
2 Theoretical Concepts

Highlights of this chapter: Derivation of general concepts of electrodynamics,
different ways to represent electromagnetic fields, discussion of Gaussian beams,
introduction of evanescent fields, theory of image formation and resolution limits.

2.1 ”Wrap-up” of classical electrodynamics

2.1.1 Maxwell’s Equations

At the very beginning of any problem in optics there are Maxwell’s equations. We
use SI units unless stated otherwise:

∇× E(r, t) = −∂B(r, t)

∂t
(1)

∇×H(r, t) =
∂D(r, t)

∂t
+ j(r, t) (2)

∇ ·D(r, t) = ρ(r, t) (3)

∇ ·B(r, t) = 0 (4)

where E is the electric field, D the electric displacement, H the magnetic field
and B the magnetic induction. The initial problem to find 16 unknown vector com-
ponents can be highly simplified (depending on the medium).

Example: In an isotropic, homogeneous, source-free Medium, the electromagnetic
field is described by two scalar fields only.

Conservation of charge is implicitly contained in Maxwell’s equation. It is possi-
ble to derive the continuity equation:

∇ · j(r, t) +
∂ρ(r, t)

∂t
= 0 (5)
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Electromagnetic properties of (macroscopic) matter are included via the polarization
P and the magnetization M :

D(r, t) = ε0E(r, t) + P (r, t) (6)

H(r, t) = µ−1
0 B(r, t)−M(r, t) (7)

These equations do not depend on the medium and are always valid!

2.1.2 Wave equation

By inserting equation 6 in Maxwell’s equation two inhomogeneous wave equations
are obtained:

∇×∇× E(r, t) +
1

c2

∂2E(r, t)

∂t2
= −µ0

∂

∂t

(
j +

∂P

∂t
+∇×M

)
(8)

∇×∇×H(r, t) +
1

c2

∂2H(r, t)

∂t2
= ∇× j +∇× ∂P

∂t
+ µ0

∂M

∂t
(9)

Also these equations are valid irrespective of the specific properties of the medium.

2.1.3 Linear media

In linear, isotropic media, there is the following relation between D and E and H
and B, respectively:

D = ε0εE (P = ε0χeE) (10)

B = µ0µH (M = χmH) (11)

jc = σE (12)

Generally, ε and µ may depend on the spatial coordinate (inhomogeneous media)
and/or on the frequency (dispersive media).

2.1.4 Time-dependent fields

The spectrum of an arbitrary electric field E(r, t) is defined by the Fourier transform

Ê(r, ω):

Ê(r, ω) =
1√
2π

−∞∫

∞

E(r, t)eiωtdt (13)
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Maxwell’s equation can be Fourier-transformed to find:

∇× Ê(r, ω) = iωB̂(r, ω) (14)

∇× Ĥ(r, ω) = −iωD̂(r, ω) + ĵ(r, ω) (15)

∇ · D̂(r, ω) = ρ̂(r, ω) (16)

∇ · B̂(r, ω) = 0 (17)

From the solution of the Fourier-transformed equations it is possible to find E(r, t)
via inverse Fourier transform:

E(r, t) =
1√
2π

−∞∫

∞

Ê(r, ω)e−iωtdt (18)

In the special case of a monochromatic field

E(r, t) = Re
{
E(r)e−iωt

}
= 1/2

(
E(r)e−iωt + E∗(r)eiωt

)
(19)

one finds the following Maxwell’s equations:

∇× E(r) = iωB(r) (20)

∇×H(r) = −iωD(r) + j(r) (21)

∇ ·D(r) = ρ(r) (22)

∇ ·B(r) = 0 (23)

This is equivalent to 14. Therefore, the solution E(r) is equivalent to the solution

Ê(r, ω) for one frequency component of an arbitrary time-dependent field.

2.1.5 Boundary conditions

At the boundary between two media the material properties change in a discontin-
uous way. As an example we take the boundary of two media indexed with i, j.
Within each medium i or j the inhomogeneous Helmholtz equations are valid:

(∇2 + k2
i

)
Ei = −iωµ0µiji +

∇ρi

ε0εi

(24)
(∇2 + k2

i

)
Hi = ∇× ji (25)

These can easily be derived from Maxwell’s equations taking into account the iden-
tity ∇ × ∇× = −∇2 + ∇∇·. Here we define the wavenumbers ki = (ω/c)

√
µiεi.
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Often the medium is source-free and the inhomogeneous equation reduce to the ho-
mogeneous Helmholtz equations.

In order to derive the boundary conditions it is convenient to write Maxwell’s equa-
tion in integral form:∫

∂S

E(r, t) ds = −
∫

S

∂

∂t
B(r, t) · nS da (26)

∫

∂S

H(r, t) ds =

∫

S

[
j(r, t) +

∂

∂t
D(r, t)

]
· nS da (27)

∫

∂V

D(r, t) · nS da =

∫

V

ρ(r, t) dV (28)
∫

∂V

B(r, t) · nS da = 0 (29)

Here V, S and ∂V, ∂S are the volumes and surfaces, or their borders, respectively.
Applied to a sufficiently small area Maxwell’s equation provide boundary conditions
for the tangential components (with the surface current density K)

n× (Ei − Ej) = 0 on ∂Dij (30)

n× (Hi −Hj) = K on ∂Dij (31)

and the normal components:

n · (Di −Dj) = σi on ∂Dij (32)

n · (Bi −Bj) = 0 on ∂Dij (33)

The following figure 3 illustrates the geometry:

2.1.6 Energy conservation

From Maxwell’s equation one finds after a simple transformation:
∫

∂V

(E ×H) · n da = −
∫

V

[
H · ∂B

∂t
+ E · ∂D

∂t
+ j · E

]
dV (34)

For a linear medium we find by inserting∫

∂V

(E ×H) · n da +
1

2

∂

∂t

∫

V

[D · E + B ·H] dV = (35)

−
∫

V

j · E dV − 1

2

∫

V

[
E · ∂P

∂t
− P · ∂E

∂t

]
dV − µ0

2

∫

V

[
H · ∂M

∂t
−M · ∂H

∂t

]
dV
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Figure 3: Sketch to derive boundary conditions.

