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We exploit the analogy between the transfer of a pulse across a scattering medium and Aharonov’s weak
measurements to resolve the long standing paradox between the impossibility to exceed the speed of light and
the seemingly “superluminal” behavior of a tunneling particle in the barrier or a photon in a “fast-light”
medium. We demonstrate that superluminality occurs when the value of the durationt spent in the barrier is
uncertain, whereas whent is known accurately, no superluminal behavior is observed. In all cases only
subluminal durations contribute to the transmission which precludes faster-than-light information transfer, as
observed in a recent experiment.
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Recent experimentsf1g on transmitting information-
containing features of an optical pulse across the “fast-light”
medium, in which the group velocity exceeds the vacuum
speed of lightc, have renewed the interest in the so-called
“superluminal” propagation phenomenon. It is well known
that a wave packet transmitted across the potential barrier,
undersized wave guide, or fast-light medium may arrive in a
detector ahead of the one that propagates freely, as if it has
crossed the scatter infinitely fast. This phenomenon, often
referred to as “apparent superluminality of quantum tunnel-
ing” was noticed more than 70 years agof2g and often dis-
cussed sincesfor reviews see Refs.f3,4g, a recent selection
of different views on the subject can be found in Ref.f5gd. It
seems to raise the question about the possibility of faster-
than-light travel, e.g., in classically forbidden regions, inac-
cessible to a classical particle. It is, however, broadly under-
stood that the paradox results from an incorrect identification
of the transmitted peak with the incident one, since the inci-
dent pulse undergoes severe reshaping in the barrier region.
Although it has been suggestedf6g, that a barrier may, in
some manner, carve the transmitted pulse from the forward
tail of the incident one, the question of how exactly this is
achieved remains open. The precise mechanism of this re-
shaping, its relation to Aharonov’s “weak” measurements
f7–9g of the time delay and the implications for the informa-
tion transfer, studied in Ref.f1g, are the subjects of this pa-
per. Earlier work on the weak nature of the tunneling times
can be found in Refs.f10–12g, and a more recent approach
relating superluminality to superoscillations is given in Ref.
f13g.

We start by revisitingf7,8g the analysis of a quantum
system prepared att=0 in the initial stateuIl and then post-
selectedsobservedd at t=T in the final stateuFl,

uIl = o
n

anunl, uFl = o
n

bnunl, Âunl = Anunl. s1d

If at some t , 0, t,T, the system is subjected to a von

Neumann-type measurementf14g of an operatorÂ, the state
of the pointer with positiont after postselection is given by
f7,8g

ktuMl = o
n

Gst − Andhn, hn ; bn
*an, s2d

whereGstd is the initial se.g., Gaussiand state of the meter at

t=0 andon must be replaced by an integraledn if Â has a
continuous spectrum. The meter is then read, i.e., the pointer
position is accurately determined. For an accurate “strong”
measurement, the widthDt is small scompared to the sepa-
ration between the eigenvalues or, if the spectrum is continu-
ous, to the scale on whichhn varies considerablyd and the
meter’s readings occur close to the eigenvaluesAn. For an
inaccurate, or weak, measurement,Dt is large, and the inter-
ference between overlapping Gaussians in Eq.s2d may, for a
special choice ofuIl and uFl, produce anomalous readings in

the regions whereÂ has no eigenvaluesf7,8g. Next we show
that when using the coordinate of the tunneled particle to
estimate the time delay it has experienced in the barrier,t,
one, in fact, performs a weak measurement oft. The anoma-
lously small value oft that is obtained, results, just as an
Aharonov’s weak value, from the quantum uncertainty inher-
ent to the procedure.

Consider a one-dimensional wave packet transmitted
across a short-ranged potential barrierVsxd, contained inside
the region 0,x,b. At t=0 the particle is prepared as an
incident wave packet with a mean momentumk0, centered at
x=xI ,0:
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C0sxd ; kxuIl =E
−`

`

Csk − k0dexpsikxddk, s3d

where the factorCsk−k0d insures that only positive momenta
contribute to the integral. At some larget=T, it is postse-
lected in the transmitted states"=1d

CFsxd ; kxuFl =E
−`

`

TskdCsk − k0dexpfikx − iEskdTgdk,

s4d

whereTskd is the barrier transmission amplitude. Using the
convolution property of the Fourier integral, it is convenient
to rewrite Eq.s4d as

kxuFl =E CTsx − x8djsx8ddx8, s5d

where

CTsxd =E
−`

`

Csk − k0dexpfikx − iEskdTgdk, s6d

is the state that would evolve from the initial one under free
propagation, andjsx8d is the Fourier transform ofTskd. We
can continue the discussion in terms of the “tunneling times”
by identifying sv0 is the velocity corresponding to the wave
vectork0d

tsx8d ; − x8/v0 s7d

with the delay experienced by the particle in the barrier.
Changing the variables in Eq.s5d and separating the inessen-
tial phase associated with the free motion, we obtain

