# Triggered & entangled photon pairs from quantum dots

Tobias Nöbauer Seminar Recent Progress in Nanooptics & Photonics Prof. O. Benson 2009-06-10

### Outline

- Intro to QDs
- (Disputed) realization using selected QDs / tuning via Zeeman shift
- Realization using filters

### **Quantum dots: Principles**



AFM images of InP/InGaP QDs



TEM image of a CdSe QD on ZnSe







biexciton





### **Entanglement from Bi-exciton decay**





- Two decay paths:
  - First left, then right polarized Photon:  $|\psi^{(1)}\rangle = |\sigma^+\rangle_1 |\sigma^-\rangle_2$
  - Vice versa:  $|\psi^{(2)}> = |\sigma^->_1 |\sigma^+>_2$
- If paths are indistinguishable, we add amplitudes:  $|\psi>=1/\sqrt{2}(|\sigma^+>_1|\sigma^->_2+|\sigma^->_1|\sigma^+>_2)$
- $\rightarrow$  Entangled state!

Benson et al, PRL 84, 2513 (2000).



- Find QD with ∆≈0
- Tune splitting to zero
- Erase which-path information with narrow filter
- Erase which-path information by time reordering

## A semiconductor source of triggered entangled photon pairs

R. M. Stevenson<sup>1</sup>, R. J. Young<sup>1,2</sup>, P. Atkinson<sup>2</sup>, K. Cooper<sup>2</sup>, D. A. Ritchie<sup>2</sup> & A. J. Shields<sup>1</sup>

- Spectroscopy of 200 QDs @ 10 K
- 635 nm, 80 MHz pulsed excitation
- Rising emission energy correlates with falling splitting
- QDs emitting at 1.4 eV have smallest splitting (10 μeV)
- For QDs with "inverted" splitting  $(E_{XV} > E_{XH})$ , splitting can be tuned using in-plane B-field
- Homogeneous linewidth  $\Gamma = 1.1 \pm 0.5 \mu eV$
- $\rightarrow$  make S <  $\Gamma$
- → separate X-XX and H-V and record crosscorrelations...



### Entangled photons...



(red traces shifted horizontally for clarity)

### Stevenson et al: Density matrices



- strong coherences
- but: background counts from
  - dark counts
  - wetting layer emission
  - scattering between intermediate X spin states
- Test for largest eigenvalue > 0.5 is positive after background substraction

(Largest eigenvalue is probability that source emits into a single polarization state. Always< 0.5 for non-entangled source)</li>

### ...or maybe not?

**BRIEF COMMUNICATIONS ARISING** 

NATURE | Vol 445 | 11 January 2007

QUANTUM INFORMATION

Source of triggered entangled photon pairs?

Arising from: R. M. Stevenson et al. Nature 439, 179-182 (2006)

Criticism:

- Average linear correlation not above classical limit of 0.5
- Degree of correlation not really independent of basis
- Largest eigenvalue test only valid for unpolarized source (which is not quite the case)
- Standard quantitative tests for entanglement fail (projection onto Bell state, tangle, concurrence, ...)

### A few weeks later...

- Increased growth temperature by 20° to mix InAs wetting layer with surrounding GaAs
- Optimized bragg reflector for 1.4 eV



### Degree of correlation C (%) Degree of correlation C (%) 60 (a) HH-HV (b) DD-DD 70% 61% 60-30-30 0 -30 -30 -20 0 -20 0 20 20 Time delay (12.5 ns cycles) Time delay (12.5 ns cycles) Degree of correlation C (%) 30 Co-linear correlation (%) 0 25 02 0 22 0 (d) (c) RR-RL 0 Classical limit (mean -30 -58% -60White light 20 20 -20 0 0 10 30 40 Time delay (12.5 ns cycles) Half wave-plate angle (°)

| Test description                                             | Test limit        | Test result        |
|--------------------------------------------------------------|-------------------|--------------------|
| $( \text{HH}\rangle +  \text{VV}\rangle/\sqrt{2}$ projection | >0.5              | $0.702 \pm 0.022$  |
| Largest eigenvalue                                           | >0.5 <sup>a</sup> | $0.719\pm0.023$    |
| Concurrence [19]                                             | >0                | $0.440\pm0.029$    |
| Tangle [20]                                                  | >0                | $0.194 \pm 0.026$  |
| Average linear correlation                                   | >0.5              | $0.624 \pm 0.024$  |
| Peres [21] <sup>b</sup>                                      | <0                | $-0.219 \pm 0.021$ |

### Result:

### In the meantime:

PRL 96, 130501 (2006)

PHYSICAL REVIEW LETTERS

week ending 7 APRIL 2006

### **Entangled Photon Pairs from Semiconductor Quantum Dots**

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni\* Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

B.D. Gerardot and P. M. Petroff Materials Department, University of California Santa Barbara, California 93106, USA (Received 19 January 2006; published 6 April 2006)

• Filters with  $\Delta E = 25 \mu eV$  centered between H and V peaks



 This projection operation entangles the two photons by erasing the which-path information

### Akopian et al. results



- Bunching for XX, then X / Antibunching for X, then XX
- By substraction: same-cascade photons only
- Results violate Bell's ineq., satisfy Peres criterion

### **Proposal: Time reordering**

Avron et al., PRL 100, 120501 (2008).



Make XX<sub>H</sub> and X<sub>V</sub> energies equal, and vice versa  $\rightarrow$  which-path info only in temporal sequence  $\rightarrow$  erase which-path in polarization-dependent delay line:



### Summary

- Bi-exciton decay of single QDs emits polarizationentangled photons (70% fidelity @ 10 K)
- Polarization splitting of exciton levels is source of which-path information, destroying entanglement
- Erase which-path by:
  - Tuning splitting to 0
  - Using narrow filters
  - Time reordering (proposed)
- Know your entanglement measures!

### Bibliography

- Benson, O. et al. Regulated and Entangled Photons from a Single Quantum Dot. *Phys. Rev. Lett.* **84**, 2513(2000).
- Stevenson, R.M. et al. A semiconductor source of triggered entangled photon pairs. *Nature* **439**, 179-182(2006).
- Akopian, N. et al. Entangled Photon Pairs from Semiconductor Quantum Dots. *Phys. Rev. Lett.* **96**, 130501-4(2006).
- Gilchrist, A., Resch, K.J. & White, A.G. Source of triggered entangled photon pairs? *Nature* **445**, E4-E5(2007).
- Stevenson, R.M. et al. Source of triggered entangled photon pairs? (Reply). *Nature* **445**, E5-E6(2007).
- Young, R.J. et al. Improved fidelity of triggered entangled photons from single quantum dots. *New Journal of Physics* **8**, 29(2006).
- Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. *New Journal of Physics* **9**, 315(2007).
- Avron, J.E. et al. Entanglement on Demand through Time Reordering. *Phys. Rev. Lett.* **100**, 120501-4(2008).

- Asymmetric dot shape, strain, crystal anisotropy, etc.
- e-h exchange interaction leads to fine structure splitting  $\Delta = O(10 \ \mu eV)$
- Largest eigenvalue?