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Laser scan image of a single molecule 
(FWHM focus spot ≈ 370 nm).



Single molecule fluorescence detection

 Single molecule fluorescence studies

R.J. Pfab et al., Chem. Phys. Lett. 387, 490 (2004)

p-terphenyl film on a glass substrate with 
dopant terrylene molecules.transition dipole moments of terrylene molecules are 

oriented approximately perpendicular to substrate

Experimental fluorescence microscopy setup.



Single molecule fluorescence detection

 Single molecule fluorescence studies

R.J. Pfab et al., Chem. Phys. Lett. 387, 490 (2004)

nearly ring-like emission pattern = 
characteristic of vertically oriented 
dipoles

Fluorescence image.

asymmetries attributed to a slight 
tilt of the emission dipole with 
respect to optical axis



Single molecule extinction measurements

 Detection of a single emitter in transmission

G. Wrigge et al., Nature Phys. 4, 60 (2008)

Energy-level scheme of a 
molecule.

Arrangement of the lenses in
the illumination and collection paths.

IeId



Single molecule extinction measurements

 Detection of a single emitter in transmission

G. Wrigge et al., Nature Phys. 4, 60 (2008)

Example of a transmission spectrum (11.5% dip).



Single molecule extinction measurements

 Single-molecule detection with ultrafaint light sources

G. Wrigge et al., Nature Phys. 4, 60 (2008)

Extinction spectrum recorded from a single molecule under an 
ultrafaint detected power of 550 photons per second.



Theoretical limits

 Scattering by a classical oscillator

G. Zumofen et al., PRL 101, 180404 (2008)

Abraham-Lorentz equation:

(see Jackson: Classical Electrodynamics)
q .. displacement of electron

Γ‘ .. damping by non-radiative channels (≈ 0)

E0 .. electric field amplitude at place of oscillator

ε .. unit vector along direction of driving field E

τ .. characteristic time of damping by radiation reaction

gives stationary state solution of q:

Δ .. laser frequency detuning

Γ .. damping ratewhich allows to calculate stationary 
state scattered far-field:

(Gaussian units)



Theoretical limits

 Scattering by a classical oscillator

G. Zumofen et al., PRL 101, 180404 (2008)

total scattered power:

where is the time-averaged electric energy density at O

and the total scattering cross section of the oscillator

..  cross section at resonance: depends only on wavelength!



Theoretical limits

 Scattering by a two-level system (semi-classical description)

G. Zumofen et al., PRL 101, 180404 (2008)

stationary state population of the 
upper state:

(see Cohen-Tannoudji et al.: Atom-Photon interactions)
Γ1 .. radiative decay rate

Γ2 .. damping rate of polarization

Γ2
* .. dephasing rate for nonradiating processes

V .. Rabi frequency

d12.. transition dipole moment

gives power scattered into solid angle of 4π:



Theoretical limits

 Light scattering by an oscillating dipole in a focused beam

a .. entrance-aperture radius

α .. entrance half angle

β .. collection half angle

f .. focal length

G. Zumofen et al., PRL 101, 180404 (2008)

ratio of scattered to incident power:

effective cross section:

classical oscillator

two-level system

effective focal area in the case of a 
focused plane wave:

scattered power depends only on field strength at position of oscillator!

power transmitted through focal plane

electric energy density at focal spot



Theoretical limits

 Light scattering by an oscillating dipole in a focused beam

a .. entrance-aperture radius

α .. entrance half angle

β .. collection half angle

f .. focal length

G. Zumofen et al., PRL 101, 180404 (2008)

Transmittance of a focused plane wave as 
a function of the angles α and β.

≈ 10%

focused plane wave can be attenuated up to 90%!



Theoretical limits

 Light scattering by an oscillating dipole in a focused beam

a .. entrance-aperture radius

α .. entrance half angle

β .. collection half angle

f .. focal length

G. Zumofen et al., PRL 101, 180404 (2008)

Transmittance as a function of 
the detuning.

focused plane wave
(α=β=π/3)

directional dipolar wave
(α=β=π/2)

directional dipolar wave can be completely attenuated!



