
7 Quantized Interaction of Light and Matter

7.1 The electron wavefunction

The wavefunction of an electron Ψ(x) can be decomposed with a complete set of
eigenfunctions ψj(x) which obey the Schroedinger equation:

H0ψj(x) =

(
− ~

2

2m
∇2 + V

)
ψj(x) = Ejψj(x) (252)

In analogy to the quantization of the light field one can write:

Ψ(x) =
∑

j

b+
j ψj(x) (253)

with the fermionic creation operator b+
j .

The anti-commutation relation of the fermionic creation and annihilation operator
are:

{bi, bj} =
{
b+
i , b+

j

}
= 0 (254){

bi, b
+
j

}
= 1 (255)

An arbitrary state can thus be constructed by applying b+
j operators to the vac-

uum:
|{j}〉 = b+

j1b
+
j2...b

+
jn |0〉 (256)

Due to the fermionic nature:

(b+
j )2 |0〉 = 0 or more general (b+

j )2 |ϕ〉 = 0 (257)

The expectation value for the atomic Hamiltonian H0

H0 =
∑

j

b+
j bjEj (258)

is
〈ψ|H0 |ψ〉 =

∑
j

Ej (259)
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Since a lot of problems in quantum optics deal with the simplified case of two-level
atoms it is convenient to limit the atomic Hilbert space to two dimensions and to
introduce the Pauli spin operators σj ∈ H⊕2 (similar as in a single spin system):

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(260)

Together with the raising and lowering operators

σ+ =
1

2
(σx + iσy) ; σ− =

1

2
(σx − iσy) (261)

The latter operators have the following properties:
[
σ+, σ−

]
= 2σz;

[
σ±, σz

]
= ∓σ±;

{
σ+, σ−

}
= 1 (262)

7.2 Bloch representation

If we assume a two-level system of two atomic states |1〉 =

(
1
0

)
and |2〉 =

(
0
1

)

then the following correspondence holds:

pseudo-spin operators electron operators
σ+ b+

1 b2 |1〉 〈2|
σ− b+

2 b1 |2〉 〈1|

Any state of the two-level atom can be written as:

|ψ〉 = c1 |1〉+ c2 |2〉 with |c1|2 + |c2|2 = 1 (263)

More generally (non-pure states) one has to write down the density operator ρ:

ρ(A) = ρ11 |1〉 〈1|+ ρ22 |2〉 〈2|+ ρ12 |1〉 〈2|+ ρ21 |2〉 〈1| (264)

where ρij =
〈
cic

∗
j

〉
i, j = 1, 2 (265)

ρ has a representation in terms of a two-dimensional Hermitian covariant matrix.

The Bloch-representation has a very intuitive geometrical representation of the state.
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Definition of the Bloch-vector −→r :

r1 = 2 Re(ρ12) (266)

r2 = 2 Im(ρ12) (267)

r3 = ρ22 − ρ11 (268)

Therefore:

|1〉 , (0, 0,−1) (269)

|2〉 , (0, 0, 1) (270)

The Bloch-vector for a pure state lies on a sphere of radius |r| = 1.

Generally, it follows:

r2
1 + r2

2 + r2
3 = 4 |ρ12|2 + |ρ22 − ρ11|2 (271)

= 1− 4
(
ρ22ρ11 − |ρ12|2

)
(272)

from the Cauchy-Schwartz inequality on finds:

ρ22ρ11 − |ρ12|2 =
〈|c2|2

〉 〈|c1|2
〉− |〈c1c

∗
2〉|2 ≥ 0 (273)

and thus
r2
1 + r2

2 + r2
3 ≤ 1 (274)
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Figure 47: Bloch representation of a state of a two-level atom [from Mandel ”Optical Coherence
and Quantum Optics”]

7.3 Interaction of an atom with a classical field

The interaction of a classical field E(t) with an atom can be described via the dipole
interaction:

HI = −−→µ (t) · −→E (t) (275)

The time evolution of the density matrix ρ(t) describing the state of the atom
(Hamiltonian HA = 1

2
~ω0σz) follows from the Schroedinger equation with the Hamil-

tonian H = HA + HI :
∂ρ(t)

∂t
=

1

i~
[HA + HI , ρ(t)] (276)

The general form of this equation of motion is:
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·
ρ11 =

1

i~
[〈1|HI |2〉 ρ21 − c.c] (277)

·
ρ22 = − 1

i~
[〈1|HI |2〉 ρ21 − c.c] (278)

·
ρ12 =

1

i~
[−~ω0ρ12 + 〈1|HI |2〉 (ρ22 − ρ11)] (279)

·
ρ21 =

1

i~
[~ω0ρ21 + 〈2|HI |1〉 (ρ11 − ρ22)] (280)

Obviously (
·
ρ11 +

·
ρ22) = 0.