The Poynting Theorem is an interpretation of this equation, in a sense that the
first term on the left side is the energy flux density (Poynting-Vector S = E ×H)
describing the flux out of the volume V , whereas the second term on the left side is
the change of the energy inside the volume V and the term on the right side is the
dissipation within V .

An important quantity is the time average of the Poynting-Vector:

〈S〉 =
1

2
Re {E ×H∗} (36)

In the far field the electric and magnetic fields are transversal. Therefore:

〈S〉dist =
1

2

√
ε0ε

µ0µ
|E|2 nr (37)
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2.2 Representations of electromagnetic fields

2.2.1 Dyadic Green’s function

General Concept:
Green’s functions provide a method to find solution of inhomogeneous linear differ-
ential equation of the general form:

LA(r) = B(r) (38)

where L is a linear operator and A(r) and B(r) are vector fields. In electromag-
netism B(r) can be represented as a source field and A(r) an unknown response.
A solution of the equation above is a solution of the homogeneous equation A0 for
B = 0 and an arbitrary particular solution.

The idea of the Green’s function ansatz is to first find a solution for a special δ-like
problem:

L←→G (r, r′) =
←→
I δ(r − r′) (39)

In this equation L acts on each column of
←→
G (r, r′) independently.

←→
G (r, r′) is the

Dyadic Green’s function.

A solution of the general inhomogeneous equation can then be found as

A(r) =

∫

V

←→
G (r, r′)B(r′) dV ′ (40)

Remark:
Care has to be taken with singular points. Often ~G(r, r′) is singular at r = r′. In
this case an infinitesimal volume has to excluded from the integration and treated
separately. For now, we assume that the field points we consider are outside the
source volume.
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Green’s function for the electric field:
We start with expressing the time periodic (!) electric and magnetic field E(r) and
H(r) via a scalar and vector potential φ(r) and A(r), respectively:

E(r) = iωA(r)−∇φ(r) (41)

H(r) =
1

µ0µ
∇×A(r) (42)

With the Lorentz gauge condition

∇ ·A(r) = iωµ0µε0εφ(r) (43)

inserting of the potentials into Maxwell’s equations results in the inhomogeneous
Helmholtz equations

[∇2 + k2
]
A(r) = −µ0µj(r) (44)[∇2 + k2

]
φ(r) = −ρ(r)/ε0ε (45)

A scalar Green’s function G0(r, r
′) can now be found as solution of the scalar prob-

lem: [∇2 + k2
]
G0(r, r

′) = −δ(r − r′) (46)

For the two potentials one finds

A(r) = µ0µ

∫

V

j(r′)G0(r, r
′) dV ′ (47)

φ(r) =
1

ε0ε

∫

V

ρ(r′)G0(r, r
′) dV ′ (48)

In free space the only physical solution for the scalar problem 46 is:

G0(r, r
′) =

exp (±ik|r − r′|)
4π|r − r′| (49)

The solution correspond to spherical waves propagating out of (+ sign) or into (-
sign) the origin.
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In order to find the Green’s function for the electric field it is convenient to start
with the wave equation in a homogeneous field:

[
(∇×∇×)− k2

]
E(r) = iωµ0µj(r) (50)

From this we can formulate the general definition of the dyadic Green’s function for
the electric field:

[
(∇×∇×)− k2

]←→
G (r, r′) =

←→
I δ(r − r′) (51)

Note, that
←→
G (r, r′) is a tensor!

Then, we find the general solution for the electric field from the particular solution

E(r) = iωµ0µ

∫

V

←→
G (r, r′)j(r) dV ′ (52)

together with an arbitrary homogeneous solution E0(r):

E(r) = E0(r) + iωµ0µ

∫

V

←→
G (r, r′)j(r) dV ′ r /∈ V (53)

and similar for the magnetic field:

H(r) = H0(r) +

∫

V

[
∇×←→G (r, r′)

]
j(r) dV ′ r /∈ V (54)

The equations above are called the volume integral equations and are the starting
point of various other formalisms.

In order to solve the equations above for a specific distributions of currents, an

explicit expression for
←→
G (r, r′) has to be found. We can start with expressing the

electric field via the vector potential in Lorentz gauge. From equation 42 one finds:

E(r) = iω

[
1 +

1

k2
∇∇·

]
A(r) (55)
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The first column vector of
←→
G , defined in equation 51, i.e. Gx, is simply the electric

field due to a point source current j = (iωµ0)
−1δ(r − r′)nx. The vector potential

originating from this source is

A = (iω)−1G0(r, r
′)nx (56)

Inserting this one finds

Gx(r, r
′) =

[
1 +

1

k2
∇∇·

]
G0(r, r

′)nx (57)

with similar expressions for Gy and Gz.

Finally, with the definition of ∇ ·
[
G0
←→
I

]
= ∇G0 one finds:

←→
G (r, r′) =

[←→
I +

1

k2
∇∇·

]
G0(r, r

′) (58)

We will use the Green’s function approach in some of the following chapters.

2.2.2 Angular spectrum representation

Electromagnetic fields can be represented in various ways, e.g., in different bases. It
depends on the specific problem or geometry to decide which representation is most
appropriate.