Comparison in terms of  SNR

 Limits of single emitter detection in fluorescence and extinction

G. Wrigge et al., Opt. Express 16, 17360 (2008)

Level scheme of a dye molecule.
(λlas ≈ 590 nm, λred > 600 nm) 

Schematics of the experimental setup.
(Sample: DBATT molecules embedded in 

a n-tetradecane matrix)

AL .. aspheric lens

SIL .. solid immersion lens

LP /SP.. long/short pass

PD .. photodetector

Power on PD:
(without filter)

laser molecular 
emission

interference



Comparison in terms of  SNR

 Limits of single emitter detection in fluorescence and extinction

G. Wrigge et al., Opt. Express 16, 17360 (2008)

Extinction and fluorescence excitation spectra recorded from a single 
molecule in transmission at three different detected laser powers.



Comparison in terms of  SNR

 Limits of single emitter detection in fluorescence and extinction

G. Wrigge et al., Opt. Express 16, 17360 (2008)

α .. power emitted on 0-0 ZPL to total excited state emission

Γ1.. total spontaneous emission rate

Γ2.. transverse decay rate

ζ .. collected fraction of total emitted molecular power

μ .. account for losses and detector efficiency

K .. ratio of scattered to incident power

Power on PD:
(without filter)

resonant:

red-shifted:

Saturation parameter:



Comparison in terms of  SNR

 SNR for a fluorescence excitation measurement

 SNR for an extinction measurement

G. Wrigge et al., Opt. Express 16, 17360 (2008)

noise sources:

• shot noise of the fluorescence
• fluctuations in the detectors dark counts

noise sources:

• shot noise of the detected signal
• fluctuations on the laser intensity
• fluctuations on the detector dark counts

total noise ≈ shot noise of laser



Comparison in terms of  SNR

 SNR for fluorescence excitation vs. extinction measurements

G. Wrigge et al., Opt. Express 16, 17360 (2008)

Signal-to-noise ratios of the resonant transmission and fluorescence 
signals as a function of the excitation power and saturation parameter.

transmission

fluorescence

SNR of extinction measurements wins in the case of stronger 
excitations up to saturation!

μ = 0.2

K = 0.5 (strong focusing!)

α = 0.2

ζ = 0.02

Γ2 = Γ1/2

Γ1/2π = 17 MHz



Comparison in terms of  SNR

 Limit of extinction measurements

G. Wrigge et al., Opt. Express 16, 17360 (2008)

The SNR for a resonant transmission detection of emitters with different radiative decay rates.

single emitters with spontaneous emission times as long as a millisecond 
detectable using extinction spectroscopy!

μ = 1

K = 0.5 (strong focusing!)

α = 1

Γ2 = Γ1/2



Single quantum dot spectroscopy

 Strong extinction of a far-field laser beam by a single quantum dot

A.N. Vamivakas et al., Nano Lett. 7, 2892 (2007)

Illustration of the experimental apparatus used for both microphotoluminescence and 

resonant scattering measurements.



Single quantum dot spectroscopy

 Strong extinction of a far-field laser beam by a single quantum dot

A.N. Vamivakas et al., Nano Lett. 7, 2892 (2007)

Strength of the scattered light signal as a 
function of incident laser power.

The measured contrast is 12% and the line width is 368 MHz (1.47 μeV).

Best line scan recorded for the lowest 
power point.



Single quantum dot spectroscopy

 Strong extinction of a far-field laser beam by a single quantum dot

A.N. Vamivakas et al., Nano Lett. 7, 2892 (2007)

Line scans as a function of incident laser 
power to demonstrate power broadening of 

the QD X0 transition.

Saturation curve.



 single emitters with spontaneous emission times as long as 
milliseconds detectable

 direct access to coherent interaction of incident light and emitter

 detection of single solid-state quantum emitters at room 
temperature

 imaging of small metallic and dielectric nanoparticles

 possibility for a strong coupling of few photons with a single 
quantum emitter 

Conclusions & Outlook



Thanks for your attention!
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