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Please ask questions!
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Topic of the lecture

Graphical models :

Graphical modeling is a convenient
representation of conditional dependences
among random variables

It is a powerful tool for

exploring “direct effect” between variables
fast computations in complex models

It is popular in many different fields,
including bioinformatics, computer vision,
speech recognition, environmental statistics,
economics, social sciences, etc
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Warning

Two important topics :

learning graphical models

learning with graphical models
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Warning

Two important topics :

learning graphical models

learning with graphical models
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Example 1

Figure: Learning Biological Regulatory Networks

Seminal reference : Friedman [6]
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Example 1

Figure: Learning Gene-Gene Regulatory Networks from microarrays

Seminal reference : Friedman [6]
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Example 1

Figure: Gene-Gene regulatory network of the yeast
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Example 2

Figure: Learning Brain Connectivity Networks
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Example 3

Figure: Learning “direct effects” in Social Sciences
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Conditional independence
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The concept of conditional dependence is more suited than the
concept of dependence in order to catch ”direct” dependences
between variables

Traffic jams and snowmen are correlated.

But conditionally on snow falls, the size of
the traffic jams and the number of snowmen
are independent.

Figure: Difference between dependence and conditional dependence
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Conditional independence

random variables X and Y are independent conditionally on a
variable Z (we write X ⊥⊥ Y | Z ) if

law((X ,Y )|Z ) = law(X |Z )⊗ law(Y |Z ).

Caracterisation

When the distribution of (X ,Y ,Z ) has a positive density f , then

X ⊥⊥ Y | Z ⇐⇒ f (x , y |z) = f (x |z)f (y |z)

⇐⇒ f (x , y , z) = f (x , z)f (y , z)/f (z)

⇐⇒ f (x |y , z) = f (x |z) ,
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Directed acyclic model
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Terminology

Directed graph
→
g

set of nodes and arrows

Acyclic

no sequence of arrows forms a loop
in the graph

Parents

the parents of a is the set pa(a) of nodes b such that b → a

Descendent

the descendent of a is the set de(a) of nodes that can be reached
from a by following some sequence of arrows.
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Xa ⊥⊥ {Xb : a 9 . . . 9 b}
conditionally on {Xc : c → a}

Directed acyclic graphical model

The law of the random variable X = (X1 . . . , Xp) is a graphical

model according to the directed acyclic graph
→
g if

for all a, Xa ⊥⊥ {Xb, b /∈ de(a)} | {Xc , c ∈ pa(a)}

We write L(X ) ∼
→
g .

Remark: if
→
g⊂

→
g
′
and L(X ) ∼

→
g then L(X ) ∼

→
g
′
.
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Warning

There is no unique minimal graph in general!

Be careful with the interpretation of directed graphical
models !

Example:

Xi+1 = αXi + εi with εi independent of X1, . . . ,Xi−1.

Then, the two graphs

1→ 2→ . . .→ p and 1← 2← . . .← p

are minimal graphs for this model.
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The issue of estimating the minimal
→
g is ill-posed in this context.

Yet,

1 it is very useful for defining / computing laws (next slides)

2 it can be used for exploring “causal effect” (last part of the
talk)
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Bayesian networks / DAG models

Here, we assume that
→
g is known (from expert knowledge).

Factorization formula

If L(X ) ∼
→
g , we have

f (x1, . . . , xp) =

p∏
b=1

f (xb|xpa(b))

Proof: for a leaf p

f (x1, . . . , xp) = f (xp|x1, . . . , xp−1)f (x1, . . . , xp−1)

= f (xp|xpa(p))f (x1, . . . , xp−1)

�

Very useful for defining / computing f !

Sampling with Gibbs sampler
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Learning with graphical models

Examples of applications

speech recognition

computer vision

ecological monitoring

decision making

diagnosis

environmental statistics

etc
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Examples

Seals monitoring (Ver Hoef and Frost [17])

Ice streams (Berliner et al.)
http://www.stat.osu.edu/∼sses/collab ice.html
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Non-directed model
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Terminology

Non-directed graph

set of nodes and edges

The nodes are labelled by 1, . . . , p.

Neighbors

The neighbors of a are the nodes in ne(a) =
{
b : b

g∼ a
}

Class of a

We set cl(a) = ne(a) ∪ {a}

23/73

Christophe Giraud Graphical models



Xa independent from {Xb : b � a}
conditionally on {Xc : c ∼ a}

Non-directed graphical model

The law of the random variable X = (X1 . . . , Xp) is a graphical
model according to the non-directed graph g if

for all a: Xa ⊥⊥ {Xb, b /∈ cl(a)} | {Xc , c ∈ ne(a)}.

