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Abstract. Time dependent experiments with evanescent modes (photonic tunneling)
can be performed with high precision and at a macroscopic scale with microwaves in
the range of meters or in the infrared regime in the range of centimeters. The infrared
technology is the present day digital signal processing and transmission. Superluminal
(faster than light) signal transmission by evanescent modes was shown by Enders and
Nimtz already 1992 [1].

Evanescent modes are solutions of the Helmholtz equation with imaginary wave
vectors which are equivalent to the tunneling solutions of the Schrödinger equation.
Experiments of transmission and of partial reflection of microwaves by photonic po-
tential barriers revealed superluminal signal velocity of evanescent modes. The effect
is a near field phenomenon and violates the relativistic causality.

In this contribution superluminal experiments are introduced and explained.

1 Introduction

During the last decade much research and arguing was devoted to superluminal
signal velocity vsignal > c, where c is the vacuum velocity of light [2–5]. I am
not talking about the phase velocity vphase, which exceeds in several media the
velocity c of light. The relevant signal velocity is in charge of the transmission
of a defined cause and subsequent effect. Actually, the near field phenomena
evanescent modes and tunneling represent the exception of vsignal ≤ c.

In this lecture I present experiments on superluminal signal velocity of evanes-
cent modes. Evanescent modes are solutions of the Helmholtz equation. Like
wave mechanical tunneling functions these special solutions are characterized
by a purely imaginary wave number. The wave number represents 2π times the
reciprocal wavelength. Accordingly evanescent modes do not have a real wave
length and the phase time approach conjectured the observed instantaneous field
spreading of evanescent modes. However, a superluminal signal velocity does not
violate the primitive causality (the effect cannot precede the cause). But a su-
perluminal signal velocity violates the relativistic causality, often called Einstein
causality: no signal can propagate with a velocity greater than c. Experiments
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show that detectors receive signals transmitted by evanescent modes earlier than
signals, which traveled the same distance in vacuum. For instance the detector
makes earlier click in the case of a tunneled digital signal or receives a tunneled
melody before detecting the air born one. Even though as explained in Sect. 8
the design of a time machine is still not possible by signaling with superluminal
evanescent modes.

Studies with evanescent waves were stimulated in order to obtain analogous
experimental data on quantum mechanical tunneling time. Tunneling represents
the quantum mechanical analogy to the electromagnetic evanescent modes [6].
As there have been no experimental data on quantum mechanical tunneling
time available, the propagation time of evanescent modes was studied, which is
easier to measure than particle tunneling time. More over in the case of electron
tunneling in semiconductor devices there are present time consuming parasitical
Coulomb interactions which determine the measured tunneling time.

The tunneling time is of the order of the reciprocal frequency of the wave
packet [13,15]. This time is spent at the entrance boundary as will be shown in
Sect. 6. From an experimental point of view the transit time for a wave packet
propagating through a barrier is measured as the interval between the arrivals
of the signal envelope at the two ends of that region.

An example of evanescent digital signals transmitted with microwaves is dis-
played in Fig. 1. The half width (the time duration at half the maximum inten-
sity) represents the number of digits. To make a comparison the small tunneled
wave packet is amplified by about a factor of 10 000 (i.e. 40 dB), however, re-
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Fig. 1. Intensity vs time of a microwave pulse (2), which has tunneled at superluminal
velocity through a photonic barrier in a wave-guide of 114.2 mm length. For comparison
the tunneled, digital signal is normalized with a pulse (1), which propagated through
a normal waveguide of the same length. The tunneled digital signal traveled at a speed
of 4.7 c [7]. The halfwidth (solid line) of the pulse equals the number of digits, i.e. it
represents the signal
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member that a signal is independent of intensity as its intensity exceeds that
of the thermal noise as discussed in Sect. 7. The evanescent pulse displayed in
Fig. 1 traveled with a superluminal velocity of 4.7 c.

Incidentally, vsignal > c does not occur in experiments based on a near to
resonance interaction with a Lorentz–Lorenz like oscillator. This oscillator is
the paradigm of particle polarization in electric fields [8]. In those experiments
pulses can display even a negative group velocity [9]. But only the peak of the
pulse traveled at a negative group velocity and not the whole envelope of the
signal. The interacting field distribution of the signal was reshaped and the signal
envelope traveled at subluminal velocity.

At present there is much ado about quantum teleportation [10]. As those so-
phisticated quantum mechanical experiments include a classical communication
channel the signal velocity becomes vsignal ≤ c finally. Incidentally, teleporta-
tion is a technique applied in telecommunication for a long time, where sound
(phonons) are transformed into electromagnetic waves (photons), which travel a
million times faster than sound and the receiver transformed the electromagnetic
waves back into the slow but understandable sound. For the time being evanes-
cent modes and tunneling seem to represent the only mechanisms to achieve
superluminal signal velocities.

In the following some elementary quantities and relations are reminded. The
propagation of waves ψ ∼ ei(k·x−ωt) in space is described by the a relation
connecting the wave number k or, equivalently, the wavelength with the angular
frequency ω

k = k(ω) = k0 · n(ω) , λ(n) = λ0/n(ω) . (1)

Here k0 is the wave number and λ0 the wavelength of waves in vacuum which
are related k0 = 2π/λ0. Furthermore, n(ω) = n′(ω) − in′′(ω) is the refractive
index n we are familiar with from Snellius’ law. The quantities n′ and n′′ real
and imaginary parts of the refractive index of the medium in question. Both
quantities, k and n are in general complex functions of frequency. The imaginary
parts describe the attenuation or amplification of waves. The attenuation may
be caused either by dissipation or by reflection. Waves with purely imaginary
refractive index n(ω) and wave number k(n) are called evanescent modes.