The angular spectrum representation is most convenient if propagating beams in
homogeneous media or at boundaries between homogeneous media are considered.
In this context we understand evanescent waves (with a complex component of the
k-vector) as plane waves as well.

We consider a general problem. i.e. the coherent scattering of light by an arbi-
trary object. The scattered fields may be collected at a screen or detector. Figure 4
illustrates the geometry.
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elastic diffraction
of plane waves

z

x
y

screen

Figure 4: Schematic of plane wave diffraction on an arbitrary object.

First, the arbitrary field E(x, y, z) is written with the help of its Fourier components
in the x− y-plane. The z-direction is the direction of propagation:

E(x, y, z) =
1

2π

∫∫
Ê(kx, ky, z)ei(kxx+kyy) dkxdky (59)

In a homogeneous, isotropic, source-free medium the homogeneous Helmholtz equa-
tion is valid:

(∇2 + k2)E(x, y, z) = 0 (60)

Inserting leads to:

Ê(kx, ky, z) = Ê(kx, ky, 0)eikz (61)

Thus:

E(x, y, z) =
1

2π

∫∫
Ê(kx, ky, 0)ei(kxx+kyy+kzz) dkxdky (62)

This representation is the angular spectrum representation. It is straightforward to
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evaluate E(x, y, z) from E(x, y, 0) by inserting the Fourier components:

E(x, y, z) = (63)

1

4π2

∫∫ ∞

−∞
E(x′, y′, 0)e−i(kxx′+kyy′) dx′dy′ei(kxx+kyy+kzz) dkxdky

= (64)

1

4π2

∫∫ ∞

−∞
E(x′, y′, 0)

∫∫ ∞

−∞
ei(kx(x−x′)+ky(y−y′)+kzz) dkxdkydx′dy′

E(x, y, z) is a convolution of E(x, y, 0) with the optical transfer function

H(x− x′, y − y′) =

∫∫ ∞

−∞
ei(kx(x−x′)+ky(y−y′)+kzz) dkxdky (65)

H(x−x′, y−y′) can also be expressed in reciprocal space after Fourier transformation:

Ê = Ê ′ · Ĥ (66)

Obviously:

Ĥ = ei(kxx+kyy+kzz) (67)

With

kz =
√

k2 − k2
x − k2

y = 2π

√
1/λ2 − ρ2 (68)

it is apparent that the spatial Fourier components propagate as plane waves or as
evanescent waves (with a complex kz). Information about spatial frequencies with

∆x < 1/k =
λ

2πn
(69)

decay exponentially!

This information is only available in the optical near-field!

As already mentioned the angular spectrum representation is convenient when cal-
culating the transmission or reflection at interfaces or boundaries. Here, the Fresnel
coefficients for transmission and reflections can be utilized.

Reminder: The Fresnel coefficients describe the reflection (r) and transmission (t)
for s− and p− polarization for a wave traveling from the medium i to the medium
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t under the incidence (transmission) angle ϑi (ϑt):

rs =

ni

µi
cos ϑi − nt

µt
cos ϑt

ni

µi
cos ϑi + nt

µt
cos ϑt

(70)

ts =
2ni

µi
cos ϑi

ni

µi
cos ϑi + nt

µt
cos ϑt

(71)

rp =

nt

µt
cos ϑi − ni

µi
cos ϑt

ni

µi
cos ϑi + nt

µt
cos ϑt

(72)

tp =
2ni

µi
cos ϑi

ni

µi
cos ϑt + nt

µt
cos ϑi

(73)

An arbitrary problem of light incident on an interface of two media is illustrated in
the following figure 5.

medium 1 medium 2

Ein

nf

^

nq

^n^k
^

r

0

dA1 dA2

q

Figure 5: Arbitrary problem of light incident on an interface of two media.

The field in the medium 2 right after the interface can be written as:

E2(x, y, z) =
[
ts(ϑn)

∣∣∣E(s)
2

∣∣∣nϕ + tp(ϑn)
∣∣∣E(p)

2

∣∣∣ nϑ

]√
n1

n2

(cos ϑ)1/2 (74)

where
E

(s)
2 = (Einc · n̂φ)n̂φ E

(p)
2 = Einc · n̂Θ)n̂Θ (75)

and
cos ϑ =

(
k̂n̂(x, y, z)

)
(76)

The term after the bracket [ ] preserves the energy flux.
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2.2.3 Evanescent fields

We have already encountered evanescent fields in the previous subsection. Evanes-
cent fields often play a crucial role in the field of nanooptics where the interaction
on a length scale far below the wavelength of light is of interest.

Evanescent fields are described as a plane wave of the form

E(r, t) = E0e
i(kr−ωt) (77)

whereat least one component of the wavevector k is imaginary.

Evanescent waves occurs, e.g., at interfaces between homogeneous media. The fol-
lowing figure 6 shows an interface between two media with ε1, µ1 und ε2, µ2.

Figure 6: Transmission and reflection of a wave on a planar boundary.

Reflection is described by Snell’s law and the Fresnel coefficients.

√
ε1µ1 sin ϑ1 =

√
ε2µ2 sin ϑ2 (78)
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The transmitted field is

E2 =



−tpEp

1 cos ϑ2

tsEs
1

tpEp
1 sin ϑ2


 eik2,xxeik2,zze−iωt (79)

where ts,p are the Fresnel coefficients for s- and p-polarization, respectivey.