We write L(X ) ∼ g .

Remark: if g ⊂ g ′ and L(X ) ∼ g then L(X ) ∼ g ′.
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Minimal graph

Minimal graph

When X has a positive density there exists a unique minimal graph
g∗ such that L(X ) ∼ g∗.

In the following, we call simply “graph of X” the minimal graph g∗
such that L(X ) ∼ g∗.

Our main goal will be to learn g∗ from data.
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Connection with directed acyclic graphs

Moral graph

The moral graph gm associated to a directed acyclic graph
→
g is

obtained by

setting an edge between each parents of each nodes

replacing arrows by edges

Proposition

L(X ) ∼
→
g =⇒ L(X ) ∼ gm

Proof :

1 From the factorization formula, ∃ g1, g2 such that

f (x) = g1(xa, xnem(a)) g2(xnnm(a), xnem(a))

where nnm(a) = {1, . . . , p} \ clm(a).

2 This ensures Xa ⊥⊥ Xnnm(a) given Xnem(a). �
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Factorization in undirected graphical models

Hammersley-Clifford formula

For a random variable X with positive density f

L(X ) ∼ g ⇐⇒ f (x) ∝ exp

( ∑
c:c∈cliques(g)

gc(xc)

)
.

Proof : based on Möbius inversion formula.
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Questions so far?
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Gaussian graphical models

In the remaining X ∼ N (0,Σ), with Σ non singular.
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Reminder on Gaussian distribution (1/2)

Proposition 1 : Gaussian conditioning

We consider two sets A = {1, . . . , k} and B = {1, . . . , p} \ A, and a

Gaussian random vector X =

[
XA

XB

]
∈ Rp with N (0,Σ) distribution.

We write K =

[
KAA KAB

KBA KBB

]
for Σ−1 and K−1

AA for the inverse (KAA)−1

of KAA.

Then, we have

Law(XA |XB) = N
(
−K−1

AA KABXB ,K−1
AA

)
which means

XA = −K−1
AA KABXB + εA,

with εA ∼ N
(
0,K−1

AA

)
independent of XB .
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Proof: We have for some function f that we do not need to make
explicit

g(xA|xB) = g(xA, xB)/g(xB) = exp

(
−1

2
xT
A KAAxA − xT

A KABxB

)
f (xB).

As a consequence,

g(xA|xB) ∝ exp

(
−1

2
(xA + K−1

AA KABxB)TKAA(xA + K−1
AA KABxB)

)
where the factor of proportionality does not depend on xA.

We recognize the density of the Gaussian N
(
−K−1

AA KAB xB ,K−1
AA

)
law. �

Ref: Lauritzen [11]
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Reminder on Gaussian distribution (2/2)

Partial correlation

For any a, b ∈ {1, . . . , p}, we have

cor(Xa,Xb|Xc : c 6= a, b) =
−Ka,b√
Kaa Kbb

.

Proof : The previous proposition with A = {a, b} and B = Ac

gives

cov(XA|XB) =

(
Kaa Kab

Kab Kbb

)−1

=
1

KaaKbb − K 2
ab

(
Kbb −Kab

−Kab Kaa

)
.

Plugging this formula in the definition of the partial correlation
gives the result. �
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Reading the graph g on K

From K to g

We set K = Σ−1 and define the graph g by

a
g∼ b ⇐⇒ Ka,b 6= 0. (1)

GGM and precision matrix

For the graph g defined by (1), we have

1 L(X ) ∼ g and g is minimal.

2 There exists εa ∼ N (0,K−1
aa ) independent of {Xb : b 6= a}

such that

Xa = −
∑

b∈ne(a)

Kab

Kaa
Xb + εa .
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Proof. We apply Proposition 1 :

1 We set A = {a} ∪ nn(a) and B = ne(a), where
nn(a) = {1, . . . , p} \ cl(a). The precision matrix restricted to A is

KAA =

(
Kaa 0
0 Knn(a) nn(a)

)
so its inverse is

(KAA)−1 =

(
K−1

aa 0
0 (Knn(a) nn(a))

−1

)
.