2 Wave Propagation

2.1 Maxwell and Schrödinger Equations

For electromagnetic waves and hence for photons, the propagation of waves can
be described by the Maxwell equations and for massive particles by the Klein–
Gorden, the Dirac or, in the non-relativistic regime, by the Schrödinger equation.

The Maxwell equations in media characterized by some refractive index n =√
µε, where µ and ε are the relative permeability and the relative permittivity,

lead to the wave equation

−∇2φ(x, t) +
n2

c2
∂2

∂t2
φ(x, t) = 0 , (2)
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φ being any component of the electrical and the magnetic fields. In vacuum
characterized by n = 1 waves propagates with the velocity c = (µ0ε0)−1/2,
where µ0 and ε0 are the permeability and the permittivity, respectively.

If we describe phenomena periodic in time with frequency ν = ω/(2π),

φ(x, t) = φx(x)eiωt , (3)

then the wave equation reduces to the Helmholtz equation

∇2φx(x) +
n2ω2

c2
φx(x) = 0 . (4)

As usual, this equation will be solved by a plane wave ansatz

φx(x) = φ0e
−ik·x , (5)

what leads to a relation between the wave number and the refractive index

k2 =
n2ω2

c2
= k2

0n
2 = k2

0εµ , (6)

where k0 is the wave number in free space. If k and, thus, n are purely imaginary
then the solution is called an evanescent mode. The imaginary wave number is
usually expressed by κ. In Sect. 3 we will discuss three popular examples, where
these special solutions occur.

Similar features can be found for the stationary Schrödinger equation

Eψ(x) = − �
2

2m
∇2ψ(x) + U(x)ψ(x) , (7)

where E is the energy of the stationary state, m is the mass of the particle and
U(x) is a position-dependent potential, the barrier potential, for example. This
relation is mathematically equivalent to the Helmholtz equation

∇2ψ(x) +
2m
�2

(E − U(x))ψ(x) = 0 . (8)

Again, a plane wave ansatz

ψ(x) = ψ0e
−ik·x (9)

yields for the wave number k

k2 =
2m
�2

(E − U) = k2
0 − 2mU

�2
, (10)

where k2
0 = 2mE/�

2 is the wave vector at infinity, where U is assumed to
vanish. Particles in regions for which E < U , that is, inside the potential barrier,
are quantum analogues of evanescent modes. Obviously, for the electromagnetic
evanescent modes the refractive index plays the role of the potential in the wave
mechanical tunneling.
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Fig. 2. Sketch of three photonic barriers. (a) illustrates an undersized wave guide (the
central part of the wave guide has a cross section being smaller than half the wavelength
in both directions perpendicular to propagation), (b) a 1-dimensional photonic lattice
(periodic dielectric hetero structure), and (c) the frustrated total internal reflection of
a double prism, where total reflection takes place at the boundary from a denser (the
first prism with refractive index n1) to a lesser dielectric medium (with refractive index
n2)

3 Photonic Barriers, Examples of Evanescent Modes

Prominent examples of evanescent modes are found in undersized wave guides
(both dimensions of the guide cross section are smaller than half the vacuum
wavelength), in the forbidden frequency bands of periodic dielectric hetero-
structures (photonic lattice), and with double prisms in the case of frustrated
total internal reflection [3,5]. The three examples are illustrated in Fig. 2. Dielec-
tric lattices are analogous to electronic lattices of semiconductors with forbidden
energy gaps. As seen below the square number of the imaginary refractive index
n′′2 corresponds to a negative effective potential E−U in the Schrödinger equa-
tion. Each of the three barriers introduced in Fig. 2 have a different dispersion
relation of the wave number k(ω), of the refractive index n(ω), and then of the
transmissivity T (ω).

3.1 Undersized Waveguide

Figure 2a displays an undersized waveguide with the long side a of the waveguide
cross section which is mounted between two properly sized parts. From the wave
equation (2) one can easily determine the wave vector

k = k0

√

1 −
(

λ0

λcutoff

)2

= k0

√

1 −
(
ωcutoff

ω0

)2

= k0n(ω) , (11)

where we introduced the cutoff wavelength λcutoff = 2a which is related to the
angular cutoff frequency ωcutoff = πc/a. Below the cutoff frequency or above the
cutoff wavelength the waveguide wave propagation is prohibited since in that
case the wave number n(ω) becomes imaginary. Then the solution represents an
evanescent mode. The intensity of this evanescent mode decreases by 1/e at a
distance a/π: The field does not propagate and dies off rapidly with distance.
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3.2 Photonic Lattice

The photonic lattice of Fig. 2b represents a one-dimensional analogue of the
electronic lattice we are familiar with from semiconductor physics. Under Bragg
condition an infinite lattice displays total reflection. Such photonic mirrors are
frequently used in photonics and semiconductor lasers. They are specified by a
higher reflectivity than metallic mirrors.