CF = expfik0x − iEsk0dTg E G„tsxd − t…hstddt, s8d

whereG is the envelope ofCT,

Gstd ; expfiEsk0dT + ik0v0tgCTs− v0td s9d

and

hstd ; − s2pd−1v0E Tskdexpfisk0 − kdv0tgdk. s10d

Comparing Eq.s8d with Eq. s2d shows that the relation
between the time delayt and the particle’s positionx is that
between the measured quantity, whose amplitude distribution
is hstd and the position of the pointer, whose initial state is
determined by the envelope of the initial pulsef15g. As in the
original Aharonov’s approach, the particle is postselected in
its transmitted state. However, unlike in Refs.f7–9g, no ex-
ternal pointer variable is employed and its role is played by
the particle’s own position. Equivalently, registering the
transmitted particle at a locationx amounts to measuring the
time delayt of a particle with the momentumk0. Finding the
particle roughly the width of the barrierb ahead of the free
one, as it happens in tunnelingf2g, corresponds to a negative
time delay of<−b/v0. Importantly, the accuracy to which
the time delayed is evaluated is limitedsif the spreading of
the wave packet is neglectedf16gd by the uncertaintyDx of

the particle’s position in its initial statef17g, Dt<Dx/v0.
In the case of tunneling, the momentum spread of the

initial wave packet must be at leastf18g small enough for all
its components to tunnel, rather than to pass over the barrier.
Such wave packets, broad in the coordinate space, corre-
spond to inaccurate weak measurements which may produce
anomalous superluminal readings, even when the amplitude
distributionhstd contains only non-negative time delays. In-
deed, in the complexk plane,Tskd may only have poles on
the positive imaginary axis and in the lower half-planef19g.
The poles of the first kindsId correspond to the bound states
supported byVsxd, while those of the second kindsII d corre-
spond to scattering resonances. Closing the contour of inte-
gration in Eq.s10d as appropriate, we obtain

hstd = 2pio
I

ResnT expsiknv0td, t , 0 s11d

=− 2pio
II

ResnT exps− iknv0td, t . 0, s12d

where ResnT denotes the residue ofTskd at the nth pole.
Thus, the polessId, if present, produce negative time delays
and are responsible, in the classical limit, for the speed up of
a particle passing above a potential well. It is interesting to
note that a potential well too shallow to support a bound state
would not speed up a passing wave packet. If, on the other
hand, no bound states are present, then

hstd ; 0 for t , 0 s13d

and the “spectrum” of the time delays in Eq.s8d is confined
in the 0ùt,` semiaxis. Note that Eq.s13d demonstrates
the causal nature of the scattering process, since the condi-
tion Imkn,0, used in its derivation, also ensures that
ImEsknd,0 for Rekn.0 and the resonance states containing
outgoing waves, Rekn.0, are emptied, rather than filled up,
as the time increasesf19g.

It is clear now that with a careful choice ofTskd, and,
therefore,hstd the superluminal pulse can be produced, in an
explicitly causal manner, from the front tails ofCTsx−x8d,
all delayed relative to free propagation. One such system is a
particle tunneling across a potential barrier. However, our
approach only relies on the analyticity of the transmission
amplitudeTskd and can also be applied to evanescent propa-
gation in waveguidesf5g and optical propagation through
fast-light mediassee Refs.f1,3gd, which have additional ad-
vantage of dealing with wave packets not subject to spread-
ing in vacuum.

Information transfer is often associated with propagation
of nonanalytic features, such as cutoffsf1g and next we will
show that Eq.s13d ensures that it cannot be transferred faster
than light. For a simple example, consider the propagation of
an electromagnetic pulse across two narrow semitransparent
mirrors, broadly similar to the setup studied inf20g. If the
mirrors are modeled byd functions of magnitudeV located
at x=0 andx=b, respectively,Tskd is given by the multiple
scattering expansion
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Tskd = o
m=0

`

Tsmdskd ; f1 + Rskdgo
m=0

`

Rskd2mexps2imkbd,

s14d

where

Rskd = − iV/s2k + iVd s15d

is the reflection amplitude for a singled function placed at
the originx=0. Accordingly, the distributionhstd is decom-
posed into subamplitudeshmstd, hmstd;0 for t,2mb/c,
each peaked neartm=2mb/c fFig. 1sadg. For a largeV ,Vb
@1, the widths can be neglected and the incident pulse is
split into a number of discrete path modes corresponding to
2m, m=0,1,2… additional reflections experienced by the ray
betweenx=0 andx=b f20g, and Eq.s4d reduces to Eq.s2d
for a variable with a discrete spectrumhtmj,

CFsxd < o
m

Gftsxd − tmgTsndsk0d. s16d

A numerical evaluation ofCFsxd, for Vb=100, correspond-
ing to a weak Gaussian measurement

Gsxd = exps− x2/Dx2d, Dx . b,

showsfsee Fig. 1sbdg how a set of nearly Gaussian shapes,
each delayed bytm.0, interfere to produce anegativetime
delay<−b/c. Note that this is the best speed up which can
be achieved with the model Eq.s14d f21g.