The above Lemma ensures that the law of X{a}∪nn(a) given Xne(a) is
Gaussian with covariance matrix (KAA)−1 so Xa and Xnn(a) are
independent conditionally on Xne(a).

2 The second point is obtained with A = {a} and B = Ac .
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Estimation strategies

Goal

From a n-sample X1, . . . ,Xn i.i.d. with distribution N (0,Σ), we
want to estimate the (minimal) graph g such that L(X ) ∼ g .

The above results suggest 3 estimations strategies:

1 by estimating the partial correlations + multiple testing

2 by a sparse estimation of K

3 by a regression approach
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Estimation with partial correlation (1/3)

Reminder 1

a
g∼ b ⇐⇒ ρa,b := cor(Xa,Xb|Xc : c 6= a, b) 6= 0

Reminder 2

ρa,b =
−Ka,b√
Kaa Kbb

Partial covariance estimation

For n > p, we estimate ρa,b by

ρ̂ab =
−
[
Σ̂−1

]
ab√[

Σ̂−1
]
aa

[
Σ̂−1

]
bb

,

where Σ̂ is the empirical covariance.
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Estimation with partial correlation (2/3)

Under the null hypothesis

when ρa,b = 0 and n > p − 2, we have

t̂a,b :=
√

n − 2− p × ρ̂ab√
1− ρ̂ 2

ab

∼ Student(n − p − 2).

Estimation procedure

1 Compute the t̂a,b

2 Apply a multiple testing thresholding

Weakness

when p > n − 2 the procedure cannot be applied

when n > p but n − p small, t̂a,b has a large variance and the
procedure is powerless
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Estimation with partial correlation (3/3)

Solution 1: Shrinking the conditioning

work with ĉor(Xa,Xb|Xc : c ∈ S) with S small
Ref: Wille and Bühlmann [19], Castelo and Roverato [2],
Spirtes et al. [16] or Kalisch and Bühlmann [8].

, ĉor(Xa,Xb|Xc : c ∈ S) is stable when S is small

/ it is unclear what we estimate at the end (in general)

Solution 2 : Sparse estimation of K

The instability for large p comes from the instability of Σ̂−1 for
estimating K .

Build a more stable estimator of K capitalizing on its
sparsity.
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Sparse estimation of K (1/2)

The likelihood of a p × p positive symmetric matrix K ∈ S+
p is

Likelihood(K ) =
n∏

i=1

√
det(K )

(2π)p
exp

(
−1

2
XT

i KXi

)
.

Negative log-likelihood

The negative-log-likelihood

K → −n

2
log(det(K )) +

n

2
〈K , Σ̂〉F

is convex.

Graphical Lasso : sparse estimation of K

K̂λ = argmin
K∈S+

p

{
− n

2
log(det(K )) +

n

2
〈K , Σ̂〉F + λ

∑
a 6=b

|Kab|
}
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Sparse estimation of K (2/2)

Efficient optimization algorithms.
Ref: Friedman et al. [5], Banerjee et al. [1]

Poor empirical results reported by Villers et al. [18]

Theoretical guaranties under some “compatibility conditions”
hard to check/interpret (by Ravikumar et al. [14])

keep the (good) idea of exploiting the sparsity, but move
to the more classical regression framework.
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Regression approach (1/4)

Definitions

Θ = the set of p × p matrices with zero on the diagonal

θ : matrix in Θ defined by θab = −Kab/Kbb for a 6= b

Characterization

θ = argmin
θ∈Θ

‖Σ1/2(I − θ)‖2F

Proof:
E[Xa|Xb : b 6= a] =

∑
b θbaXb since Xa =

∑
b θbaXb + εa. So:

θ = argmin
θ∈Θ

E
[ p∑

a=1

(
Xa −

∑
b:b 6=a

θbaXb

)2]
= argmin

θ∈Θ
E
[
‖X − θTX‖2

]
= argmin

θ∈Θ
‖Σ1/2(I − θ)‖2F
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Regression approach (2/4)

Replacing Σ by Σ̂, we obtain

〈(I − θ), Σ̂(I − θ)〉F =
1

n
‖X(I − θ)‖2F .

Estimation procedure

θ̂λ = argmin
θ∈Θ

{
1

n
‖X− Xθ‖2F + λΩ(θ)

}
with Ω(θ) enforcing coordinate sparsity.

