Therefore, tuning
of an UHQ mode to the atomic transition is not guaranteed. A resonator exhibiting
an UHQ mode that lies close enough to the atomic transition has to be fabricated
by trial and error. In contrast, for the bottle microresonator, it is possible to tune an
UHQ mode to a predetermined frequency for every resonator fabricated using the tuning
scheme presented in section 3.5.3. In fact, stabilization of a bottle mode with an ultra-
high quality factor of Qcrit = 1 × 108 to the D2 transition of 85Rb has already been
demonstrated in our group [Osh10].

5.2.4 Coupling characteristics between the cavity and an external light field

A severe disadvantage of FP resonators is the poor efficiency with which light is cou-
pled into and out of the cavity mode. Typical mirror transmissions t and absorp-
tion/scattering losses a are (t = 4.5 ppm, a = 2 ppm) [Hoo00] or (t = 1.3 ppm,
a = 1.8 ppm) [Khu08]. This results in transmissions T = t2/(t + a)2 of T = 0.48
and T = 0.18. In contrast, the bottle microresonator can be operated in a regime in
which the characteristic time constants for energy transfer between the coupling fibers
are much smaller than the intracavity energy decay. In conjunction with the negligible
losses introduced by the resonator–fiber coupling junction, this enables very efficient en-
ergy transfer between the bottle mode and the in- and output ports of the tapered fibers.
The coupling between the input light field and the resonator mode (set to a fixed value
by the mirror transmission t in the case of an FP) can flexibly be varied by adjusting the
resonator fiber gap. At the critical coupling point, a complete transfer of the incident
optical power to the resonator is possible. As demonstrated in chapter 4, the bottle
microresonator in add-drop configuration is a four-port device with single-mode fiber in-
and outputs. A power transfer efficiency of Etot = 90% between the input port of the
bus fiber and the output port of drop fiber (including losses at the taper transitions)
was demonstrated. At the same time, the loaded quality factor of Qcrit = 7.2 × 106 is
high enough to maintain g2/κγ⊥ ≈ 40.

5.3 CQED experiments using bottle microresonators – two
examples

In order to complete this discussion, I want to point out two possible applications for the
bottle microresonator in CQED experiments. In a so-called “single-atom beamsplitter”,
photons are routed between the output ports of a bottle microresonator in add-drop
configuration, depending on the energy state of an atom located in its evanescent field.
In another experiment, the anharmonicity of the ladder of eigenstates, as predicted by
the Jaynes-Cummings model, is employed to generate nonlinearities at the single-photon
level, which can be used to control the flow of light in a so-called “photon turnstile”
device.
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Figure 5.4: Schematic of the “single-atom beamsplitter”. (a) Simplified energy level
scheme of 133Cs. The cesium atom can be switched between the F = 3 and F = 4
hyperfine ground states using microwave radiation at a frequency of ωµ = 2π×9.2 GHz.
Exposure of the atom, originally in the F = 3 state, to a resonant microwave π pulse,
transfers the atom into the F = 4 state which then couples to a light field (red arrow)
with frequency ωa, resonant with the (F = 4 → F ′ = 4) transition. (b-c) A weak
light field with frequency ωa is coupled into one of the input ports (I1) of the bottle
microresonator in add-drop configuration. The resonance frequency ωc of the bottle
mode is also stabilized to the frequency of the atomic transition ωa. The possibility
of on- and off-switching of the interaction between the bottle mode and the atom by
a microwave pulse enables routing of the input light field between both fiber outputs
(O1 and O2). (b) If the atom is in the F = 3 state, the coupling rate between the
atom and the resonator mode is zero. In this case, the input light field is resonantly
coupled to the resonator mode and is thus transferred to output O2. (c) As soon as
the atom is excited to the F = 4 state, it strongly couples to the bottle mode. The
resonance frequencies of the eigenmodes of the strongly coupled atom–cavity system
are now detuned from ωa, see Fig. 5.3 (b). The input light field can no longer enter the
cavity and is transmitted through the bus fiber.