It is now straightforward to show that this speed up effect
cannot be used to send information faster than light. Aha-
ronov and co-workers have already demonstratedf8g that a
weak von Neumann pointer cannot be used for this purpose.
Rather, they argued, the meter acts as a filter, extracting, in a
nontrivial manner, the signal, otherwise hidden by a noise.
The same argument applies to superluminal propagation. If
the incident wave packet is chosen to be the rear half of a
Gaussian with a sharp front,G−sxd=f1−usxdgexps−x2/Dx2d,
Eqs.s8d and s13d show that the transmitted field will vanish
outside the causal boundaryxB=cT+xI, or for t,0, as
shown in Fig. 1scd. Note that in Fig. 1scd the narrow spikes
neart=tm result from large oscillations ofhmstd clearly vis-
ible in Fig. 1sad. Equally unsuccessful would be an attempt
at superluminal transfer of information encoded in a sharp
cutoff at the rear of the incident pulse,G+sxd=usxdexp
3s−x2/Dx2d. Figure 1sdd shows that by inspecting the field at
x.cT, an observer cannot decide whether the whole Gauss-
ian, or only its front half was incident on the barrier, and
must await the arrival of the information-carrying part of the
signal.

Recent experiments, in which a detector was to distin-
guish between a cutsG+d and an uncutsGd signals,f1g have
shown that the information detection time for pulses propa-
gating through the fast-light medium is somewhat longer
than that in vacuum, even though the group velocity in the
medium is in the highly superluminal regime. As in Fig. 1sdd,
the absence of superluminal information transfer has a
simple explanation. Since the mediumsin this case, the po-
tassium vapord does not bind photons, the transmission am-
plitude cannot have poles in the upper half of thek plane and
jsx8d in Eq. s5d must vanish forx8.0. The most advanced
term in Eq.s5d, CTsxd contains a cutoff atx=xB;cT+xI, and
the superluminalsx.xBd part of the transmitted field in Fig.
1sdd builds up from the front tails ofCTsx−x8d, x8ø0, un-
affected by the cutoff, and for this reason is the same as the
advanced uncut fieldhcf. Fig. 2sad of Ref. f1gj. Forx,xB the
field has a complicated shape and the actual delay in detect-
ing the backface of the pulse is likely to be caused by its
deformation while propagating through the medium. To ad-
vance the cutoff beyondxB, and achieve a truly superluminal
information transfer, one requires a one-dimensional system
capable of supporting both bound and scattering states of a
photon, in the way a finite-depth potential well supports
bound states of an electron. At present, we are not aware of
the existence of such systems.

In summary, the notion of superluminality in wave packet
propagation is based on relating the final positionx of the

FIG. 1. sad Realssolidd and imaginarysdashedd part of the time
delay amplitude distribution,hstd, for Vb=100. sbd Transmitted
field CFsxd sthick solidd and its componentsCm, corresponding to
different terms in Eq.s14d, for Vb=100, and a Gaussian incident
pulsek0b=1.4p andDx/b=2.85.scd Same assbd but for an incident
Gaussian pulse truncated at front.sdd Same assbd but for an inci-
dent Gaussian pulse truncated at rear.sed Same assbd but for k0b
=7p andDx=0.57.
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transmitted particle to the timet it is supposed to have spent
in the scatterer. Quantally,t and x are related as the mea-
sured quantity and the pointer position in a measurement,
whose accuracy is determined by the coordinate width of the
pulse. In cases where apparent superluminality is observed,
e.g., in tunneling or optical propagation through fast-light
media, the measurement is inevitably weak. Even if no nega-
tive time delays contribute to the transmissionfhstd;0 for
t,0g, it may, therefore, produce an anomalous reading by
constructing a superluminal pulse from the front tails of the
components of the transmitted pulse, all delayed relative to
free propagation. Just as an improvement in the accuracy
destroys anomalous weak valuesf9g, a choice of a narrow
incident pulse destroys superluminal propagation by making
higher incident momenta pass over the barrier, or spill out-
side the anomalous dispersion region. As a result, a “strong”
measurement registers only the subluminal time delays, as
illustrated in Fig. 1sed for the simple model described above.
The contradiction between the impossibility of faster-than-
light travel and observing an apparently superluminal pulse

is, therefore, resolved in a typically quantum mechanical
fashion: when superluminality is present, one does not know
the delay, and cannot claim that the duration spent in the
scatterer is shorter thanb/c. Conversely, when the delay is
known, no superluminal transmission is observed. The ab-
sence of negative virtual delays in optical propagation does,
however, limit the speed of information transfer toc and
below, as a nonanalytic featurese.g., a cutoffd of the initial
pulse may only travel as far as the most advanced component
in Eq. s5d, i.e., at most bycT. Beyond this point the field will
either vanish if the front part of the pulse was discarded, or
remain identical to the uncut field if its rear tail has been
removed as the recent experiments by Stenneret al. f1g
show.
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