
9 Atomic Coherence in Three-Level Atoms

9.1 Coherent trapping - dark states

In multi-level systems coherent superpositions between different states (atomic co-
herence) may lead to dramatic changes of light absorption and propagation.

The simplest example is a three level system. In the following a Λ-system with two
ground states |g1〉, |g2〉 and one excited state |e〉 is depicted:

Figure 59: Schematic of a three-level (Λ
system.

We assume that two light fields in exact resonance (∆1 = ∆2 = 0) shine on the
system.

We start with the Hamiltonian

Hthree = H0 + H1 (422)

with

H0 = ~ωe|e〉〈e|+ ~ωg1|g1〉〈g1|+ ~ωg2|g2〉〈g2| (423)

H1 = −~
2

(
ΩR1e

−iφ1e−iω1t|e〉〈g1|+ ΩR2e
−iφ2e−iω2t|e〉〈g2|

)
+ H.c. (424)
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Here, ΩR1e
−iφ1 and ΩR2e

−iφ2 are the complex Rabi frequencies associated with the
coupling of the field modes of frequency ω1 and ω2 to the atomic transition |e〉 → |g1〉
and |e〉 → |g2〉, repectively.

The most general form of the atomic wave function can then be written as:

|ψ〉 = cee
−iωe|e〉+ cg1e

−iωg1|g1〉+ cg2e
−iωg2|g2〉 (425)

The equations of motion of the coefficients can be derived from the Schroedinger
equation:

·
ce =

i

2

(
ΩR1e

−iφ1cg1 + ΩR2e
−iφ2cg2

)
(426)

·
cg1 =

i

2
ΩR1e

iφ1ce (427)

·
cg2 =

i

2
ΩR2e

iφ2ce (428)

As pointed out above exact resonance (ωe−ωg1 = ω1 and ωe−ωg2 = ω2) is assumed.

We now assume the initial state to be in a superposition of the two ground states:

|ψ〉 = cos(θ/2)|g1〉+ sin(θ2)e
−iψ|g2〉 (429)

Then, the following solution for the time evolution of the coefficients can be found:

ce =
i sin(Ωt/2)

Ω

[
ΩR1e

−iφ1 cos(θ/2) + ΩR2e
−i(φ2+ψ) sin(θ/2)

]
(430)

cg1 =
1

Ω2
(
[
Ω2

R2 + Ω2
R1 cos(Ωt/2)

]
cos(θ/2) (431)

− 2ΩR1ΩR2e
i(φ1−φ2−ψ) sin2(Ωt/4) sin(θ/2)) (432)

cg2 =
1

Ω2
(
[
Ω2

R1 + Ω2
R2 cos(Ωt/2)

]
e−iψ sin(θ/2) (433)

− 2ΩR1ΩR2e
−i(φ1−φ2) sin2(Ωt/4) cos(θ/2)) (434)

with Ω = (Ω2
R1 + Ω2

R1)
1/2
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For the special case

ΩR1 = ΩR1 θ = π/2 φ1 − φ2 − ψ = ±π (435)

the population is trapped in the ground states, i.e.:

ce = 0 (436)

cg1 =
1√
2

(437)

cg2 =
1√
2
e−iψ (438)

Obviously, there is no absorption even in the presence of resonant fields! This phe-
nomenon is called coherent population trapping; the system is said to be in a dark
state. Quantum mechanically in this situation there is a destructive interference
between the two paths that lead to a transition from one of ground states to the
excited state.

Even in the more general case:

sin(θ/2)

cos(θ/2)
= tan(θ/2) = −ΩR1

ΩR2

e−i(φ1−φ2−ψ) (439)

there is no population in the excited state |e〉.

The generalized dark state

|ψ(t)〉 =
ΩR2(t)e

−iφ2|g1〉 − ΩR1(t)e
−iφ1|g2〉√

Ω2
R1 + Ω2

R2

(440)

can be created, e.g., by starting with the atom in the ground state |g1〉 with ΩR1 = 0
and adiabatically switching on ΩR1.
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9.2 Electromagnetically Induced Transparency (EIT)

9.2.1 Basic principles

We now want to discuss how atomic coherence can change the absorption and dis-
persion of a probe beam of classical light. In order to do that we start with the
same three-level scheme as shown in Fig. 59. We now consider a weak probe beam
E = E0 exp(−iω1t) + c.c. and a strong pump beam with frequency ωp having a com-
plex Rabi frequency Ωp exp(−iφ). Additionally, we introduce incoherent decay rates
γe, γg1, and γg2 from the levels |e〉, |g1〉, and |g2〉, respectively.