An incoming electromagnetic wave Ein will be partially reflected and par-
tially transmitted by a finite barrier. The ratio between reflected and incom-
ing wave defines the reflection coefficient r = Ereflected

n /Ein
n and the ratio be-

tween the transmitted wave and the incoming wave the transmission coefficient
t = Etrans

n /Ein
n where En denotes the normal component of the vector E. In

general, the transmission and reflection coefficients t and r are complex

t =
√
Teiϕt (12)

r =
√
Reiϕr , (13)

where the transmissivity T = |t|2 and the reflectivity R = |r|2. They are related
due to conservation of energy as

T + R = 1 . (14)

The one-dimensional lattice introduced and studied here is built up by layers
with a periodic alteration of the refractive index. The elementary cell is given
by the two quarter wave length layers of thicknesses d1 and d2

n1d1 = n2d2 = λ0/4 (15)
ω0 = 2πc/λ0, (16)

where ω0 corresponds to the mid-gap angular frequency of such an arrangement.
The mid-gap frequency is given by the resonance condition (15) and is displayed
as transmission minimum in Fig. 3. (Fig. 3 shows the transmission gaps of two
structures and Fig. 9b displays the frequency spectrum of a signal displaced in
the middle of the forbidden frequency gap.) Next I will calculate the transmission
function for the quarter-wavelength unit cell. The transmission coefficient as
defined above can be given by the complex number

t =
√
Teiϕt (17)

The transmission for the quarter wave stack is

t =
T12e

i(p+q)

1 −R12e2iq
, (18)

where

T12 = t12t21 =
4n1n2

(n1 + n2)2
, (19)
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Fig. 3. Transmissivity T as a function of frequency of periodic dielectric quarter-
wavelengths structures with 7 and with 3 perspex layers, respectively. The interference
pattern shows small minima due to multiple layer destructive interference

and

R12 = r2
12 =

(
n1 − n2

n1 + n2

)2

, (20)

are the double-transmission and reflection factors. Here, p = n1d1ω/c and q =
n2d2ω/c, where 15 holds in addition for a quarter wave stack. After extracting
the real and the imaginary parts from the quarter cell transmission coefficient,
tλ/4, we have unit-cell expressions for xλ/4 and yλ/4,

xλ/4 = T12
cos(πω′) −R12

1 − 2R12 cos(πω′) + R2
12

, (21)

yλ/4 = T12
sin(πω′)

1 − 2R12 cos(πω′) + R2
12

, (22)

Tλ/4 =
T 2

12

1 − 2R12cos(πω′) + R2
12

, (23)

where ω′ = ω/ω0.
The extension of the relations for an N = 1 stack to N an arbitrary number

of stacks is presented in Refs. [13, 14], for example.
Numerical data for 3 and 7 stacks are displayed in Figs. 3; 4; 5. Figs. 3–7

illustrate the transmission, the phase shift, and the group velocity as a func-
tion of frequency of a photonic lattice in the microwave frequency regime. The
data are in agreement with the experiments [3, 5]. The lattice has either 7 or 3
quarter-wavelength perspex layers, which are separated by quarter-wavelength
air distances (in this example the refractive indices are n1 = 1.6 and n2 = 1.0)
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Fig. 4. The transmissivity displays two forbidden band gaps in this frequency range
between 0 and 30 GHz. Gaps appear periodically in frequency, in this graph by about
8 and 24 GHz. The data shown is valid for N = 7 layers

Figure 5 displays for both structures a reduced phase derivative in the for-
bidden evanescent frequency regime. This very derivative equals the above men-
tioned scattering phase shift and equivalently the scattering time at the barrier
front boundary. The phase time approach is made plausible in Sect. 5.2

Fig. 5. Phase vs frequency of the lattice. The small phase shift in the evanescent
regime of the lattice is due to the phase shift at the barrier front boundary. Inside the
barrier the phase shift is zero in consequence of the imaginary wave number
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Calculated and measured spectra of the transmission of an infrared periodic
dielectric hetero-structure are shown in Fig. 9b.

3.3 Frustrated Total Internal Reflection: The Double Prisms

Double prisms are subject of research since Newton. He already conjectured the
Goos-Hänchen shift. This non-specular reflection effect was measured only in
1947. A hundred years ago J. C. Bose studied the transmission of radio wave
intensity, i.e. tunneling depending on the gap length [20]. The following disper-
sion relation describes the frustrated total internal reflection (FTIR) of double
prisms. In the case of double prisms the total reflection is called frustrated since a
small amount of the incident beam is tunneling into the second prism as sketched
in Fig. 2c. In the case of FTIR the imaginary wave number κ in the barrier re-
gion and the tunneled electric field Et measurable outside the barrier are given
by the relations [6]

κ =
ω

c

√
n2

1

n2
2

sin2 θ − 1 , (24)

Et = E0(x)eiωt−κx, (25)

where θ is the angle of the incident beam (larger than the angle of total reflec-
tion), E(x = 0) the amplitude of the electric field at the barrier front, n1 and n2

are the refractive indexes, and (n1/n2) sin θ > 1 holds in the case of total reflec-
tion. ω is the angular frequency, t the time, x the distance of the prisms, and κ
the imaginary wave number of the tunneling mode. Incidentally, n1 and n2 do
not represent the effective refractive index of the evanescent mode traversing the
gap between the prisms, the latter being imaginary.

