Vierwellenmischen und Anwendungen

René Costard

Seminar Moderne Optik, WS 2007/2008 21.01.2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inhalt

1 Ausgewählte Grundlagen der Nichtlinearen Optik

2 Vierwellenmischen

- Entartetes Vierwellenmischen
- Holographic-Grating Spectroscopy
- CARS
 - Grundlegendes
 - CARS-Mikroskopie
- Zusammenfassung

Die nichtlineare Wellengleichung

Maxwell-Gleichungen im Dielektrikum enthalten $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ \rightarrow Lineare Optik: $\vec{P} = \epsilon_0 \chi \vec{E}$

$$\left(\Delta - \frac{n^2}{c^2}\frac{\partial^2}{\partial t^2}\right)\vec{E}(\vec{r},t) = 0$$

Größere elektrische Feldstärken \rightarrow kein linearer Zusammenhang zwischen \vec{P} und \vec{E}

$$\vec{P} = \epsilon_0 (\chi^{(1)}\vec{E} + \chi^{(2)}\vec{E}\vec{E} + \chi^{(3)}\vec{E}\vec{E}\vec{E} + \cdots)$$

Nichtlineare Wellengleichung

$$\left(\Delta - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2}\right) \vec{E}(\vec{r}, t) = \mu_0 \frac{\partial^2}{\partial t^2} \vec{P}_{NL}(\vec{r}, t)$$

Nichtlineare Beiträge zur Polarisation

• $\chi^{(2)}$

- Nur in Medien ohne Inversionssymmetrie
- Zweite Harmonische, Summen- & Differenzfrequenzerzeugung

Nichtlineare Beiträge zur Polarisation

• $\chi^{(2)}$

- Nur in Medien ohne Inversionssymmetrie
- Zweite Harmonische, Summen- & Differenzfrequenzerzeugung

- Wenn $\chi^{(2)} \neq 0$ gilt i.A. $\left|\chi^{(3)}\right| \ll \left|\chi^{(2)}\right|$
- $\bullet\,$ Enthält Kombinationen von 3 Frequenzen $\rightarrow\,$ 48 Terme

• Für uns interessant wegen Vierwellenmischung

• Nichtlinearer Effekt mit vier wechselwirkenden elektromagnetischen Wellen:

$$\vec{P}^{(3)} = \epsilon_0 \chi^{(3)} \vec{E}_1 \vec{E}_2 \vec{E}_3$$
 bzw. $P_i^{(3)} = \epsilon_0 \chi^{(3)}_{ijkl} E_{1,j} E_{2,k} E_{3,l}$

- Energieerhaltung: $\omega_4 = \pm \omega_1 \pm \omega_2 \pm \omega_3$
- Phasenanpassung: $ec{k}_4 = \pm ec{k}_1 \pm ec{k}_2 \pm ec{k}_3$
- Beispiele:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entartetes Vierwellenmischen

Entarteter Fall:

$$\omega_1 = \omega_2 = \omega_3 = \omega_4 \rightarrow |\vec{k}_1| = |\vec{k}_2| = |\vec{k}_3| = |\vec{k}_4|$$

- Aber: Unterschiedliche Richtungen für \vec{k}_i möglich
- Lösung der Nichtlinearen Wellengleichung mit

$$egin{aligned} \mathcal{P}^{(3)}(\omega) &= \mathcal{P}^{(3)}(ec{k}_1, ec{k}_2, -ec{k}_3, \omega) + \mathcal{P}^{(3)}(ec{k}_1, -ec{k}_2, ec{k}_3, \omega) + \ &+ \mathcal{P}^{(3)}(-ec{k}_1, ec{k}_2, ec{k}_3, \omega) \end{aligned}$$

• Einfaches physikalisches Bild: Zwei Wellen interferieren im Medium, dritte Welle erfährt Bragg-Reflexion

Entartetes Vierwellenmischen: Anschauliche Erklärung

• Prinzip (Shen [1]: $\vec{k}_{1,2,3,4} \leftrightarrow \vec{k}_{1,1',i,s}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\vec{k}_s = \vec{k}_1' \pm (\vec{k}_1 - \vec{k}_i)$$

Entartetes Vierwellenmischen: Anschauliche Erklärung

• Prinzip (Shen [1]: $\vec{k}_{1,2,3,4} \leftrightarrow \vec{k}_{1,1',i,s}$)

(日)、

- Allgemein: $\vec{k}_s = \vec{k}_{in} \pm (\vec{k}_{int1} \vec{k}_{int2})$
- Energieerhaltung i.a. nur von $-\vec{k}_i$ erfüllt

Holographic-Grating Spectroscopy

• Wiersma & Duppen, Science 1987: [2]

- Streifenmuster $I(x) \propto \cos\left(\frac{2\pi}{\Lambda}x + \Phi_{12}\right)$ mit $\Lambda = \lambda/(2\sin\Theta)$
- Übertragung des Prinzips auf kurze Lichtimpulse

Holographic-Grating Spectroscopy: Experiment

В

ロト 《聞 》 《臣 》 《臣 》 「臣 」 のへで

Mögliche Messgrößen: T_1 und T_2

Je nach Experiment können Zeiten T_1 und/oder T_2^* entscheidend sein:

- Relaxation angeregter Zustände: T_1
 - \rightarrow homogene & inhomogene Verbreiterung

• Phasenverlust (pure dephasing): T_2^* \rightarrow Dephasierungszeit T_2 : $\frac{1}{T_2} = \frac{1}{T_2^*} + \frac{1}{2T_1}$