We are interested in the absorption and dispersion of the weak pump beam. It is
related to the atomic polarization P as introduced in the previous chapter:

P = 〈e|HI |g1〉ρe,g1 = 〈e|~µ~E|g1〉ρe,g1 = µe,g1Eρe,g1 (441)

In the linear regime P is related to the field amplitude E0 via the complex suscep-
tibility χ:

P = ε0χE0 (442)

Its real and imaginary part determine the probe’s dispersion and absorption.

We now have to find ρe,g1. This is done as in subsection 9.1 by solving the Schroedinger
equation. Compared (eqn. 424) to the previous notation (and setting φ2 = 0 without
loss of generality) we use:

ΩR1e
−iω1t =

2µe,g1E0

~
e−iω1t; ΩR2e

−iφ2e−iω2t = Ωpe
−iωpte−iφp (443)

After some calculation we find:

109



·
ρe,g1 = −(i(ωe − ωg1) + γe)ρe,g1 −

i

2
ΩR1e

−iω1(ρe,e − ρg1,g1) (444)

+
i

2
Ωpe

−iωpte−iφpρg2,g1 (445)

·
ρg2,g1 = −(i(ωg2 − ωg1) + γg2)ρg2,g1 −

i

2
ΩR1e

−iω1ρg2,e +
i

2
Ωpe

iωpteiφpρe,g1 (446)

·
ρe,g2 = −(i(ωe − ωg2) + γg1)ρe,g2 −

i

2
Ωpe

−iωpte−iφp(ρe,e − ρg2,g2) (447)

+
i

2
ΩR1e

−iω1ρg1,g2 (448)

As we assumed a weak probe field, a solution for ρe,g1 has to be found in first order
only, while the rest has to be treated exactly (due to the strong pump).

With the atom initially in the lowest state (all matrix elements are zero except
ρg1,g1 = 1) we find with the additional substitution

ρe,g1 = ρ̃e,g1e
−iω1t (449)

ρg2,g1 = ρ̃g2,g1e
−i(ω1+ωg2−ωe)t (450)

the following set of equations:

·
ρ̃e,g1 = −(γe + i∆)ρ̃e,g1 +

i

2
ΩR1 +

i

2
Ωpe

−iφp ρ̃g2,g1 (451)

·
ρ̃g2,g1 = −(γg2 + i∆)ρ̃g2,g1 +

i

2
Ωpe

iφp ρ̃e,g1 (452)

where ∆ = (ωe−ωg1)−ω1 is the detuning of the probe field, and where ωp = ωe−ωg2

is assumed.

this set of equations can be solved, by first writing it in matrix form,

·
R = −MR + A (453)

with

R =

(
ρ̃e,g1

ρ̃g2,g1

)
, M =

(
γe + i∆ − i

2
Ωpe

−iφp

− i
2
Ωpe

iφp γg2 + i∆

)
, A =

(
i
2
ΩR1

0

)
(454)
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and then integrating

R(t) =

∫ t

−∞
e−M(t−t′)Adt′ = M−1A (455)

This yields:

ρe,g1 =
iΩR1e

−iω1t(γg2 + i∆)

2[(γe + i∆)(γg2 + i∆) + Ω2
p/4]

(456)

By plugging in the expression for ΩR1 and using the relation between the atomic
polarization P and ρe,g1 one can identify the real and imaginary part of the suscep-
tibility χ = χ′ + iχ′′:

χ′ =
Na|µe,g1|2∆

ε0~Z
[
γg2(γe + γg2) + (∆2 − γeγg2 − Ω2

p/4)
]

(457)

χ′′ =
Na|µe,g1|2

ε0~Z
[
∆2(γe + γg2)− γg2(∆

2 − γeγg2 − Ω2
p/4)

]
(458)

where Na is the atom number density (if a gas of identical atoms is considered) and

Z = (∆2 − γeγg2 − Ω2
p/4)2 + ∆2(γe + γg2)

2. (459)

9.2.2 Change of index of refraction

The complex susceptibility is directly related to the complex index of refraction
n = n′ + in′′:

n =
√

1 + χ ≈ 1 +
χ

2
(460)

n′ determines the dispersion and n′′ the absorption of the probe beam.

Figure 60 plots the real and imaginary part of the index of refraction for a weak
pump beam. When the pump is present, there is distinct dip (EIT window) in the
absorption. This allows using an atomic resonance, e.g. to modulate the index of re-
fraction, without (!) significant absorption. This is not possible for a two-level atom.
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Figure 60: Imaginary (left) and real (right) part of the index of refraction for a probe beam with
and without a strong pump beam.

Compare to the dark state describe in the previous subsection the spontaneous emis-
sion pumps the system automatically in a state, where there is no absorption due
to interference of different excitation paths.