Remark: The link to classical or semiclassical physics is via the polarisation

P = 〈1|HI |2〉 ρ12 + c.c. (281)

These equations of motions can be expressed by the Bloch vector and are called
Bloch equations :

·
r1 =

1

~
2 Im [〈1|HI |2〉] r3 − ω0r2 (282)

·
r2 = −1

~
2 Re [〈1|HI |2〉] r3 + ω0r1 (283)

·
r3 = −2

~
Im [〈1|HI |2〉] r1 +

2

~
Re [〈1|HI |2〉] r2 (284)

Obviously d/dt(r2
1 + r2

2 + r2
3) = 0!

The motion of the Bloch vector can be described as a (complicated) precession
around a vector Q(t):

d

dt
−→r = Q×−→r (285)

with

Q =




2
~ Re 〈1|HI |2〉
2
~ Im 〈1|HI |2〉

ω0


 (286)
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If the interaction with a classical single-mode field E(t) = ε̂E0(t) exp(−iω1t) + c.c.
is evaluated then the term 〈1|HI |2〉 becomes:

〈1|HI |2〉 = −−→µ 12
−→
E (t) = −〈1| −→µ |2〉−→E (t) (287)

The fast rotation of the Bloch-vector around the z-axis at the optical frequency
ω0 can be eliminated by transforming into a rotating frame:

−→r ′ = Θ · −→r (288)

with

Θ =




cos ω1t sin ω1t 0
− sin ω1t cos ω1t 0

0 0 1


 (289)

This leads to the Bloch equations in the rotating frame:

·
r
′
1 = (ω1 − ω0)r

′
2 (290)

·
r
′
2 = (ω0 − ω1)r

′
1 + Ωr′3 (291)

·
r
′
3 = −Ωr′2 (292)

with the Rabi frequency Ω:

Ω = 2−→µ 12ε̂ |E0(t)| /~ (293)

One can also write

·−→
r′ = Q′ ×−→r′ with Q′ =




−Ω
0

ω0 − ω1


 (294)
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Figure 48: Precession of Bloch vector vor δ = 0 (a) and δ 6= 0 (b) [from Scully ”Quantum Optics”]

7.4 Ramsey fringes

If the field is in resonance with the atomic transition (ω1 − ω0) = 0 then it is:

r′1(t) = 0 (295)

r′2(t) = − sin Ωt (296)

r′3(t) = cos Ωt (297)

A pulse which is applied to the atom initially in the ground state (r = (0, 0, 1))
which has the pulse area Ωt = π, a so-called π-pulse, flips the atomic state to the
excited state, whereas a pulse with area Ωt = π/2, a π/2-pulse, creates a coherent
superposition of upper and lower atomic state of equal weight:
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Ωt = π π-pulse |2〉 −→ |1〉
Ωt = π/2 π/2-pulse |2〉 −→ (|2〉+ |1〉)/√2

(298)

A small detuning δ = ω1−ω0 leads to a rotation of the Bloch vector in the x-y-plane
if there is a non-zero component of r1 or r2.

A method to exploit this effect in order to perform precise measurements of a fre-
quency ω was proposed by Ramsey, who was awarded the Nobel prize for this idea
in 1989:

• First a π/2-pulse is applied to an atom, which is initially in the ground state.
This flips the Bloch vector into the x-y-plane.

• If there is no detuning (e.-mag. field in exact resonance with the atomic transi-
tion) then a second π/2-pulse after some time T flips the Bloch vector exactly
to the excited state, which can then be detected.

• If, however, there is some detuning then the Bloch vector rotates in the x-y-
plane by an angle δ · T . A second π/2-pulse would then usually not tilt the
Bloch vector exactly to the excited state (in the extreme case the Bloch vector
may even be tilted back to the ground state).

This method can be used to compare the frequency of a field to an atomic transi-
tion and is called Ramsey-method. By changing T or δ the probability to detect the
atom in the excited state oscillates. These oscillations are also called Ramsey fringes.

In a Ramsey interferometer the two pulses have to be separated in time as far as pos-
sible to obtain highest sensitivity. The sensitivity is not limited by the time-of-flight
of the atom through a single interaction zone in the experiment.