The relation between the components of k1 = 2π
√

ε1µ1/λ und k2 = 2π
√

ε2µ2/λ
is:

k2,x = k2 sin ϑ2 = k1 sin ϑ1 (80)

k2,z = k2 cos ϑ2 = k2

√
1− ε1µ1

ε2µ2

sin2 ϑ1

Or:

k2,z = (ε2µ2k
2 − k2

||)
1/2 = k

√
ε2µ2 − ε1µ1 sin2 ϑ1 with k = 2π/λ (81)

There is a critical angle of incidence, if the root becomes negativ:

ϑc = arcsin

√
ε2µ2

ε1µ1

(82)

Example: glass/air ε2 = 1, ε1 = 2.25, µ1 = µ2 = 1 somit ϑc = 41, 8◦

For ϑ1 > ϑc k2,z becomes imaginary. For the field we find:

E2 =



−itpEp

1

√
ε1µ1

ε2µ2
sin2 ϑ1 − 1

tsEs
1

tpEp
1

√
ε1µ1

ε2µ2
sin ϑ1


 eik2,xxe−αze−iωt (83)

with the decay constant

α = k2

√
ε1µ1

ε2µ2

sin2 ϑ1 − 1 (84)
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The following figure 7 plots the decay of an evanescent field for two different incident
angles.

Figure 7: Decay of an evanescent field for two different incident angles.

Evanescent fields can be detected via a probe which is brought closer to the surface
than ≈ λ/2. This is the basis for Scanning-Tunneling-Optical-Microscopy (STOM).

Energy transport via evanescent fields:

If the incident angle is larger than the critical angle, then there is total internal
reflection. No energy is transported to the optically thinner medium. This can be
verified by calculating the Poynting vector:

〈S〉2,z =
1

2
Re(E2,xH

∗
2,y − E2,yH

∗
2,x) = 0 (85)

However, there is an energy transport parallel to the interface:

〈S〉2,x ∝ e−αz 6= 0 (86)
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Frustrated total internal reflection:
Evanescent waves can be transferred into propagating waves when they interact with
matter. This is the basic idea behind optical near-field microscopy since in this way
evanescent fields can be detected in the far-field by an ordinary detector.
The following figure 8 illustrates reflection on a system consisting of three layers
with different dielectric constants (εi, µi und i ∈ {1, 2, 3}):

Figure 8: Left: Geometry of reflection on a stack of three layers. Right: Frustrated total internal
reflection with a two-prism system.

The wave vector parallel to the interface is:

kj,z = (εiµik − k2
||)

1/2 = k(εiµi − ε1µ1 sin ϑ1)
1/2 i ∈ {1, 2, 3} (87)

For n2 < n3 < n1 there are three possible cases:

1. ϑ1 < arcsin(n2/n1) or k|| < n2k: The fields propagate in each of the three
media. A decetor in the far-field registers only a weak dependence (actually a
modulation) of the intensity as a function of the thickness of layer 2.

2. arcsin(n2/n1) < ϑ1 < arcsin(n3/n1) or n2k < k|| < n3k: The field can only
propagate in medium 1 and medium 3. There is a strong dependence of the
detected intensity as a function of the thickness of layer 2.
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3. ϑ1 > arcsin(n3/n1) or k|| > n3k: Waves are evanescent, both in medium 2 and
3.

The following figure 9 illustrates the scenarios:

Figure 9: transmission of a p-polarized wave through a stack of three layers. a) and b) corresponds
to the cases discussed in the text. c) is a purely exponential decay with the parameters from b),
but without a third medium present.

Remark: The dependence of the intensity in case 2 differs from a pure exponential
decay in case of the absence of medium 3. This is a first indication that the situation
in the near-field may strongly depend on the probe!

2.2.4 Gaussian beams

In order to describe beam propagation in a more realistic way taking into account
the finite transversal extension and the wave front curvature, the representation
of Gaussian beams is most suitable. Here we would like to summarize their basic
properties and discuss focusing issues.
In order to derive Gaussian beams one first starts with a Gaussian distribution of
the electric field in an (x′-y′-)plane at z′ = 0:

E(x′, y′, 0) = E0 exp

(
−x′2 + y′2

w2
0

)
(88)
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The Fourier transfor also has Gaussian shape:

Ê(kx, ky, 0) = Ê0
w2

0

2
exp

(−(k2
x + k2

y)w
2
0/4

)
(89)

Inserting into the angular spectrum representation results in:

E(x, y, 0) = E0
w2

0

4π
eikzz

∫∫
e−(k2

x+k2
y)(w2

0/4+iz/2k)ei(kxx+kyy) dkxdky (90)

Here, we used the paraxial approximation:

kz = k

√
1− k2

x + k2
y

k2
≈ k − k2

x + k2
y

2k
(91)

The integral can be evaluated and one finds the field of the fundamental Gaussian
mode:

E(ρ, z) = E0
w0

w(z)
e
− ρ2

w2(z) ei[kz−η(z)+kρ2/2R(z)] (92)

with

w(z) = w0(1 + z2/z2
0)

1/2 beam waist (93)

R(z) = z(1 + z2/z2
0) wavefront radius (94)

η(z) = arctan(z/z0) phase correction (Gouy phase) (95)

with ρ2 = x2 + y2 and the Rayleigh length z0 = kw2
0/2. Within the Rayleigh length

the focussed spot increases by
√

2.