Another interpretation of the EIT effect is provided by the dressed states picture.
It was shown in the previous chapter that a coupled system consisting of a two-level
atom and a resonant light field has novel eigenstates (dressed states). The dressed
states are split by the Rabi frequency Ω which is related to the field strength of the
coupling laser. A weak beam probes this new energy level structure and will see a
doublet when tuned across the resonance. This is depicted in Fig. 61.
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Figure 61: Interpretation of the EIT effect in terms of the dressed states picture: a) Energy levels
in the bare state picture, b) Energy levels in the dressed state picture.

As can be seen a strong pump seems to split the excited state, so that a probe is not
resonant to any transition anymore. In Fig. 62 the energy level diagram of 133Cs is
shown together with a schematic of an experimental setup to study the EIT effect.
Figure 63 shows the result of the experiment.
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Figure 62: Left: Energy level diagram of 133Cs; Right: schematic of an experimental setup.
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Figure 63: Experimental result of an EIT experiment: The transmission of a weak probe beam is
increased when a pump beam is present.

9.3 Slow Light

EIT allows to modify the propagation of light dramatically. The narrow EIT reso-
nance leads to a large gradient of the index of refraction close the atomic resonance.
Compared to a two-level atom this is accompanied by negligible absorption. For
pulse propagation this has dramatic consequences: The speed of propagation of a
pulse with frequency ω is determined by the group velocity vg. It is:

ng = n′ + ω
dn′

dω
(461)

Obviously, ng can be very large at the EIT resonance!

A prominent experiment has been performed by Lene Hau and co-workers [Nature
397, 594 (1999)] where light could be decelerated to the speed of a bicyclist (see
Fig. 64). A requirement is that the light pulse spectrally fits in the EIT window.
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Figure 64: Measured time delay of a light pulse transmitted through an EIT medium. The calcu-
lated velocity in the medium was only 32, 5 m/s, from [Hau et al., Nature 397, 594 (1999)].

More resent experiments could even bring a light pulse to a complete stop in an
EIT medium. In this case a light pulse was sent in an EIT cell. Due to the very
slow propagation it is compressed and at a certain time completely fits in the cell.
Then, the pump beam is switched off. During switch-off the atomic state remains
in a dark state. The light pulse is in fact transfered into a coherent superposition
of the ground states of many atoms. As these states are typically hyperfine states,
it is then referred to as spin wave. There it can be stored for some time. In order
to release the light the pump beam has to be switched on again, and the pulse
continues to travel.

Figure 65 shows a numerical simulation of such a light storage process.
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Figure 65: Simulation of light storage: The left plot shows the expectation value of the electric
field of a light pulse entering the EIT medium. On the right there is a plot of the population of the
atomic ground states. At a time between 50 and 100 (arbitrary units) the pump pulse is switched
off.

Experimentally storage of light pulses has been demonstrated with storage times up
to > 200 µs in atomic gas cells and up to a second in the solid state at ultra-low
temperatures. Figure 66 shows the experimental results from the Walsworth/Lukin
groups in Harvard [Phillips et al., Phys. Rev. Lett. 86, 783 (2001)].

Important applications of EIT are possible coherent interfaces between light and
matter, e.g. for quantum information processing. Another interesting aspect is
that rather small optical delay lines can be fabricated. Also due to the very slow
propagation of the light non-linear effects are dramatically enhanced.
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Figure 66: Storage of a light pulse for different storage times, from [Phillips et al., Phys. Rev.
Lett. 86, 783 (2001)].
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9.4 Stimulated Raman Adaiabtic passage (STIRAP)

A similar process as the one utilized in light storage is stimulated Raman adabatic
passage (STIRAP). It is a very efficient way to move all the population from one
ground state to another in a three-level (Λ) system. Consider the following system:

Figure 67: Schematic of a STIRAP in a Λ system.

Instead of using an exact π-pulse driving the transition between the two ground
states one can make use again of the dark state. As show above the dark state is:

|ψ(t)〉 =
ΩR2(t)e

−iφ2|g1〉 − ΩR1(t)e
−iφ1|g2〉√

Ω2
R1 + Ω2

R2

(462)

That means an adiabatic switching between the two extremal cases of the dark state,
i.e. from atom in |g1〉 and ΩR1 = 0 to atom in state |g2〉 and ΩR2 = 0 is possible.
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The somewhat counter-intuitive sequence of pulses shown in Fig. 68 has to be ap-
plied.

Figure 68: ”Counter-intuitive” pulse sequence for a STIRAP process

Then, the atom will always follow the dark state until it reaches the final state |g2〉.
Compared to applying a π-pulse directly, the method is very forgiving concerning
the exact shape and intensity of the pulses.
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