Equation (24) is derived from reflection of a beam at the surface of a medium
with refractive index n2. The incident beam comes from a material with a real
index n1 greater than n2 under the angle θi. Snell’s law says that

n1 sin θi = n2 sin θt. (26)

The angle θt of the transmitted wave becomes 900 when the incident angle θi is
equal to the critical angle θc given by

n1

n2
sin θc = 1. (27)

The magnitudes of the wave vectors, that is, of the incident wave number k, of
the reflected wave vector kr, of the transmitted wave vector kt, the wave vector
parallel k‖ and perpendicular k⊥ to the boundary follows from the boundary
conditions at the interface. They are given by
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k2 = n2ω2/c2 (28)
k2
t /n

2
2 = k2

r/n
2
1 = k2/n2

1 (29)
kt,‖ = kr,‖ = k‖ (30)

k2
r,⊥ + k2

r,‖ = k2
⊥ + k2

‖ (31)

k2
r,⊥ = k2

⊥ (32)
kr,⊥ = −k⊥ . (33)

With k2
t = k2

t,‖ + k2
t,⊥ we can find

k2
t,⊥ = k2

t − k2
t,‖ (34)

k2
t,⊥ =

n2
2

n2
1

k2 − kr,⊥ (35)

k2
t,⊥ = ω2n

2
2

c2

(
1 − n2

1

n2
2

sin2 θi

)
, (36)

with k‖ = k sin θi. The last equation equals the dispersion relation (24) in the
case of FTIR given above.

4 Evanescent Modes Are not Observable

Remarkable, evanescent modes like tunneling particles are not observable inside a
barrier [21–23]. For instance, evanescent modes don’t interact with an antenna as
long as the system is not perturbed, i.e. the evanescent mode is not transformed
back into a propagating electromagnetic wave. Evanescent modes like tunneling
particles display some outstanding properties:

(1) The electric energy density u of the evanescent electric field E with its imag-
inary refractive index is negative:

u =
1
2
εE2 < 0 (37)

ε = n2 < 0. (38)

In the case of particle tunneling we have a negative total kinetic W energy:

W = Wkin − U0 < 0, (39)

where Wkin and U0 are the kinetic energy and the potential barrier height,
respectively. Equation (37) is the quantum electrodynamic basis for the exis-
tence of evanescent waves. It has been shown by Ali [24] that virtual photons
are those modes which do not satisfy the Einstein relation W 2 �= (�k)2c2.

(2) An evanescent field does not interact with real fields due to the imaginary
wave number resulting in a refractive index mismatch. Fields can only trans-
mit energy if for the reflection R < 1 holds. If n1 represents the imaginary
refractive index of an evanescent region and n2 represents the refractive in-
dex of the dielectric medium then the square of the absolute value gives
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R =| r |2 =
| n2 − n1 |2
| n2 + n1 |2 (40)

equals 1 and total reflection takes place.
In order to observe a particle in the barrier it must be localized within a
distance of order ∆x ≈ 1/κ. Hence, its momentum ∆p must be uncertain by

∆p > �/∆x ≈
√

2m(U0 −Wkin) (41)

The particle of energy Wkin can thus be located in the nonclassical region
only if it is given an energy U0−Wkin, sufficient to raise it into the classically
allowed region [22,23].

(3) The quantization of evanescent modes by Carniglia and Mandel has shown
that the locality condition is not fulfilled [25]. They figured out that the com-
mutator of the field operator does not vanish for space-like separated points.
This important point is discussed for EPR-correlations by Mittelstaedt [26].

5 Velocities, Delay Times, and Signals

We shortly define and discuss the velocities which can be associated to the var-
ious propagation phenomena of waves. Remember, we are exclusively interested
in the propagation of a cause, which is given by the signal velocity only. We
shall become aware that evanescent modes as well as tunneling wave packets are
traveling independent of time. First the different quantities are made plausible
by the sketch of two traveling wave packets displayed in Fig. 6. The wave pack-
ets are representative for voltage pulses of digital signals. The voltage oscillates
with a frequency ω0 ± ∆ω. The pulses begin and end gradually with time. In
consequence a physical signal has no well defined front and front velocity. A well
defined front and tail of a signal would presuppose an infinite frequency band
width and then an infinite energy in consequence of �ω.

The phase velocity is given by the motion of a point stuck to the oscillations.
The group velocity is given by the speed of the maximum of the packet, i.e. by
the maximum of the pulse. The two velocities are equal in vacuum, but they may
differ if traveling through interacting matter like glass or along a wave guide, for
instance. The signal velocity is given by the speed of the envelope in order to
measure the signal, which is in this example the indicated time duration at half
pulse peak of the two pulses, so called half width. As seen by inspection of this
figure, the signal and then the half width does not depend on its magnitude.
In dispersive media with n = f(ω) group and signal velocities can be strongly
different and the signal may be reshaped and lost its information, i.e. the cause.
Such an example of pulse reshaping is displayed in Fig. 13. Essentially, here
we are interested in the problem of causality, in cause and subsequent effect.
A signal and then an effect can only be detected by its energy. In this respect
signal and energy velocities are equal.

The notions on velocity and wave propagation are presented in many text
books see Refs. [8, 11,12], for instance.
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Fig. 6. Sketch of the oscillations of two wave packets (i.e. pulses) vs time. The larger
packet has traveled slower than the attenuated one. The horizontal bars indicate the
half width of the packets, which do not depend on the packet’s magnitude. The figure
illustrates the gradually beginning of the packets. The forward tail of the smooth
envelope may be described by the relation (1 − exp(−t/τ)) sin(ωt) for instance, where
τ is a time constant

5.1 Phase Velocity

Generally the phase velocity can be described by φ(x, t) = AeiS(x,t), where
S(x, t) is the phase of the wave and A its constant amplitude. The phase velocity
is the speed related to the trajectory defined by the condition that the phase
S(x, t) is constant, S(x, t) = const. This condition relates x and t. From

0 = dS(x, t) = ∇S · dx +
∂S

∂t
dt (42)

and the definitions of the wave vector and the angular velocity

k := −∇S , ω :=
∂S

∂t
(43)

we immediately obtain k · v = ω, where vphase = dx/dt. With the dispersion
relation ω = ck/n we obtain

k · vphase =
c

n(ω)
k (44)

or
vphase,k =

c

n(ω)
, (45)

where vphase,k is the component of vphase parallel to k.

