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“Superluminal” tunneling as a weak measurement effect
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We exploit the analogy between the transfer of a pulse across a scattering medium and Aharonov’s weak
measurements to resolve the long standing paradox between the impossibility to exceed the speed of light and
the seemingly “superluminal” behavior of a tunneling particle in the barrier or a photon in a “fast-light”
medium. We demonstrate that superluminality occurs when the value of the duraemt in the barrier is
uncertain, whereas when is known accurately, no superluminal behavior is observed. In all cases only
subluminal durations contribute to the transmission which precludes faster-than-light information transfer, as
observed in a recent experiment.
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Recent experimentd1] on transmitting information- =Saln, |[F)=> b,/ A| W= AJv) (1)
containing features of an optical pulse across the “fast-light” ~ P :

medium, in which the group velocity exceeds the vacuum

speed of lightc, have renewed the interest in the so-called!f at somet, 0<t<T, the system is subjected to a von
“superluminal” propagation phenomenon. It is well known Neumann-type measuremdi#] of an operato, the state
that a wave packet transmitted across the potential barrieof the pointer with positionr after postselection is given by
undersized wave guide, or fast-light medium may arrive in d7,8]

detector ahead of the one that propagates freely, as if it has

crossed the scatter infinitely fast. This phenomenon, often <7’|M>:2 G(r-A)n, n,= b:ay, (2
referred to as “apparent superluminality of quantum tunnel- v

ing” was noti more than 7 r nd often dis-
cugssesssingté?:rdrev?esv; saee gef{g,z],algjr:c:n?;;egizn whereG(7) is the initial (e.g., Gaussigrstate of theAmeter at

of different views on the subject can be found in §&f). It ~ t=0 andX, must be replaced by an integrfdiv if A has a
seems to raise the question about the possibility of fastei€ontinuous spectrum. The meter is then read, i.e., the pointer
than-light travel, e.g., in classically forbidden regions, inac-Position is accurately determined. For an accurate “strong”
cessible to a classical particle. It is, however, broadly undermeasurement, the widthr is small (compared to the sepa-

stood that the paradox results from an incorrect identificatioh2tion between the eigenvalues or, if the spectrum is continu-

of the transmitted peak with the incident one, since the incious: 1o the scale on which, varies considerabjyand the

dent pulse undergoes severe reshaping in the barrier regio?i"aters readings occur close to the eigenvalagsFor an

. : -~ Inaccurate, or weak, measuremeht,is large, and the inter-
Although it has been suggesté€l], that a barrier may, in . ; .
; ference between overlapping Gaussians in(Bgmay, for a
some manner, carve the transmitted pulse from the forwar

. e . . ecial choice ofl) and|F), produce anomalous readings in
tail of the incident one, the question of how exactly this is P D F).p 9

achieved remains open. The precise mechanism of this rd1€ regions wherd has no eigenvalus’,8]. Next we show

shaping, its relation to Aharonov's “weak” measurementsthat when using the coordinate of the tunneled particle to

[7-9] of the time delay and the implications for the informa- gitelmiit?ag;e gﬂgrr%ilzyvyegsiqi);gﬂggceeni é;htgznb:r:]ﬁ;r'
tion transfer, studied in Refl], are the subjects of this pa- ' » P :

Earli K on th k nat f the © ling t lously small value ofr that is obtained, results, just as an
per. Earlier work on the weak nature ot the unneling Umesy ., .on0y's weak value, from the quantum uncertainty inher-
can be found in Refd.10-12, and a more recent approach

. A . o i ent to the procedure.

relating superluminality to superoscillations is given in Ref. Consider a one-dimensional wave packet transmitted

[13]. o _ across a short-ranged potential barhi€x), contained inside
We start by revisiting[7,8] the analysis of a quantum he region G<x<b. At t=0 the particle is prepared as an

system prepared at=0 in the initial statgl) and then post-  jncident wave packet with a mean momentigncentered at
selectedobservegl at t=T in the final statgF), x=x <0:
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* the particle’s position in its initial statel 7], A7~ Ax/v,.
Wo(x) E<><||>=f C(k - ko)explikx)dk, () In the case of tunneling, the momentum spread of the
w initial wave packet must be at led4i8] small enough for all
where the facto€(k—kg) insures that only positive momenta its components to tunnel, rather than to pass over the barrier.

contribute to the integral. At some largeT, it is postse- Such wave packets, broad in the coordinate space, corre-
lected in the transmitted staté=1) spond to inaccurate weak measurements which may produce

anomalous superluminal readings, even when the amplitude
distribution %(7) contains only non-negative time delays. In-
deed, in the complek plane,T(k) may only have poles on
@) the positive imaginary axis and in the lower half-pldd8].
The poles of the first kindl) correspond to the bound states
whereT(K) is the barrier transmission amplitude. Using the supported by/(x), while those of the second kir@l) corre-

convolution property of the Fourier integral, it is convenientSpond to scattering resonances. Closing the contour of inte-
to rewrite Eq.(4) as gration in Eq.(10) as appropriate, we obtain