Holographic-Grating Spectroscopy: Ergebnisse I

- $t_{12} = 0$: Transiente Gitter
 - Räumliche Modulation des komplexen Brechungsindex
 - Nur Information über T₁
 Beispiel: Pentacen in Naphtalin (1,5K)

(日)、

Holographic-Grating Spectroscopy: Ergebnisse II

- \bullet Optische Anregung in Halbleitern \rightarrow Exzitonen
- Diffusion \rightarrow Zerfall des Gitters mit

$$1/T = 1/T_1 + (4\pi^2/\Lambda^2)D$$

 \rightarrow Bestimmung der Diffusionskonstanten D

• Beispiel: Kristallines Anthracen bei $10K \rightarrow D = 1.8 \text{cm}^2/\text{s}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

CARS

- Kohärente Anregung einer Polarisation im Medium mit $\omega_{Diff} = \omega_P \omega_s$
- Abfragen der Polarisation mit $\omega_P \rightarrow$ kohärentes Signal $\omega_a = 2\omega_P \omega_s$

CARS: Phasenanpassung

Kohärenz bietet den Vorteil gerichteter Signale, allerdings muss Phasenanpassung gewährleistet sein:

$$\vec{k}_a = 2\vec{k}_P - \vec{k}_s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CARS: Phasenanpassung

Kohärenz bietet den Vorteil gerichteter Signale, allerdings muss Phasenanpassung gewährleistet sein:

$$\vec{k}_a = 2\vec{k}_P - \vec{k}_s$$

In Gasen

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

CARS: Phasenanpassung

Kohärenz bietet den Vorteil gerichteter Signale, allerdings muss Phasenanpassung gewährleistet sein:

$$\vec{k}_a = 2\vec{k}_P - \vec{k}_s$$

In Gasen

• In Kondensierter Materie: Dispersion $dn/d\lambda < 0$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

CARS: Experimentelle Techniken

- Spektral schmalbandige Strahlung
- Durchstimmen von ω_s
- Gute spektrale Auflösung
- Schmalbandiger
 Pumplaser, breitbandiger
 Stokeslaser
- Schnelle Messung möglich

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

CARS: Spektroskopie

Fig. 15.2 A CARS spectral line around the 1088-cm⁻¹ resonance in calcite. [After M. D. Levenson, *IEEE J. Quant. Electron.* **QE-10**, 110 (1974).]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Sehr gute Auflösung in Fluoreszenzmikroskopie, aber meist Anfärben notwendig \rightarrow Probleme:

- Präparation der Proben
- Änderungen der Probeneigenschaften
- Ausbleichen der Farbstoffe

Alternative Kontrastmethoden durch:

- Phasenkontrast-Mikroskopie (keine chemische Selektivität)
- Infrarot-Mikroskopie (geringe Auflösung), Raman-Mikroskopie (große Intensitäten nötig)

CARS-Mikroskop

Voraussetzung für Signalentstehung: Phasenanpassung \rightarrow möglich durch Mikroskopobjektive mit großer NA

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Cheng et al., Biophys. J., July 2002. [4]

Zumbusch & Volkmer, Physik Journal, Juli 2005. [3]

CARS-Mikroskopie: Räumliche Auflösung

Polystyrolkugeln in wässriger Lösung, dargestellt durch C=C-Streckschwingung (1595cm $^{-1}$)

Zumbusch & Volkmer, Physik Journal, Juli 2005. [3]

 \rightarrow Laterale Auflösung: 340nm, axiale Auflösung: 1.2 μ m ($\lambda_P > 780$ nm)

CARS-Mikroskopie: In-Vivo Bildaufnahme mit Video-Rate

Evans et al., PNAS, November 2005.

 $http://www.pnas.org/cgi/content/abstract/102/46/16807~(\rightarrow Supporting Information),~[4]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zusammenfassung

- Vierwellenmischen als nichtlinearer optischer Effekt 3. Ordnung
 - Nichtlineare Polarisation als Quellterm in der Wellengleichung

- Notwendigkeit der Phasenanpassung
- Bestimmung der Dynamik mit Holographic-Grating Spectroscopy
 - Relaxation von Schwingungszuständen (*T*₁)
 - Diffusion von Exzitonen
- CARS
 - Spektroskopie
 - Mikroskopie

Hier wurde nur ein sehr kleiner Ausschnitt der Möglichkeiten gezeigt, weitere Anwendungsgebiete des Vierwellenmischens sind u.a.:

- Erzeugung durchstimmbarer infraroter und ultravioletter Strahlung
- Phasenkonjugation
- Photonenechos \rightarrow Untersuchung der Dephasierungszeit T_2

• . . .

 Y. R. Shen. *The Principles of Nonlinear Optics*. Wiley-Interscience, 1984.

 [2] D.A. Wiersma and K. Duppen.
 Picosecond Holographic-Grating Spectroscopy. Science, 237:1147–1154, September 1987.

[3] Zumbusch Andreas and Andreas Volkmer. Einblick in das Unsichtbare. *Physik Journal*, 4(7):31–37, Juli 2005.

Literatur II

 [4] Conor L. Evans, Eric O. Potma, Mehron Puoris'haag, Daniel Cote, Charles P. Lin, and X. Sunney Xie.
 Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.
 Proceedings of the National Academy of Sciences, 102(46):16807–16812, 2005.

[5] Andreas Zumbusch, Gary R. Holtom, and X. Sunney Xie. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. *Phys. Rev. Lett.*, 82(20):4142–4145, May 1999.

[6] Ji-Xin Cheng, Y. Kevin Jia, Gengfeng Zheng, and X. Sunney Xie.

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology. *Biophys. J.*, 83(1):502–509, 2002.