5.2 Group Velocity

The group velocity describes the velocity of the modulation of a harmonic trav-
eling wave or of the peak of a wave packet. It is defined by

t



518 G. Nimtz

Fig. 7. Calculated group velocity vs frequency for two multiple layer structures as
follows from (46) and Fig. 5

vgroup = ∇kω(k) , (46)

and represents the first term of a Taylor series of the modulation velocity. In
vacuum, the group velocity equals c. See Fig. 7 for the group velocity in the case
of a photonic lattice.

The group velocity can be rewritten as

vgroup =
dω

dk
=

c

n(ω) + ωdn(ω)/dω
(47)

The last relation is interesting, as it elucidates the difference between the phase
and the group velocity. It is the second term of the denominator, which distin-
guish the group from the phase velocity. For instance, in glass the group is about
2 % slower than the phase in the visible range of the spectrum.

We also have
vgroup =

x

tgroup
=

x

∂S/∂ω
, (48)

where tgroup = ∂S/∂ω is the group time delay or phase time. The phase shift is
given by ∂S = x∂k in the region x considered. The group time delay represents
the time delay of a maximum for traversing a distance as displayed in Fig. 13
for a strong dispersion. The case of a negligible dispersion shown in Figs. 1; 9.
In the latter case the group time delay represents the time delay of a signal and
of the energy.

5.3 Signal Velocity

A signal carries information which is a defined cause with a subsequent effect.
For a simple example see digital signals shown in Fig. 8. Digital signals are given
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Fig. 8. Signals: Measured signal intensity in arbitrary units. The half width
in units of 0.2 ns corresponds to the number of bits. From left to right:
1,1,0,0,1,0,1,0,1,0,1,1,1,1,1.... The infrared carrier frequency of the infrared signal is
2 · 1014 Hz (wavelength 1.5 µm). The frequency-band-width of the signal is about
2 · 109 Hz corresponding to a relative frequency-band-width of 10−5 [17]

by their half width (the half width is the time span between the half power
points, see e.g. Figs. 1; 6; 8; 9).

In general signals are characterized by their envelope, whether we are trans-
mitting Morse signals, a word or a melody, always the complete envelope has to
be measured, see [12], for instance. Therefore, the signal velocity in vacuum is
identical to the group velocity in the case of negligible dispersion:

vsignal ≡ vgroup (in vacuum) . (49)

Delay times and velocities are quantities depending only on the real part
of the refractive index n′ and on the derivative of the phase S = 2πk0n

′x. In
the case of evanescent modes or tunneling with a purely imaginary refractive
index n′′ the phase S is constant. Thus according to (48) the group time delay
becomes → 0 and the group velocity → ∞. There is measured a phase shift and
thus a short delay time corresponding to about one oscillation time of the signal
in tunneling. This scattering time occurs at the front boundary and not inside the
evanescent region nor inside a potential barrier. In the case of microwave pulses
this time is about 100 ps and in the infrared case of glass fiber communication
about 5 fs [13, 15], see also the data displayed in Fig. 5 and its interpretation.
As this scattering time is independent of barrier length for opaque barriers with
κx ≥ 1 (the so called Hartman effect) the effective group velocity (48) increases
with barrier length [16]. This behavior is illustrated below in Figs. 5; 7.

The lack of phase shift means a zero-time barrier traversal of evanescent
modes according to the phase time approach of (48). Actually this zero time
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Fig. 9. (a) Measured propagation time of three digital signals and spectrum of the
photonic lattice transmission [18]. Pulse trace 1 was recorded in vacuum. Pulse 2 tra-
versed a photonic lattice in the center of the frequency band gap (see spectrum in
part (b) of the figure), and pulse 3 was recorded for the pulse traveling through the
fiber outside the forbidden band gap. The tunneling barrier was a photonic lattice of a
quarter wavelength periodic dielectric hetero-structure fiber. The frequency zero point
in part (b) corresponds to the infrared signal carrier frequency of 2 ·1014 Hz and to the
mid frequency of the forbidden frequency gap of the lattice

was measured in different experiments and the observed short barrier traversal
time τ arises as scattering time at the barrier front boundary only [13,15].

Infrared digital signals used in modern communication systems are displayed
in Fig. 8. Such a single digit is tunneled and its velocity is compared with a
vacuum and with a fiber traveled signal as shown in Fig. 9. Here Longhi et
al. [18, 19] performed superluminal tunneling of infrared pulses over distances
up to 50 mm at an infrared signal wavelength of 1.5 µm (2 · 1014 Hz). Results
are presented in Fig. 9(Curve 1 luminal signal, 2 superluminal, 3 subluminal
velocity). The frequency band width is < 2 · 109 Hz. The measured velocity was
2 c and the transmissivity of the barrier was 1.5%. The narrow band width of the
signal is displayed in Fig. 9b. The superluminal signal pulse trace (2) has only
evanescent frequency components around the mid frequency of the forbidden
frequency gap of the photonic barrier.