Asymptotically, one finds:

lim
z→∞

(
w(z)

z
) =

2

kw0

=
λ

πw0

or (96)

(97)

NA = 2n/kw0 (98)

Remark:
The product

NA · w0 = 2n/k (99)

is a constant.
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The following figure 10 illustrates the properties of a Gaussian beam:

Figure 10: Properties of a Gaussian beam. From [Novotny and Hecht, ”Principles of Nano-Optics”]

If the Gaussian beam passes a lens with focal length f at a distance zl from the
focus, then the beam transforms according to:

z′0 =
f 2z0

(zl − f)2 + z2
0

(100)

Higher order Gaussian modes
Higher order modes can be derived from the fundamental mode:

• Hermite-Gaussian-Modes (Eigenmodes in resonators with rectangular geome-
try):

EH
nm(x, y, z) = wn+m

0

∂n

∂xn

∂m

∂ym
E(x, y, z) (101)

• Laguerre-Gaussian modes (Eigenmodes in resonators with spherical geometry):

EL
nm(x, y, z) = knw2n+m

0 eikz ∂n

∂xn

(
∂

∂x
+ i

∂

∂y

)m {
E(x, y, z)e−ikz

}
(102)
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The following figure 11 shows the intensity distribution of different Hermite-Gaussian
modes in the focal plane:

Figure 11: Intensity distribution of Hermite-Gaussian modes in the focal plane: a) 00-mode, b)
10-mode, c) 01-mode, d) 11-mode. From [Novotny and Hecht, ”Principles of Nano-Optics”]

• In paraxial approximation Gaussian modes are TEM modes, i.e., the E- and
B-field have the same form and the longitudinal component of E and B vanishes.

• If the paraxial approximation is not valid (e.g., under strong focusing with w0

being very small), then longitudinal components of E and B have to be taken
into account (see figure 12).

• The longitudinal E-field of the fundamental (00) Gaussian mode always van-
ishes on the optical axis. The longitudinal E-field of the Hermite-Gaussian
(10)-mode has a maximum on the optical axis (see figure 12).

Remark: It has been suggested to use the longitudinal field of the 10-mode of strong
laser pulses for particle acceleration.
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Figure 12: Absolute value of the electric field strength (a) and of the longitudinal component (b)
for a 00-mode (left) and a 10-mode (right) under strong focusing (no paraxial approximation).
From [Novotny and Hecht, ”Principles of Nano-Optics”]

2.2.5 Focusing of Gaussian beams

Strongly focussed laser beams are of paramount importance in fluorescence mi-
croscopy, in confocal microscopy, in optical traps, and many other applications.
Here, the paraxial approximation is not valid. With the help of the angular spec-
trum representation it is straightforward to calculate the field of strongly focussed
Gaussian beams.
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The following figure 13 shows the geometry of the problem.

Figure 13: Geometry of focusing a beam with a lens. From [Novotny and Hecht, ”Principles of
Nano-Optics”]

As outline before the Fresnel coefficients can be utilized in the angular spectrum
representation to solve the problem. The following figure 14 determines the notation:

Figure 14: Notation in the focusing problem. From [Novotny and Hecht, ”Principles of Nano-
Optics”]

The field right after transmission through the lens can be derived from the incoming
field as follows:

E∞ = [ts(Eincnϕ)nϕ + tp(Eincnρ)nϑ]

√
n1

n2

(cos ϑ)1/2 (103)
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The focal point (0, 0, 0) is far away from the lens (distance large compared to the
optical wavelength). Inserting of the unitary vector nϕ and nϑ result in:

E∞ = ts


Einc(ϑ, ϕ)



− sin ϕ
cos ϕ

0









− sin ϕ
cos ϕ

0




√
n1

n2

(cos ϑ)1/2 (104)

+tp


Einc(ϑ, ϕ)




cos ϕ
sin ϕ

0










cos ϕ cos θ
sin ϕ cos θ
− sin θ




√
n1

n2

(cos ϑ)1/2 (105)

As a special case we assume that (i) the field is polarized in x-direction,

Einc = |Einc|nx (106)

(ii) the lens is anti-reflection coated (ts = tp = 1), and (iii) the ”beam waist”
coincides with the lens. Then one finds:

E∞ = |Einc| (ϑ, ϕ)
1

2




(1 + cos ϑ)− (1− cos ϑ) cos 2ϕ
−(1− cos ϑ) sin 2ϕ
−2 cos ϕ sin θ




√
n1

n2

(cos ϑ)1/2 (107)

Finally, we can derive the angular spectrum representation for the field at (ρ, ϕ, z)
(polar coordinates) from a field E∞(ϑ, ϕ) at a point far away (limkr→∞). In polar
coordinats one finds after some math:

E(ρ, ϕ, z) =
ikfe−ikf

2π

θmax∫

0

2π∫

0

E∞(ϑ, φ)eikz cos ϑeikρ sin ϑ cos(φ−ϕ) sin ϑ dϑdφ (108)

This equation is a central result. It allows calculation of focussing of an arbi-
trary incoming field Einc by a lens with focal length f and numerical aperture
NA = n sin θmax. The field in the focal region is entirely determined by the far-field
E∞
For example, we can plug-in different Gaussian modes for the incident field |Einc|
and calculate the field at the focus.
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Focusing of Hermite-Gaussian modes:

It is possible to write the Hermite-Gaussian modes in the coordinates (f, ϑ, ϕ) as
follows:
00-mode:

Einc = E0e
−f2 sin2 ϑ/w2

0 (109)

10-mode:
Einc = (2E0f/w0) sin ϑ cos ϕe−f2 sin2 ϑ/w2

0 (110)

01-mode:
Einc = (2E0f/w0) sin ϑ sin ϕe−f2 sin2 ϑ/w2

0 (111)

An important parameter, the filling factor f0 is the ratio of the diameter of the
incident beam compared to the diameter of the lens.

f0 =
w0

f sin ϑmax

(112)

The analytic results for the electric field in the focus are:
00-mode:

E(ρ, ϑ, ϕ) =
ikf

2

√
n1

n2

E0e
−ikf




I00 + I02 cos 2ϕ
I02 sin 2ϕ

−2iI01 cos 2ϕ


 (113)

10-mode:

E(ρ, ϑ, ϕ) =
ikf 2

2w0

√
n1

n2

E0e
−ikf




iI11 cos ϕ + iI14 cos 3ϕ
−iI12 sin ϕ + iI14 sin 3ϕ
−2I10 + 2I13 cos 2ϕ


 (114)

01-mode:

E(ρ, ϑ, ϕ) =
ikf 2

2w0

√
n1

n2

E0e
−ikf




i(I11 + 2I12) sin ϕ + iI14 sin 3ϕ
−iI12 cos ϕ− iI14 cos 3ϕ

2I13 sin 2ϕ


 (115)

The terms Iij stand for specific integrals over Bessel functions which are provided
for completeness at the end of this subsection. (Only the 10-Mode has a longitudinal
field at the focal position!)
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The following figure 15 demonstrates the influence of the filling factor f0 on the size
of the focus. Note, that the focus is not symmetric!