Modern atomic clocks (e.g. Cs clocks) use the Ramsey method to stabilze an RF-
field to a narrow atomic transition.
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Figure 49: Principle setup for a Ramsey measurement.

Figure 50: Ramsey fringes
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7.5 Interaction of an atom with a quantized field

In order to describe the interaction of an atom with a quantum field it is convenient
to start from the Hamiltonian:

H =
1

2m
(p− eA)2 + eV (x) + Hfield (299)

= HA + HI + Hfield (300)

where

HA =

∫
ψ+(x)

(
− ~

2

2m
∇2 + eV (x)

)
ψ(x) dx (301)

HI =

∫
ψ+(x)

(
− e

m
Ap +

e2

2m
A2

)
ψ(x) dx (302)

The last term in HI can usually be neglected for not too intense fields.

Inserting the expression for the quantized vector potential gives:

HA =
∑

j

Ejb
+
j bj (303)

HI = ~
∑

j,k,λ

b+
j bk

(
gλjkaλ + g∗λjka

+
λ

)
(304)

with

gλjk = i
e

m

√
1

2~ωλε0

∫
ψ∗j(x) (uλ(x)p) ψk(x) dx (305)

If uλ(x) varies much more slowly than the extension of the electronic wavefunction
(λphoton À ratom, typically λ/r ≈ 103) then uλ(x) can be taken out of the integral.
In this electric dipole approximation one finds

∫
ψ∗j(x)pψk(x) dx =

im

~

∫
ψ∗j(x) [HA, x] ψk(x) dx (306)

=
im

~
(Ej − Ek)

∫
ψ∗j(x)xψk(x) dx (307)

= imω0m12 (308)

Therefore, one can write:
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H = HA + HI + Hfield with (309)

HA =
∑

j

Ejb
+
j bj (310)

Hfield =
∑

k

~ωka
+
k ak (311)

HI = ~
∑

j,k,λ

gjkλb
+
j bk(aλ + a+

λ ) (312)

From the solution of the unperturbed Hamiltonian it can be seen that b+
j , bk, aλ, a

+
λ

oscillate rapidly with optical frequencies (e.g. b(t) = 1/i~ [H, b]):

bk = bk(0)e−iEkt/~ (313)

b+
j = b+

j (0)eiEjt/~ (314)

aλ = aλ(0)e−iωλt (315)

For not too intense fields only resonant terms with ω0 = (Ej − Ei)/~ ' ωλ and the
form exp i(ωij − ωλ)t are significant in the dynamics.

In this rotating wave approximation the Hamiltonian for the two-level atom in-
teracting with a quantized field is:

H = H0 + HI (316)

H0 =
1

2
~ω0σz +

∑

k

~ωka
+
k ak (317)

HI = ~
∑

λ

gλ(aλσ
+ + a+

λ σ−) (318)

with

gλ = −
(

1

2~ε0ωλ

)1/2

ω0uλ(x0)µ12 (319)

with the dipole moment µ12 = em12

Or if ωλ ≈ ω0 then
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gλ =

√
ω0

2~ε0

uλ(x0)µ12 (320)

= Ω0/2 (321)

with the vacuum Rabi frequency

Ω0 = 2
1

~

√
~ω0

2ε0

uλ(x0)µ12 = 2
1

~

√
~ω0

2ε0V
ũλ(x0)µ12 =

2E0µ12

~
ũλ(x0) (322)

which is similar as in the classical case, but with the classical field replaced by the
electric field per photon and explicitly taking into account the mode function ũλ(x0).

7.6 Jaynes-Cummings Model

The most simple case occurs if a single two-level atom interacts with a single mode
of the electromagnetic field.

For this case the Jaynes-Cummings-Hamiltonian applies:

HJC =
1

2
~ω0σz + ~ωa+a + ~g(aσ+ + a+σ−) (323)

This Hamiltonian only couples states |n, e〉 with |n + 1, g〉 where we denote with
|e〉 , |g〉 the excited and ground state of the two-level atom.

It thus suffices to describe H in this basis and define:

Hn = ~
(

n +
1

2

)
ω

(
1 0
0 1

)
+ ~

(
δ/2 g

√
n + 1

g
√

n + 1 −δ/2

)
(324)

with δ = ω0 − ω.

The eigenenergies of this Hamiltonian are:

E2n = ~
(

n +
1

2

)
ω − 1

2
~Ωn (325)

E1n = ~
(

n +
1

2

)
ω +

1

2
~Ωn (326)
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with

Ωn =

√
δ2 + Ω2

0 (n + 1) (327)

Ωn is called the generalized Rabi frequency.