5.4 The Front Velocity

As mentioned above the front velocity is an idealized notion and, thus, has no
precise physical meaning. It is presupposing an infinite frequency band width of
a signal. Its definition is given by

vfront = lim
ω→∞

ω

k
. (50)

Mathematically a discontinuity of the field under consideration or of one of its
derivatives will propagate with the front velocity. The normal (ω,k) of the 3-
dimensional hypersurface in 4-dimensional space-time where such discontinuities



Do Evanescent Modes Violate Relativistic Causality? 521

may occur is defined by the characteristic equation

ω2 − c2

n2
k2 = 0 . (51)

The velocity in configuration space related to the propagation of these singular-
ities is then given by

vfront = ∇kω(k) =
c

n
k̂ . (52)

Therefore vfront = c/n. In vacuum, the front propagates with the velocity of
light c. Though being a clear mathematical concept, it can be realized in physics
only approximatively: Since a discontinuity is described by a Heaviside function
(a function H(x) which is zero for x < 0 and 1 for x ≥ 0), the support of its
Fourier transform is unbounded, that is, one needs waves with frequencies up to
infinity in order to prepare a jump in the propagating field. This needs infinite
energy which of course is not available. Therefore, since in reality only a finite
range of frequency is available (frequency band limited signals), a jump in the
propagating field cannot be created. However, there is no known fundamental
limit for an upper energy bound (except perhaps the energy available in the
universe). Therefore the front velocity is operationally not well defined and has
no precise physical meaning [8, 12].

5.5 The Energy Velocity

Usually text books present the energy velocity by the relation ship

venergy = P/u, (53)

where
P = ε0c

2E × B (54)

is the Poynting vector, E the electric field, B the magnetic field, and u is the
energy density. The Poynting vector represents the energy flux and subtracts
transmitted and reflected flux, whereas the scalar energy density adds both trans-
mitted and reflected energy densities. This approach is then only correct in the
case of no reflection and can not be applied for evanescent modes or tunneling,
see e.g. [3]. The attenuation of evanescent modes is not due to dissipation but
due to reflection. Equation (53) even can not be used to calculate the energy
velocity in an open coaxial transmission line. Due to the impedance mismatch
at the open end there takes place a strong reflection and (53) gives a too slow
energy velocity for the energy loss at the end of the coaxial transmission line.

As already mentioned, we are interested in the effect of a cause. From this
condition we can conclude that the energy velocity equals the signal velocity: A
signal is received by an inelastic detection process. So it is the signal’s energy
which result in an defined effect.
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6 Partial Reflection: An Experimental Method
to Demonstrate Superluminal Signal Velocity
of Evanescent Modes

Superluminal signal velocities were observed in different transmission and partial
reflection experiments [5, 18–20]. The short tunneling and reflection times are
equal. The result shows that the measured short time is spent at the barrier
entrance. Inside a barrier the wave packet spends zero time. Transmission and
reflection times are independent of barrier length as was calculated with the
Schrödinger equation by Hartman and measured later [5, 13, 15, 27, 28]. This
Hartman effect holds for opaque barriers with κx ≥ 1. The result demonstrate
the nonlocal properties of evanescent modes and of the tunneling process as was
shown by Carniglia and Mandel for instance [25].

A smart experimental set-up to measure both the transmission and the reflec-
tion times at the same time is sketched in Fig. 10. The distances of the reflected
and of the transmitted beams differ only by the gap between the two prisms, i.e.
the evanescent region (tunneling distance). It was measured the same traveling
time for both the reflected and the transmitted signals, obviously tunneling took
place in zero-time [20]. The result was revisited by Stahlhofen [29] and was con-
jectured by quantum mechanical calculations for electron tunneling by Hartman
and later by Low and Mende [27,30]. The latter authors write that traversing a
barrier appears to do so in zero time.

The reflection by a photonic lattice at a frequency of its forbidden band gap
(see e.g. Fig. 9b) is measured and compared with the time crossing the same
distance between two metallic mirrors. One mirror is positioned at the barrier

t

t

d

D

Fig. 10. Symmetrical FTIR set-up to measure both the reflection and the transmission
time of a double prism, where t⊥ is the time traversing the gap d and t‖ is the time
spent for traveling along the boundary of the first prism. The latter represents the time
of the Goos–Hänchen shift [20]. The measured reflection time equals the transmission
time resulting in a zero tunneling time t⊥ = 0
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Fig. 11. Set-up to measure the time dependence of partial reflection at a photonic
barrier with a digital pulse. The parabolic antenna on top of the illustration transmit
digital pulses toward the barrier, the second one below receives the reflected signal.
The time delay is measured with the oscilloscope

front side and the other one at the barrier back side. The set-up and the results
are shown in Figs. 11, 12. The measured reflected time equals the time measured
for the mirror’s front position neglecting the mentioned short interaction time
at the barrier front. The amazing result is that barrier height and barrier length
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Fig. 12. Measured partial reflected microwave pulses vs time. Parameter is the barrier
composition as illustrated in Fig. 11. The signal reflections from metal mirrors either
substituting the barrier’s front or back positions are displayed [28]. In this experiment
the wavelength has been 3.28 cm and the barrier length was 40 cm. The number of
lattice layers was reduced from 6 to 3 inside the resonant lattice structure illustrated
in Fig. 11
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are instantaneously displayed in the reflected signals as seen from inspection of
Fig. 12.

The performance demonstrates that the reflected signal carries the informa-
tion about barrier height and barrier length at the same time when the signal is
reflected by the front mirror. The reflection time is independent of barrier length,
the field spreading inside the barrier is instantaneous. The reflection amplitude
decreases with decreasing barrier length but the reflection time is constant in
the case of opaque barriers with κx ≥ 1.