Figure 15: Influence of the filling factor on the size of the focus. The absolute value of the electric
field is plotted along the x-axis (dashed, also direction of polarization) and the y-axis (solid) for
different f0. From [Novotny and Hecht, ”Principles of Nano-Optics”]

Focusing of Hermite-Gaussian Doughnut modes:

The so-called Doughnut (DM) modes are of particular practical interest. Their in-
tensity distribution reminds at the shape of a doughnut. DM modes can be produced
by a superposition from Hermite-Gaussian (HG) modes:

linear polarized DM : LP = HG10nx + iHG01nx (116)

radial polarized DM : RP = HG10nx + iHG01ny (117)

azimuthal polarized DM : AP = −HG10nx + iHG01ny (118)

The field in the focus of a DM is:
RP-mode:

E(ρ, ϑ, ϕ) =
ikf 2

2w0

√
n1

n2

E0e
−ikf




i(I11 − I12) cos ϕ
i(I11 − I12) sin ϕ

−4I10


 (119)

AP-mode:

E(ρ, ϑ, ϕ) =
ikf 2

2w0

√
n1

n2

E0e
−ikf




i(I11 + 3I12) sin ϕ
−i(I11 + 3I12) cos ϕ

0


 (120)
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In the following figure 16 the ratio of the field strength of the longitudinal and
transversal component (RP-DM mode) is plotted as a function of the numerical
aperture of the lens.

Figure 16: Ratio of the field strength of the longitudinal and transversal component (RP-DM mode)
versus the numerical aperture of the lens. From [Novotny and Hecht, ”Principles of Nano-Optics”]

One can use phase plates to create DM-mode, for example a (10)-mode with a 180◦

phase plate as depicted in figure 17. Contributions of higher modes can be eliminated
with spatial filters. More advanced are programmable (e.g. liquid crystal) phase
plates.
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Figure 17: Simple setup to produce a Doughnut-mode. RP or AP polarization are controlled by
the position of the mirrors. The inset shows a detail of the half coated mirror. From [Novotny and
Hecht, ”Principles of Nano-Optics”]
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For completeness we list in the following the integrals used in the equations above:

I00 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin ϑ(1 + cos ϑ)J0(kρ sin ϑ)eikz cos ϑ dϑ (121)

I01 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin2 ϑJ1(kρ sin ϑ)eikz cos ϑ dϑ (122)

I02 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin ϑ(1− cos ϑ)J2(kρ sin ϑ)eikz cos ϑ dϑ (123)

I10 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin3 ϑJ0(kρ sin ϑ)eikz cos ϑ dϑ (124)

I11 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin2 ϑ(1 + 3 cos ϑ)J1(kρ sin ϑ)eikz cos ϑ dϑ (125)

I12 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin2 ϑ(1− cos ϑ)J1(kρ sin ϑ)eikz cos ϑ dϑ (126)

I13 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin3 ϑJ2(kρ sin ϑ)eikz cos ϑ dϑ (127)

I14 =

ϑmax∫

0

fw(ϑ)(cos ϑ)1/2 sin2 ϑ(1− cos ϑ)J3(kρ sin ϑ)eikz cos ϑ dϑ (128)

with

fw(ϑ) = exp

(
− 1

f 2
0

sin2 ϑ

sin2 ϑmax

)
(129)
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2.3 Image formation and resolution

In this subsection we will describe the problem of image formation which lies at
the heart of microscopy in a more abstract way. A limit is often set by the optical
resolution which we address at the end of this subsection.

2.3.1 Imaging of coherent objects

The general problem of imaging is to find a relation between the electric fields at
object points to the electric fields at image points. Figure 18 introduces our notation:

Figure 18: Notation and general problem of imaging.

In order to solve the problem of imaging one can start from the basic equations of
diffraction theory. We will not review the theory of diffraction here in all detail, but
refer to books on optics (e.g. Klein and Furtak, Optics, Wiley).

We start here with the Fresnel-Kirchhoff formula of diffraction:

E ′(P ′) = const.

∮

S

τ(P̃ )
e−ik(R+R′)

RR′ dx̃dỹ (130)

There is a straightforward interpretation of equation 130, as illustrated in figure 19:
The field at the image point P ′ is the field of a spherical (elementary) wave with

origin at P̃ . This wave however is ”induced” by the electric field of the spherical (el-
ementary) wave with origin at P in the object plane. The integral (over S) sums up
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Figure 19: Notation and interpretation of the Fresnel-Kirchhoff diffraction formula. From [Klein
and Furtak ”Optics”].

over all waves from the intermediate plane (Here we assume that we collect mainly
waves emitted in forward direction from the intermediate plane.).

The transmission function τ(P̃ ) accounts for a modification of free space trans-
mission, i.e. a phase plate, lens, aperture, etc. in the intermediate plane.