We(x) = (x|F) = Jw T(k)C(k — ko)exd ikx — iE(k) T]dK,

(XF)= J W(x—x")EX )X, (5) 7(7) = 27 Y, Res T explikyver), 7<0 (11
|

where
* =- 27>, ResTexp—ikwor), 7>0, (12
W(X) = J C(k - ko)exdikx —iE(K) T]dk, (6) I

is the state that would evolve from the initial one under freeWhere ResT denotes the residue df(k) at thenth pole.

propagation, and(x’) is the Fourier transform of (k). We Thgs' the p0|e$|.)t’)|'f pretshent,l pro_dui:? n.(;.‘gfatl\;ﬁ time d(;:-lays f
can continue the discussion in terms of the “tunneling times'2Nd ar€ responsioié, in the classical fimit, for In€ speed up o

. o . . . a particle passing above a potential well. It is interesting to
Sgég)errllg;ymg (vo i the velocity corresponding to the wave note that a potential well too shallow to support a bound state

would not speed up a passing wave packet. If, on the other
7(X') =—-x'Ivg (7 hand, no bound states are present, then

with the delay experienced by the particle in the barrier.
Changing the variables in E(5) and separating the inessen-
tial phase associated with the free motion, we obtain

n(r)=0 forr<0 (13

and the “spectrum” of the time delays in E®) is confined

i i in the 0= r<« semiaxis. Note that Eq13) demonstrates
We = exlikox —iE(ko)T] j G(r(x) = Dn(ndr, (8  the causal nature of the scattering process, since the condi-
tion Imk,<0, used in its derivation, also ensures that

whereG is the envelope of'r, ImE(k,) <0 for Rek,> 0 and the resonance states containing
G(7) = exiE (ko) T + ikquo W 1(~ vo7) (9) ~ outgoing waves, Rg>0, are emptied, rather than filled up,
as the time increas¢49].
and It is clear now that with a careful choice df(k), and,

therefore,n(7) the superluminal pulse can be produced, in an
n(r)=- (Zw)‘lz;oJ T(kexdi(ky— Kvgrldk. (10 explicitly causal manner, from the front tails df{(x—x’),
all delayed relative to free propagation. One such system is a
Comparing Eq.(8) with Eq. (2) shows that the relation particle tunneling across a potential barrier. However, our
between the time delay and the particle’s positior is that ~ approach only relies on the analyticity of the transmission
between the measured quantity, whose amplitude distributioamplitudeT(k) and can also be applied to evanescent propa-
is n(7) and the position of the pointer, whose initial state isgation in waveguide$5] and optical propagation through
determined by the envelope of the initial puld&). As inthe  fast-light media(see Refs[1,3]), which have additional ad-
original Aharonov’s approach, the particle is postselected irvantage of dealing with wave packets not subject to spread-
its transmitted state. However, unlike in Reffg-9], no ex-  ing in vacuum.
ternal pointer variable is employed and its role is played by Information transfer is often associated with propagation
the particle’s own position. Equivalently, registering the of nonanalytic features, such as cutdft§ and next we will
transmitted particle at a locationamounts to measuring the show that Eq(13) ensures that it cannot be transferred faster
time delayr of a particle with the momentuik,. Finding the  than light. For a simple example, consider the propagation of
particle roughly the width of the barridr ahead of the free an electromagnetic pulse across two narrow semitransparent
one, as it happens in tunnelifig], corresponds to a negative mirrors, broadly similar to the setup studied[@0]. If the
time delay of~-b/v,. Importantly, the accuracy to which mirrors are modeled by functions of magnitudé) located
the time delayed is evaluated is limit¢il the spreading of ~atx=0 andx=b, respectively,T(k) is given by the multiple
the wave packet is neglectéti6]) by the uncertaintyAx of  scattering expansion
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FIG. 1. (a) Real(solid) and imaginary(dashedl part of the time
delay amplitude distributiong(7), for Qb=100. (b) Transmitted
field We(x) (thick solid) and its component¥,,,, corresponding to
different terms in Eq(14), for Qb=100, and a Gaussian incident
pulsekgb=1.47 andAx/b=2.85.(c) Same asgb) but for an incident
Gaussian pulse truncated at frofd) Same agb) but for an inci-
dent Gaussian pulse truncated at réar.Same agb) but for kgb

=77 andAx=0.57.

(X1,

Tk = > TM(k) =[1+RK)]> R(K)2"exp2imkb),

m=0

m=0

where

is the reflection amplitude for a singk@function placed at
the originx=0. Accordingly, the distribution(7) is decom-
posed into subamplitudes,(7), 7,(7)=0 for 7<<2mblc,
each peaked neat,=2mb/c [Fig. 1(a)]. For a largeQ),Qb

R(K) = -iQ/(2k+iQ)

(14)

(15
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We(x) = 2 GX) — 7] T (ko). (16)

A numerical evaluation ofV'=(x), for Qb=100, correspond-
ing to a weak Gaussian measurement

G(x) = exp(— X)/AX?), Ax>b,

shows[see Fig. 1b)] how a set of nearly Gaussian shapes,
each delayed by,,> 0, interfere to produce aegativetime
delay =-b/c. Note that this is the best speed up which can
be achieved with the model El4) [21].