Examples :

1 `1 penalty : Ω(θ) =
∑

a 6=b |θab|

2 `1/`2 penalty : Ω(θ) =
∑

a<b

√
θ2
ab + θ2

ba
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Regression approach (3/4)

With the `1 penalty : (Meinshausen and Bühlmann [13])

, We can split the minimization into p problems in Rp−1

[
θ̂`1

ba

]
b:b 6=a

= argmin
β∈Rp−1

{
1

n
‖Xa −

∑
b

βbXb‖2 + λ|β|`1

}

Very efficient algorithms by coordinate descent.

/ No constraint enforces that θ̂`1

ab 6= 0 when θ̂`1

ba 6= 0.

=⇒ choose an arbitrary decision rule to build ĝ from θ̂`1

.

Examples:

1 set an edge between a ∼ b in ĝ when either θ̂`1

ab 6= 0 or θ̂`1

ba 6= 0.

2 set an edge a ∼ b in ĝ when both θ̂`1

ab 6= 0 and θ̂`1

ba 6= 0.
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Regression approach (4/4)

With the `1/`2 penalty :

, Symmetric zeros

=⇒ no ambiguity to define ĝ from θ̂
`1/`2

λ

/ Computational cost

The minimization problem cannot be split into p subproblems and it is
less easy to minimize it in large dimensions.

Algorithm : iterate on couple (a, b) until convergence

1 set ∆ =

(
∆ab

∆ba

)
with ∆ab = 1

nX
T
a (Xb −

∑
k 6=a,b θ̂kbXk).

2 set (
θ̂ab

θ̂ba

)
←
(

1− λ

2‖∆‖

)
+

(
∆ab

∆ba

)
.
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Bayesian approach

A series of papers [20, 4, 15] investigate the Bayesian approach.

Issues

1 design of sensible priors

2 efficient posterior sampling

To the best of my knowledge, cannot handle large dimensional
problems
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Conclusion(?)

Conclusion

we have the choice between multiple procedures

for each procedure, there is at least one (non-scale free)
tuning parameter to choose

=⇒ we need a selection criterion
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Classical selection criterion

We have a collection G of graphs.

Unbiased risk estimation

AIC = −2 log(L(g)) + 2|g |

Bayesian criterion

−2 log(P(g |X))
n→∞
≈ BIC = −2 log(L(g))+ |g | log(n)−2 log(P(g))

Only mathematically grounded in asymptotic setting :
p fixed and n→∞.
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Resampling criterions

Cross-Validation schemes

train train train train test

train train train test train

train train test train train

train test train train train

test train train train train

Figure recursive data splitting for 5-fold Cross-Validation

No guaranty in high-dimensional settings : p � n or p ≈ n.
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GGMselect

GGMselect

R package (available on http://cran.r-project.org/) which

1 generates a collection Ĝ of candidates graphs according to the
above procedures (+ some variants)

2 selects “the best” graph among Ĝ
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GGMselect

Quality criterion

For a graph g

MSEP(g) = Mean Square Error of Prediction related to g
= bias(g) + variance(g)

where

bias(g) quantifies how important are the missing edges

variance(g) is roughly proportional to the number of edges in
g divided by n.

Why MSEP?

It is a way to quantify the importance of each edge.

50/73

Christophe Giraud Graphical models



GGMselect

Ideal

Select g∗ = argmin{MSEP(g) : g ∈ Ĝ}
−→ g∗ unknown!

Selection criterion

”select ĝ which minimizes some penalized empirical MSEP”

where the penalty term:

roughly penalizes each node of ĝ according to its degree
(number of edges),

is based on quantiles of Fisher random variables.
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GGMselect

Theorem : oracle-like inequality for GGMselect

If max
g∈bG {deg(g)} ≤ ρ

n

2
(
1.1 +

√
log p

)2 , for some ρ < 1,

then the estimated graph ĝ fulfills

MSEP(ĝ) ≤ cρ E

[
inf
g∈bG {bias(g) + log(p) var(g)}

]
+ Rn,

where Rn = O(Tr(Σ)e−c ′ρn + CVar(Σ) log(p)/n)

with CVar(Σ) =
∑

a

(
Σ−1

aa

)−1
.

Ref: Giraud et al. [7]
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GGMselect

Theorem : oracle-like inequality for GGMselect
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52/73

Christophe Giraud Graphical models



GGMselect

Optimality?

Optimal selection criterion?