5.3.1 A single-atom beamsplitter

In Fig. 5.4, a single-atom beamsplitter is schematically shown. It consists of a single
cesium atom, located in the evanescent field of a bottle microresonator in add-drop
configuration. Its resonance frequency ωc as well as the frequency of the fiber-guided
light to be processed are locked to the atomic (F = 4→ F ′ = 4) transition. The atom-
cavity coupling can be switched on and off by switching the atom between the F = 3
and the F = 4 hyperfine ground states using microwave pulses. This routes the photons
between both output ports of the add-drop device. Applying a microwave π/2 pulse, the
atom can be prepared in a superposition 1/

√
2(|F = 3〉+ i |F = 4〉) of both states. This

enables generation of entangled states, in which the atomic state and the propagation of
a single photon are correlated. The same scheme will also work for weak coherent light
pulses with Poissonian photon statistics, i.e., classical light fields. It should therefore be
possible to generate entangled states in which the internal atomic state is correlated with
the propagation of a classical light field. Such an entangled state in which a classical and
a quantum mechanical parameter are correlated is of fundamental interests in the field
of physics. According to the famous gedankenexperiment by Erwin Schrödinger these
states are called Schrödinger cat states.
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Figure 5.5: Ladder of eigenstates of a strongly coupled atom–cavity system, as pre-
dicted by the Jaynes-Cummings model in the case of ωc = ωa = ω. The ground state
corresponds to the bare atom-cavity system. By absorbing one/two photons the system
is transferred to the first/second excited state. The Rabi splitting ~Ωn = 2~

√
ng of the

excited states depends on the photon number n. In contrast to a bare cavity with a
constant energy spacing of ~ωc between adjacent modes, the energy levels of the coupled
system exhibit distinct spacings, giving rise to single-photon nonlinearities. For a probe
beam with frequency ωprobe = ωc − g, absorption of one photon leads to a detuning of
∆ from the next resonance of the coupled atom-cavity system.

5.3.2 Nonlinearities at the single-photon level

Finally, I want to come back to the field of nonlinear light-light interaction. In the
case of strong coupling between the cavity and a single atom, it is possible to observe
nonlinearities at the single-photon level. The nonlinearity in such a system is caused
by the anharmonicity of the ladder of eigenstates as predicted by the Jaynes-Cummings
model according to Eq. (5.5). This is illustrated in Fig. 5.5 for ωc = ωa. The equidistant
spacing of the energy levels of the bare cavity is lifted in the case of strong coupling. The
absorption of one photon, with energy ~ωprobe = ~ωc − ~g, then results in a detuning
of the systems resonance frequency with respect to ωprobe. This leads to a situation
known as “photon blockade” [Bir05], in which a second photon can not enter the cavity.
Such a system can be employed as a photon turnstile device. The flow of photons is
regulated, because they can only pass the system one by one. In [Bir05], a light field
of frequency ωprobe = ωc − g exhibiting Poissonian photon statistics was coupled to a
Fabry-Pérot microresonator resonant with a single Cs atom. Sub-Poissonian photon
statistics with pronounced anti-bunching were observed for the light field transmitted
through the cavity. In [Day08] a similar change in the photon statistics of the light trans-
mitted through an ultra-thin fiber, coupled to a microtoroidal resonator was observed
during single-atom transits through the evanescent field of the resonator. In the case of
a whispering-gallery mode resonator one has to take into account that the atom cou-
ples to both counter-propagating modes of the resonator. A full description of a single
atom interacting with a fiber-coupled whispering-gallery mode resonator containing two
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counter-propagating light fields is given in the Supplementary Information of [Aok06]
and [Day08]. The bottle microresonators combines light-matter interaction in the strong
coupling regime with operation in a highly efficient add-drop configuration and therefore
offers is an interesting system to study the effects described above.
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