The according eigenstates are:

|2n〉 = cos ϑn |e, n〉 − sin ϑn |g, n + 1〉 (328)

|1n〉 = sin ϑn |e, n〉+ cos ϑn |g, n + 1〉 (329)

with

cos ϑn =
Ωn − δ√

(Ωn − δ)2 + 4g2 (n + 1)
(330)

sin ϑn =
2g

√
(n + 1)√

(Ωn − δ)2 + 4g2 (n + 1)
(331)

These eigenstates of the combined atom-field system are called dressed states.

On resonance the dressed states reduce to:

|2n〉 = (|e, n〉 − |g, n + 1〉) /
√

2 (332)

|1n〉 = (|e, n〉+ |g, n + 1〉) /
√

2 (333)

with eigenenergies:

E2n = ~
(

n +
1

2

)
ω − ~g√n + 1 (334)

E1n = ~
(

n +
1

2

)
ω + ~g

√
n + 1 (335)

It is easy to show that in the interaction picture (rotating at the frequency (n+1/2)ω)
the coefficients c1n(t), c2n(t) of an arbitrary state |ψ(t)〉 = c1n(t) |1n〉 + c2n(t) |2n〉
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Figure 51: Dressed states. Dashed lines show energy levels without coupling. [from Meystre
”Elements of Quantum Optics”]

obey:

(
c2n(t)
c1n(t)

)
=

(
exp(iΩnt) 0

0 exp(−iΩnt)

)(
c2n(0)
c1n(0)

)
(336)

In the resonant case δ = 0 this gives for a state initially in the upper state:

|cen(t)|2 = cos2(g
√

n + 1t) (337)

|cgn+1(t)|2 = sin2(g
√

n + 1t) (338)

Even if n = 0 (no photon or interaction with the vacuum) there is:

|ce0(t)|2 = cos2(gt) =
1

2
(1 + cos(Ω0t)) (339)

Thus there is a coherent exchange of one energy quantum between the atom and
the field mode, the so-called vacuum Rabi oscillation, in striking difference to the
irreversible exponential decay into free space of an excited atom. The periodic en-
ergy exchange has an analogy with two coupled pendula.
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The coupled equation of motion for the states |e, n〉 and |g, n + 1〉 are:

·
cen = −i

δ

2
cen − ig

√
n + 1cgn+1 (340)

·
cgn+1 = i

δ

2
cgn+1 − ig

√
n + 1cen (341)

Experiments to show the vacuum Rabi oscillations have been performed recently.

M. Brune, et al., Phys. Rev. Lett. 76, 1800-1803 (1996); B. T. H. Varcoe, S.
Brattke, M. Weidinger, H. Walther, Nature 403, 743 - 746 (2000)

7.7 Wigner-Weisskopf theory of spontaneous emission

The Hamiltonian for a single two-level atom coupled to a discrete number of modes
of an e.magn. field is:

H =
1

2
~ω0σz + ~

∑

k

ωka
+
k ak + ~

∑

k

gk(akσ
+ + a+

k σ−) (342)

The most general state vector is:

|ψ(t)〉 = ce0(t) |e{0}〉+
∑

k

cg{1k}e
−i(ωk−ω0)t |g{1k}〉 (343)

Substituting into the Schroedinger equation gives:

·
ce0 = −i

∑

k

gkcg{1k}e
−i(ωk−ω0)t (344)

·
cg{1k} = −igkce0e

i(ωk−ω0)t (345)

Formally integrating and inserting results to:

·
ce0 = −

∑

k

g2
k

t∫

0

dt′ e−i(ωk−ω0)(t−t′)ce0(t
′) (346)
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We now move from a discrete set of modes to a continuum by replacing the sum
over k with an integral:

∑

k

f(k) −→ V

(2π)3

∫
d3k f(k) =

V

(2πc)3

∫
dω ω2

∫ π

0

dϑ sin ϑ

∫ 2π

0

dϕ f(ω, ϑ, ϕ) (347)

We also insert

g2
k(ω, ϑ) =

1

~2

2∑
σ=1

|〈e| e−→r ε̂σ |g〉E0,ωuω|2 (348)

=
1

~2
E2

0,ωµ2
12 sin2 ϑ

∣∣cos2 ϕ + sin2 ϕ
∣∣ (349)

=
1

~2
E2

0,ωµ2
12 sin2 ϑ (350)

=
1

~2

(
~ω

2ε0V

)
µ2

12 sin2 ϑ (351)

Inserting and integrating gives:

·
ce0 = − 1

6ε0π2~c3

∫
dω ω3µ12

t∫

0

dt′ e−i(ωk−ω0)(t−t′)ce0(t
′) (352)

with

lim
t→∞

t∫

0

dt′ e−i(ωk−ω0)(t−t′) = πδ(ω − ω0)− P

[
i

ω − ω0

]
(353)

it follows:
·
ce0 = −Γ

2
ce0(t) (354)

where the Lamb-shift is neglected.