In the formula above one can identify the propagation kernel h(P̃ → P ′):

h(P̃ → P ′) =
e−ik(R+R′)

RR′ (131)

In Fresnel diffraction it is possible to find a second order approximation for h(P̃ →
P ′) (details can be found in optics books):

h(P → P ′) =

(
i

λ

)2
e−ik(D+D′)

DD′

∮

S

τ(P̃ ) · (132)

exp

{
−ik

[
(x̃− x)2 + (ỹ − y)2

2D
+

(x̃− x′)2 + (ỹ − y′)2

2D′

]}
dx̃dỹ
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Now, let us consider a specific example, imaging via a lens. Then, the transmission
function of a (thin) lens has to be used:

τL(r̃) = |τL(r̃)| exp

[−i2π

λ
(n− 1)d(r̃)

]
(133)

Here, n and d(r̃) are the index of refraction and thickness of the lens, respectively.

Figure 20: Special case of imaging with a biconvex lens. From [Klein and Furtak ”Optics”].

In the case of a biconvex lens (see figure 20) one can approximate:

d(r̃) ≈ d0 − r̃2

2

(
1

R1

− 1

R2

)
(134)

And:

τL(r̃) = |τL(r̃)| eiφ(d0) exp

[
iπ

λf
r̃2

]
(135)

because
1/f = (n− 1) [1/R1 − 1/R2] (136)

In the following we consider imaging between conjugated planes (see figure 21):
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Figure 21: Imaging between conjugated planes. From [Klein and Furtak ”Optics”].

Again we denote the propagation kernel from a point P to a point P ′ as follows:

h(P → P ′) =

(
i2

λ2

)
e−ik(S+S′)

SS ′

∮

S

τL(x̃, ỹ) · (137)

exp

{
−ik

[
(x̃− x)2 + (ỹ − y)2

2S
+

(x̃− x′)2 + (ỹ − y′)2

2S ′

]}
dx̃dỹ

Defining the differences of the spatial frequencies ∆u = u′ − u und ∆v = v′ − v as

∆u = u′ − u = −
(

x

Sλ
+

x′

S ′λ

)
(138)

∆v = v′ − v = −
(

y

Sλ
+

y′

S ′λ

)
(139)

one finds after short calculation of the expression in the exponent of all exponentials

{ } = −ik(R0 + R′
0)−

iπ

λ
r̃2

(
1

S
+

1

S ′
− 1

f

)
− i2π(∆ux̃ + ∆vỹ) (140)

where R0 and R′
0 are defined as in figure 19.

If there is an imaging between conjugated planes (as assumed), then the quadratic
term vanishes!
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Finall, one derives:

h(P → P ′) =

(
i

λ

)2
1

SS ′
e−ik(R0+R′0)

∮

S

|τL(x̃, ỹ)| exp {−i2π(∆ux̃ + ∆vỹ)} dx̃dỹ

The propagation kernel between conjugated planes is proportional to the Fourier
transform of the transmission function of the lens :

h(P → P ′) =

(
i

λ

)2 (
1

SS ′

)
e−ik(R0+R′0)TL(∆u, ∆v) (141)

with
TL = F [|τL|] (142)

It is now easy to find the electric field in the image plane by integration:

E ′(P ′) =

(
i2

SS ′λ2

)
e−ikR′0

∮

S

E(x, y)τL(x, y)e−ikR0TL(∆u, ∆v)dxdy (143)

The expression can be simplified by collecting terms that depend only on the source
variables and introducing new variables for the integration:

E ′(x′, y′) = i2
(

S

S ′

)
e−ikR′0

∮

S

E(Sλu, Sλy)TL(u′ − u, v′ − v) dudv (144)

= e−ikR′0/m {E(Sλu, Sλy) ~ TL(u, v)} (145)

where m = −S ′/S the transversal magnification and ~ the mathematical operation
of convolution.

The field distribution in the image plane is a convolution of the source function
E with the Fourier transform of the transmission function of the lens.

The special case of the field distribution in the image plane of a point source
is derived by inserting a delta-function as source function:

Epoint(x
′, y′) =

Aλ

i
e−iφo

(
m

S ′2λ2

)
TL

[(−1

λS ′
(x′ −mx0

)
,

(−1

λS ′
(y′ −my0

)]
(146)

where A is the strength of the source field.
Instead of a single image point at x′0 = mx0, y

′
0 = my0 (as in ray optics description
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of imaging) we find a broader field distribution (due to diffraction).

In case of a spherical lens with

|τL(r̃)| = 1 if r̃ < r̃0 (147)

|τL(r̃)| = 0 elsewhere (148)

one finds via Fourier transformation:

E(x′, y′) = E(x′0, y
′
0)

(
2J1

(
2πr̃0∆r′

λS′
)

(
2πr̃0∆r′

λS′
)

)
(149)

S(x′, y′) = S(x′0, y
′
0)

(
2J1

(
2πr̃0∆r′

λS′
)

(
2πr̃0∆r′

λS′
)

)2

(150)

with
∆r′ =

[
(x′ − x′0)

2 + (y′ − y′0)
2
]1/2

(151)

This is the well known Airy disc as plotted in figure 22

Figure 22: Intensity distribution of a point source imaged by a spherical lens of finite aperture.
From [Klein and Furtak ”Optics”].
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Brief summary of some aspects of imaging:

There is no simple one-to-one relation when imaging an object point P with a finite
(otherwise perfect) lens. Instead the following relation holds:

P
h→ P ′ with h ∝ F [|τL(r̃)|] (152)

The electric field in the image plane is a convolution

E(x′, y′) = {E(Sλu, Sλy) ~ TL(u, v)} (153)

or after an additional Fourier transformation

Ê(kx′ , ky′) = Ê(kx′ , ky′) · |τL| (154)

The transmission function of a finite lens cuts off spatial frequencies with kx > x̃
Sλ

.
It thus acts as a low-pass filter.