7 Evanescent Modes a Near Field Phenomenon

According to many text books and review articles, superluminal signal veloc-
ities are violating Einstein causality, implying that cause and effect can be
interchanged and that time machines known from science fiction can be de-
signed [31–33]. Actually, it can be shown for frequency band unlimited groups
that the front travels always at a velocity ≤ c, and only the peak of the pulse
has traveled with a superluminal velocity. As mentioned above such calculations
were carried out by several authors, for example [34–36]. In this case the tunneled
pulse is reshaped and its front has propagated at luminal velocity.

However, this approach does not describe physical signals as those signals
displayed for instance in Figs. 1; 6; 8; 9. In this case the signal has gradually
formed a front tail. A pulse reshaping did not happen and the envelope of the
signal traveled at a superluminal velocity.

Pulse reshaping of a frequency band unlimited signal is displayed in Fig. 13.
The half width of this artificial pulse with a discontinuous front step is signif-
icantly reduced compared with the original signal and only the pulse peak has
traversed the barrier at superluminal velocity [34].

Frequently it is claimed that a tunneled small signal would not cross the
front tail of the original signal, see for instance [34–36]. The argument is taken
to prove that superluminal signal velocities are not allowed and do not occur.
The frequency band limited digital signals presented in Figs. 1; 9 are crossing
each other. This result is in consequence of the fact that these superluminal
pulses contain only evanescent frequency components.

A physical signal can not be described by a Gauss function having an infinite
frequency band. For a physical signal the relation [11,37]

∆ν ·∆t ≥ 1, (55)

holds, whith both ∆ν and ∆t ( ∞. Such a pulse of field oscillations is sketched
in Fig. 6. Actually, relation (55) is proportional to the information content of
a signal as was shown by Shannon [37]. According to Fourier transform such
a physical signal with both limited frequency band and time duration is not
causal [12, 38]. On the other hand it is obvious that a physical signal has to be
frequency band limited. Signals start gradually within a time span given by its
frequency band width [8, 12].
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-a σ0σ

Fig. 13. Comparison of calculated intensity vs time of an airborne pulse (solid line)
and the same tunneled pulse (dotted line) [34]. Both signals have a sharp step at
the front and thus an infinite frequency bandwidth. The tunneled signal is reshaped
and attenuated. Its maximum has traveled at superluminal velocity. Both fronts have
traversed the same distance with speed c, ξ is the maximum of the tunneled pulse,
a is the shift of the maximum, σ is the halfwidth of the tunneled signal, and σ0 is
the halfwidth of the airborn signal [34]. The halfwidths σ � σ0 holds, i.e. the digital
information is strongly reshaped

As the Gauss function does not describe a physical signal, mathematicians
and engineers have developed a number of so called window functions [39]. They
are limited in both frequency and time but can be quasi causal transformed from
time to frequency domain and vice versa.

For example, physical digital signals are well described by the Kaiser-Bessel
function for instance. This function is used in network analyzers describing the
intensity vs time as well as the frequency band of physical signals. This function
allows even a causal Fourier transform from time domain to frequency domain
down to intensities at which the Johnson noise limits detectors finally, see (57,
58).

In Figs. 14 and 15 the Kaiser-Bessel function is plotted as a function of
intensity I(t) vs time. The curves can be scaled to the data of the experiments
displayed in Figs. 1 and 9.

The Kaiser–Bessel function – often called Kaiser–Bessel window as time du-
ration and frequency spectrum are limited – is given

I(t) =
I0

(
π∆t∆ν(1 −

√
t

∆t/2 )
)

I0π∆t∆ν
, (56)

where I0, and π∆t∆ν are the zero-order modified Bessel function of the first
kind, and the time-bandwidth product, respectively. 0 ≤ |t| ≤ ∆t/2, represents
the investigated time interval.
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Fig. 14. Calculated pulse intensity of the Kaiser–Bessel function vs time in a.u.. The
data can be scaled to the measured pulses displayed in Figs. 1; 8; 9. In the graph the
tunneled signal is attenuated by −20 dB

Fig. 15. The same data as shown in Fig. 14 in a semi-logarithmic plot. The ordinate
is scaled in dB and the abscissa in a.u.

A signal can be detected only if its power is above the Johnson noise PJN. The
thermal noise was observed and measured by Johnson in 1928 and is theoretically
elaborated by the Nyquist Theorem, see for instance [40]. The theorem is of great
importance in experimental physics and electronics. It is concerned with the
spontaneous thermal fluctuations of voltage across an electric circuit element.
The theorem gives a quantitative expression for thermal noise power generated
by a resistor in thermal equilibrium:

PJN = kT∆f, (57)

This relation yields a classical estimate for the near field extension of evanescent
modes. The power P (x) of a signal, i.e. of a defined effect has to be detected.
Then superluminal signal propagation is limited by the relationship, which gives
the minimum tunneled signal power:

P (x) = P0e
−2κx ≥ kT∆f, (58)
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where P0 is the incident power of the evanescent mode, κ is the imaginary
wave number of the evanescent mode, x the length of the evanescent region,
k the Boltzmann constant, T the temperature, and ∆f the frequency range
of the signal. For example an infrared signal source of 1 mW power, a carrier
frequency of 2 · 1014 Hz (1.5 µm wavelength), and an imaginary wave number in
the barrier κ = 115m−1 at a temperature of T = 300K. Thus the Johnson noise
with ≈ 1 µW limits a detectable near field up to 0.03 m, corresponding to about
20000 wavelengths of this infrared digital signal and this special photonic barrier.
In the above introduced microwave experiments the near field was limited to less
than a hundred wave lengths.