”minimal” size of the penalty to avoid overfitting

minimax estimation rates when Ĝ contains good graphs

What about the condition on the degree? (n/2 log p)
unavoidable, otherwise estimation rate gets worse.
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Practical issues : Gaussianity

Gaussianity?

Hammersley-Clifford formula

For a random variable X with positive density f

L(X ) ∼ g ⇐⇒ f (x) ∝ exp

( ∑
c:c∈cliques(g)

gc(xc)

)
.
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Practical issues : Gaussianity

Gaussianity?

Data transformation: fj(Xj) := Φ−1(Fj(Xj)) ∼ N (0, 1)

Assumption: (f1(X1), . . . , fp(Xp)) ∼ N (0,Σ)

Key point: graph(X1, . . . ,Xp) = graph(f1(X1), . . . , fp(Xp))

Estimation: work with f̂j(Xj) = Φ−1(F̂j(Xj)) for some estimator

F̂j .

Ref: Data transformations proposed by Lafferty et al. [10]
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Practical issues : Hidden variables

Hidden variables?

we may only observe part of the relevant variables:

X =

(
XO

XH

)
∼ N

(
0,

(
ΣOO ΣHO

ΣOH ΣHH

))
with XO observed and XH

unobserved.

We only have access to (ΣOO)−1 = KOO − KOH(KHH)−1KHO

Ref: Chandrasekaran et al. [3] proposes a sparse + low rank
estimation to recover KOO when H is small
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Back to directed models
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Reminder

Xa ⊥⊥ {Xb : a 9 . . . 9 b}
conditionally on {Xc : c → a}
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“Causal” inference

Setting

We have p covariables X1, . . . ,Xp and Y a variable of interest.

[X ,Y ] is a Gaussian graphical model according to
→
g .

No arrows from Y to X1, . . . ,Xp

Example

Y is the end product of a metabolic
network

X1, . . . ,Xp are protein abundances
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“Causal” inference

Direct versus “Causal” effect

Direct effect given by θa in

E[Y |X1, . . . ,Xp] =
∑
b

θbXb

Causal effect (relative to
→
g ) given by βa in

E[Y |Xa,Xb : b ∈ pa(a)] = βaXa +
∑

b∈pa(a)

βbXb
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“Causal” inference

Main issue

Causal effects are defined relative to
→
g and there is no unique

minimal directed graph...

find all the DAG
→
g (1), . . . ,

→
g (m) such that L(X ) ∼

→
g (k)

compute a lower bound of the causal effect:

β∗ = min
{
β(1), . . . , β(m)

}
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PCalg

PCalg

R package (available on http://cran.r-project.org/) which

estimates the DAG
→
g (1), . . . ,

→
g (m) from the data

estimates β(1), . . . , β(m) and β∗

Ref:

Kalish et al [9]

Maathuis et al. [12]
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PC algorithm

Principle of PC algorithm

Init : g = complete graph

Iterate :

for a = 1, . . . , p, for b ∈ ne(a): remove a− b if
ĉor(Xa,Xb) < t0

for a = 1, . . . , p, for b ∈ ne(a): remove a− b if
∃c1 ∈ ne(a) such that ĉor(Xa,Xb|Xc1) < t1

for a = 1, . . . , p, for b ∈ ne(a): remove a− b if
∃c1, c2 ∈ ne(a) such that ĉor(Xa,Xb|Xc1 ,Xc2) < t2

. . .

Output : skeleton of the DAGs

Last step: compute
→
g (1), . . . ,

→
g (m) from the skeleton
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Riboflavin prediction

Figure: Important genes for riboflavin production

Ref : Kalish et al [9]
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Warning

Be aware of over-interpretation : we cannot reliably infer
causal networks on i.i.d. data

Relies on uncheckable assumptions

But, seems promising for ranking covariables
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Statistics in high-dimensional setting

Despite theorem, do not trust to much statistical inferences in
high-dimensional setting n� p
ex: gene pre-selection, metagenes, etc

It is not a validation tool, but rather a good tool for providing
good hints

Requires experimental validations.

References on high-dimensional statistics:

Lecture Notes on High-Dimensional Statistics
http://www.cmap.polytechnique.fr/∼giraud/MSV/LectureNotes.pdf

The Element of Statistical Learning
by Hastie, Tibshirani, Friedman
www-stat.stanford.edu/∼tibs/ElemStatLearn/
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Thank you!
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[9] Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H.
Maathuis, and Peter Bühlmann.
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