The rate Γ is the Wigner-Weisskopf rate of spontaneous emission:

Γ =
ω3µ2

12

3πε0~c3
(355)
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Figure 52: Probability to find an excited atom in a cavity in the upper state for weak damping (a)
and strong damping (b) of the cavity field. [from Scully ”Quantum optics”]

7.8 Collapse and Revival & Quantum beats

7.8.1 Collapse & Revival

An interesting phenomenon exists if a single atom interacts not with a single Fock-
state |n〉, but with a coherent state |α〉 where

|α〉 = e−|α|
2/2

∑
n

αn

√
n!
|n〉 (356)

In this case the probability to find the initially excited atom in the excited state
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after some time t is:

Pe =
∑

n

pn |cen(t)|2 (357)

= e−|α|
2∑

n

|α|2n

n!
cos2(g

√
n + 1t) (358)

The time evolution is a sum of oscillations with different Rabi frequencies which
then dephase.
This occurs on a timescale of appr.:

tc ≈ g−1 (359)

However, after some time there is a revival of the probability to find the atom excited
again. This is a pure quantum effect and due to the discrete number of basis states
of the coherent state.

The time for the revival can be estimated to:

tr ≈ 4π
√

ntc = 4π
√

ng−1 (360)

Figure 53: Collapse and revival as measured by G. Rempe, H. Walther, and N. Klein, Phys. Rev.
Lett. 58, 353-356 (1987) [from Meystre ”Elements of Quantum optics”]
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7.8.2 Quantum Beats

Another interesting quantum effect in the spontaneous emission of light from a sin-
gle atom is the quantum beat effect.

Consider the following Λ- and V -type three level systems:

Figure 54: V-type and Λ-type three level systems

Assume the atomic state is in a superposition:

|ψ(t)〉 = cae
−iωat |a〉+ cbe

−iωbt |b〉+ cce
−iωct |c〉 (361)

Semiclassically there exist oscillating dipoles:

V -type system: Pac and Pbc

Λ-type system: Pab and Pac

which create a field of the form

E(t) = E01 exp(−iν1t) + E02 exp(−iν2t) (362)

with
V -type system: ν1 = ωa − ωc

ν2 = ωb − ωc

Λ-type system: ν1 = ωa − ωb

ν2 = ωa − ωc

Obviously this creates a beating in a square law detector which can only measure
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intensities:

|E(t)|2 = |E01|2 + |E02|2 + {E∗
01E02 exp [i (ν1 − ν2) t] + c.c.} (363)

for both the Λ- and the V -type system.

However, in the quantum case the beating signal is given by the following expres-
sions:

V -type system:

I = 〈ψV (t)|E(−)
1 E

(+)
2 |ψV (t)〉 (364)

with
E

(−)
1 ∝ a+

1 eiν1t and E
(+)
1 ∝ a2e

−iν2t (365)

Therefore with the state

|ψV (t)〉 =
∑

i=a,b,c

ci |i, 0〉+ c1 |c, 1ν1〉+ c2 |c, 1ν2〉 (366)

this gives:

I = const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] 〈c|c〉 (367)

= const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] (368)

But, in the Λ-type system:

|ψΛ(t)〉 =
∑

i=a,b,c

c′i |i, 0〉+ c′1 |b, 1ν1〉+ c′2 |c, 1ν2〉 (369)

and

I = 〈ψΛ(t)|E(−)
1 E

(+)
2 |ψΛ(t)〉 (370)

= const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] 〈c|b〉 (371)

= 0 (372)

There is no beat note in the Λ-system.
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This can be interpreted in the framework of which-path-information:

• After emission of a photon it is not possible to say which decay path the photon
took in the V -system. Thus, the two paths interfere.

• In the Λ-system a measurement of the atomic state (it is either in |b〉 or |c〉)
reveals information which path the photon took (even before it is detected).
thus there is no interference.

This effect has some analogy to Young’s double slit experiment.
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