2.3.2 Imaging of incoherent objects

The same mathematical formalism as derived above can be used when describing
imaging of incoherent objects:

• coherent objects (e.g. objects illuminated by coherent sources) =⇒ summing
up amplitudes of diffracted elementary waves

• incoherent objects (self illuminating or fluorescent objects) =⇒ summing up
intensities of diffracted elementary waves

An important quantity in the theory of imaging of incoherent objects is the ”Point-
Spread-Function” (PSF). It describes the intensity distribution resulting from
imaging a point-like object through a specific imaging system.

We showed in the theory of imaging of coherent objects: The amplitude distri-
bution of the image of a point source is proportional to the Fourier transform of the
transmission function of the lens. Obviously, for the intensity S(P ′) it holds:

S(P ′) =
Φ

σL

1

S ′2λ2

∣∣∣∣TL

[(−1

λS ′
(x′ − x′0

)
,

(−1

λS ′
(y′ − y′0

)]∣∣∣∣
2

(155)

= ΦO(x′ − x′0, y
′ − y′0; P

′) (156)
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Here Φ is the total flux and σL the area of the lens.

O is the Point-Spread-Function. In a more realistic case TL is the Fourier Trans-
form of the transmission function of the lens including deviations from the idealized
spherical phase factor (exp( iπ

λf
r̃2), i.e. abberations should be included. This is al-

ready indicated as an explicit dependance of O on P ′.

Typically, the PSF O is normalized to 1 (O0 ).

In case of a lens without an abberations it is :

O0(x
′ − x′0, y

′ − y′0) =
πr̃2

0

λ2S ′2

∣∣∣∣
2J1(w)

w

∣∣∣∣
2

(157)

with

w =
2πr̃0

λS

[
(x′ − x′0)

2 + (y′ − y′0)
2
]1/2

(158)

The following figure 23 shows the image of a point source positioned off the optical
axis. In this case well known lens aberrations (coma) are visible.

Figure 23: Image of a point source positioned off the optical axis. From [Klein and Furtak ”Optics”].
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Extended sources:
In case of an extended source one can find the image, i.e., the intensity distribution
in the image plane via integration:

S ′(x′, y′) =

∞∫∫

−∞

O(x′ − x′0, y
′ − y′0; P

′)S ′P (x′0, y
′
0) dx′0dy′0 (159)

where S ′P (x′0, y
′
0) corresponds to the image of an ideal ray-optical theory (one-to-one

corresondance between object and image point).

The convolution integral has a simple form after additional Fourier transformation:

Ŝ ′ = Ô · Ŝ ′P (160)

Ô = F [O] =
∣∣∣Ô

∣∣∣ eiΨ (161)

The functions above are denoted as:

Ô = Optical Transfer Function (OTF)∣∣∣Ô
∣∣∣ = Modulation Transfer Function (MTF)

Ψ = Phase Transfer Function (PTF)

Similar as in coherent imaging theory the physical meaning of the various functions
become apparent when decomposing the image S ′P (x′0, y

′
0) in Fourier components:

• MTF modulates the amplitude of each Fourier component

• PTF modulates the phase of each Fourier component

The inverse Fourier transform of the modulated components results in the image.

The experimental determination or a priori calculation of the Optical Transfer Func-
tion is of enormous importance in practical optics.

It is possible to estimate an upper bound for the spatial frequencies transmitted
by an ideal lens:

λmin/2 =
0.61λS ′

r̃0

(162)

fmax ≈ r̃0

λS ′
(163)
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where r̃0 is the radius of the lens, S ′ is the distance to the image (S ′ and fmax is the
focal position of infinitely far objects.

The following figure 24 show calculated MTFs:

Figure 24: Example of a calculated Modulation Transfer Function. l is a parameter to quantify
a focus error (in units of the wavelength), µ is the distance between paraxial and marginal focus.
Negative values of the MTF indicate a phase jump of π corresponding to an inversion of the
contrast. From [Klein and Furtak ”Optics”].
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Figure 25 shows the measured OTF of a camera lens:

Figure 25: Measured OTFs of a camera lens. From [Klein and Furtak ”Optics”].
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2.3.3 Optical resolution

• An optical system cannot resolve two objects which are closer together than
the spatial cut-off frequency of the system.

A first criterion for optical resolution was formulated by Lord Rayleigh (John
William Strutt, 1842-1919).

The Rayleigh-Kriterium:
Two point-like objects can be resolved if the maximum of one Airy disc (diffrac-
tion pattern of one object) coincides with the minimum of the other Airy disc
(diffraction pattern of the other object). This is the case if:

rmin = 0.61
λ

NA
(164)

Here NA = r0/f is the replaced by the numerical aperture

NA = n sin α ≈ n
r0

f
(165)

Remarks:

• the Rayleigh-criterion is a definition.

• In theory the center of an Airy disc can be located with arbitrary precision, i.e.
the separation of two objects is always possible.

• The signal-to-noise ratio (SNR) limits the resolution in practise (detector noise,
finite signal) and also fundamentally (quantum noise).

• If the two objects have different properties (wavelength of fluorescence, polar-
ization, etc.), then resolution can be improved.
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The following figure 26 shows the measured intensity distribution of two neighboring
objects:

Figure 26: Measured intensity distribution of to neighboring objects. Top: camera image. Bottom:
cross section. [R. H. Webb, Rep. Prog. Phys. 59, 427 (1996)]

It is possible to define other criteria for the optical resolution:

Sparrow-criterion:
Distance where the minumum between two Airy discs vanishes.

Abbe-criterium (resolution of a grating):

d >
λ

2 sin α
(166)

where d is the grating period and α the angle to the first diffraction maximum. the
following figure 27 illustrates the transition from Rayleigh- to Sparrow-criterion.
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Figure 27: Transition from Rayleigh to Sparrow criterion.
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