8 Superluminal Signals Do not Violate Primitive Causality

Does the measured superluminal signal velocity violate the principle of causal-
ity? The line of arguments showing how to manipulate the past in the case of
superluminal signal velocities is illustrated in Fig. 16. There are displayed two
frames of reference. In the first one lottery numbers are presented as points on
the time coordinate with zero time duration. At t = 0 the counters are closed.
Mary (A) sends the lottery numbers to her girl friend Susan (B) with a signal
velocity of 4; c. Susan, moving in the second inertial system at a relative speed
of 0.75 c, sends the numbers back at a speed of 2 c, to arrive in the first system
of Mary at t = −1 s, thus in time to deliver the correct lottery numbers before
the counters close at t = 0.

Fig. 16. Coordinates of two inertial observers A (0, 0) and B with O(x, t) and O′(x′, t′)
moving with a relative velocity of 0.75 c. The distance L between A and B is 2 000
000 km. A makes use of a signal velocity vs = 4 c and B makes use of v′

s = 2c ( in
the sketch is v ≡ vs). The numbers in the example are chosen arbitrarily. The signal
returns −1 s in the past in A

t

x

t x´ ´

B

A

v=4c

x=ct
v =0.75cr

L-1s
v =2c´



528 G. Nimtz

The time shift of a point on the time axis of reference system A into the past
is given by the relation, [32,41],

tA = −L

c
· (vr − c2/vs − c2/v′s + c2vr/vsv

′
s)

(c− cvr/v′s)
, (59)

where L is the transmission length of the signal, vr is the velocity between the
two inertial systems A and B. The condition for the change of chronological
order is tA < 0, the time shift between the systems A and B. This interpretation
assumes, however, a signal to be of zero time neglecting its temporal width.

Several tunneling experiments have revealed superluminal signal velocity in
tunneling photonic barriers [5]. Nevertheless, the principle of causality has not
been violated as will be explained in the following.

In the example with the lottery data, the signal was assumed to be a point
in space-time. However, a physical signal has a finite duration like the pulses
sketched along the time axis in Fig. 17.

The general relationship for the bandwidth-time interval product of a signal,
i.e. a packet of oscillations is given by (55). A zero time duration of a signal
would require an infinite frequency bandwidth.

Taking into consideration the dispersion of the transmission of tunneling
barriers, the frequency band of a signal has to be narrow in order to suppress
non superluminal frequency components and thus pulse reshaping.

Fig. 17. In contrast to Fig. 16 the pulse-like signal has now a finite duration of 4 s. This
data is used for a clear demonstration of the effect. In all superluminal experiments,
the signal length is long compared with the measured negative time shift. In this sketch
the signal envelope ends in the future with 3 s (in the sketch is v ≡ vs)

Assuming a signal duration of 4 s the complete information is obtained with
superluminal signal velocity at 3 s at a positive time as illustrated in Fig. 17.
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The compulsory finite duration of all signals is the reason that a superluminal
velocity does not violate the principle of causality. A shorter signal with the same
information content would have an equivalently broader frequency bandwidth,
compare (55). As a consequence, an increase of vs or v′s cannot violate the
principle of causality.

For instance, the dispersion relation of FTIR ( 24) elucidate this universal
behavior: Assuming a wavelength λ0 = c/ν, a tunneling time τ = T = 1/ν,
and a tunneling gap between the prisms d = j λ0 (j = 1, 2, 3, . . .) the superlu-
minal signal velocity is vs = j c, (remember the tunneling time is independent
of barrier length). However, with increasing vs the bandwidth ∆ν (that is the
tolerated imaginary wave number width ∆κ) of the signal decreases ∝ 1/d in
order to guarantee the same amplitude distribution of all frequency components
of the signal. In spite of an increasing superluminal signal velocity vs → ∞ the
general causality can not be violated because the signal time duration increases
analogously ∆t → ∞, see (55).

9 Summary

Evanescent modes and tunneling show amazing properties to which we are not
used to from classical physics. The tunneling time is short and arises at the
barrier front as scattering time. This time equals approximately the recipro-
cal frequency of the carrier frequency or of the wave packet energy divided by
the Planck constant h [13, 15]. Inside a barrier the wave packet does spent zero
time [5, 30]. This property results in superluminal signal and energy velocities,
as a signal is detected by its energy, i.e. by photons or other field quanta like
phonons. The detector receives the tunneled signal earlier than the signal, which
traveled the same distance in vacuum as demonstrated in Figs. 1, 9, 12. Evanes-
cent fields like tunneling particles are not observable [22,23,25,42–44].

Another consequence of the frequency band limitation of signals is, if they
have only evanescent mode components, as shown for instance in Fig. 9b signal
trace (2), they can violate relativistic causality, which claims that signal and
energy velocities have to be ≤ c.

As explained in Sec. evanescent modes and the tunneling process are near field
effects. They are roughly limited to the order of the signal length in propagating
in vacuum.

In the review on The quantum mechanical tunnelling time problem - revisited
by Collins et al. [45], the following statement has been made on the much ado
about superluminal velocity: the phase-time-result originally obtained by Wigner
and by Hartman is the best expression to use for a wide parameter range of bar-
riers, energies and wave packets. The experimental results of photonic tunneling
have confirmed this statement [5]. In spite of so much arguing about violation of
Einstein causality [4,33,36,46,47], all the properties introduced above are useful
for novel devices, for both photonics and electronics [48].
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