It is now straightforward to show that this speed up effect
cannot be used to send information faster than light. Aha-
ronov and co-workers have already demonstra&dhat a
weak von Neumann pointer cannot be used for this purpose.
Rather, they argued, the meter acts as a filter, extracting, in a
nontrivial manner, the signal, otherwise hidden by a noise.
The same argument applies to superluminal propagation. If
the incident wave packet is chosen to be the rear half of a
Gaussian with a sharp fronB_(x) =[1-6(x) Jexp(—x?/ Ax?),
Egs.(8) and(13) show that the transmitted field will vanish
outside the causal boundawg=cT+x,, or for 7<0, as
shown in Fig. 1c). Note that in Fig. {c) the narrow spikes
nearr=r,, result from large oscillations of,(7) clearly vis-
ible in Fig. 1(a). Equally unsuccessful would be an attempt
at superluminal transfer of information encoded in a sharp
cutoff at the rear of the incident pulsé&.,(x)=6a(x)exp
X (=x?/ Ax?). Figure 1d) shows that by inspecting the field at
x>cT, an observer cannot decide whether the whole Gauss-
ian, or only its front half was incident on the barrier, and
must await the arrival of the information-carrying part of the
signal.

Recent experiments, in which a detector was to distin-
guish between a cyz,) and an uncutG) signals[1] have
shown that the information detection time for pulses propa-
gating through the fast-light medium is somewhat longer
than that in vacuum, even though the group velocity in the
medium is in the highly superluminal regime. As in Figd)l
the absence of superluminal information transfer has a
simple explanation. Since the mediuin this case, the po-
tassium vapardoes not bind photons, the transmission am-
plitude cannot have poles in the upper half of kiglane and
&(x') in Eq. (5) must vanish forx’ >0. The most advanced
term in Eq.(5), ¥1(x) contains a cutoff at=xg=cT+x,, and
the superluminal{x>xg) part of the transmitted field in Fig.
1(d) builds up from the front tails ofV' {(x-x’), X’ <0, un-
affected by the cutoff, and for this reason is the same as the
advanced uncut fiel¢tf. Fig. 2a) of Ref.[1]}. Forx<xg the
field has a complicated shape and the actual delay in detect-
ing the backface of the pulse is likely to be caused by its
deformation while propagating through the medium. To ad-
vance the cutoff beyongs, and achieve a truly superluminal
information transfer, one requires a one-dimensional system
capable of supporting both bound and scattering states of a

>1, the widths can be neglected and the incident pulse iphoton, in the way a finite-depth potential well supports
split into a number of discrete path modes corresponding thound states of an electron. At present, we are not aware of
2m, m=0,1,2.. additional reflections experienced by the raythe existence of such systems.

betweenx=0 andx=b [20], and Eq.(4) reduces to Eq(2)
for a variable with a discrete spectruim,},

In summary, the notion of superluminality in wave packet
propagation is based on relating the final positionf the
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transmitted particle to the timeit is supposed to have spent is, therefore, resolved in a typically quantum mechanical
in the scatterer. Quantally; and x are related as the mea- fashion: when superluminality is present, one does not know
sured quantity and the pointer position in a measurementhe delay, and cannot claim that the duration spent in the
whose accuracy is determined by the coordinate width of th@catterer is shorter tham'c. Conversely, when the delay is

pulse. In cases where apparent superluminality is observeg

e.g., in tunneling or optical propagation through fast-light
media, the measurement is inevitably weak. Even if no neg
tive time delays contribute to the transmissjofi7) =0 for

7<0], it may, therefore, produce an anomalous reading b

nown, no superluminal transmission is observed. The ab-
sence of negative virtual delays in optical propagation does,
aﬁowever, limit the speed of information transfer ¢oand
elow, as a nonanalytic featufe.g., a cutoff of the initial

constructing a superluminal pulse from the front tails of thePUIS& may only travel as far as the most advanced component
components of the transmitted pulse, all delayed relative t& Ed.(5), i.e., at most byeT. Beyond this point the field will
free propagation. Just as an improvement in the accurac§ither vanish if the front part of the pulse was discarded, or

destroys anomalous weak valugs, a choice of a narrow

remain identical to the uncut field if its rear tail has been

incident pulse destroys superluminal propagation by makingemoved as the recent experiments by Stergtenl. [1]
higher incident momenta pass over the barrier, or spill outshow.

side the anomalous dispersion region. As a result, a “strong”

measurement registers only the subluminal time delays, as Two of us(D.S. and V.S, gratefully acknowledge the sup-
illustrated in Fig. 1e) for the simple model described above. port of the CTSPS, Clark Atlanta University. A.Z.M. was
The contradiction between the impossibility of faster-than-supported by the U.S. DOE, Division of Chemical Sciences,
light travel and observing an apparently superluminal pulséffice of Basic Research.
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