
9 Quantum Theory of Maser and Laser

One example for a system interacting with reservoirs is the maser or laser.

In order to understand the properties of such an inherently quantum device a quan-
tum theory is required for the theoretical description, in particular if maser action
or lasing with only a single quantum emitter occurs.

The following figure sketches the various subcomponents (systems and reservoirs) of
a laser:

Figure 62: Block diagram of the subcomponents of a laser [from Meystre ”Elements of Quantum
optics”]

9.1 The Micromaser

The most fundamental system to study light-matter interaction and light amplifica-
tion is the one-atom maser or micromaser.

In this system single atoms from an atomic beam are sent through a high quality
cavity.
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Starting point for a theoretical description is the Jaynes-Cummings-Hamiltonian:

H =
1

2
~ω0σz + ~ωa†a + ~(gσ+a + g∗σ−a†) (454)

The time evolution of the atom density matrix is subdivided into different steps
(Filipowicz et al. Phys. Rev. A 34, 3077 (1986)).

First, an atom enters the cavity at time ti and interacts for a time τ . Then the
density matrix of the atom ρ can be found by tracing the total density matrix ρa−f

over the field variables after interaction due to the time evolution operator U :

ρ(ti + τ) = tratom{U(τ)ρa−f (ti)U
−1(τ)} ≡ F (τ)ρ(ti) (455)

After that the density matrix of the field evolves according to a master equation:

ρ̇ ≡ Lρ = − ω

2Q
(nR + 1)[a†aρ(t)− aρ(t)a†]− ω

2Q
nR[ρ(t)aa† − a+ρ(t)a] + adj. (456)

The Q-factor Q is defined as the ratio of the resonance frequency and the reso-
nance width Q = f/∆f and is thus inversely proportional to the damping rate of
the cavity.

Thus, after the coherent and incoherent interaction the density matrix of the field
is:

ρ(ti+1) = exp(Ltp)F (t)ρ(ti) (457)

Then, the next atom enters. Damping of the field is neglected during the atom
field interaction!
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One special case is when the field is initially diagonal in the energy representa-
tion and when the atom is injected in its upper state
|e〉. Then the reduced density operator of the field remains diagonal.

With the initial density matrix

ρa−f (ti) = |e〉〈e| ⊗
∑

n

pn(ti)|n〉〈n| (458)

one finds:

ρ(ti + τ) =
∑

n

pn(ti)[|Cen(τ)|2|n〉〈n|+ |Cgn+1(τ)|2|n + 1〉〈n + 1|] (459)

and

pn(ti + τ) = [1− Cn+1(τ)]pn(ti) + Cn(τ)pn−1t(i) (460)

Where the Cn are:

Cn(τ) =
4ng2

(ω0 − ω)2 + 4ng2
sin2

[
1

2

√
(ω0 − ω)2 + 4ng2τ

]
(461)

Since the density matrix of the field remains diagonal, the master equation can
be limited to the diagonal elements:

ṗn = −ω

Q
(nR + 1)[npn − (n + 1)pn+1]− ω

Q
nR[(n + 1)pn − npn−1] (462)

Iteration of the time evolution eventually yields to a steady state.

One can calculate the steady state properties if one assumes that the atoms en-
ter in a Poissonian distribution at a rate R and an average distance in time of 1/R.
Averaging yields:
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〈ρ(ti+1)〉 = 〈exp(Ltp)〉F (τ)〈ρ(ti)〉 = (463)

= R

∫ ∞

0

dtpexp[−(R− L)tp]F (τ)〈ρ(ti)〉 (464)

=
R

R− L
F (τ)〈ρ(ti)〉 (465)

In steady state it is:

R[1− F (τ)]ρ = Lρ (466)

Now the diagonal elements pn = 〈n|ρ|n〉 can be found in steady state. A short
calculation yields:

pn =
nRω/Q +An

(nR + 1)ω/Q + Bn

pn−1 (467)

where the coefficients An (change of the matrix element pn per time due to the
passage of atoms in the upper state) and Bn (change of the matrix element pn per
time due to the passage of atoms in the lower state) are:

An =
4Reg

2

(ω0 − ω)2 + 4ng2
sin2

[
1

2

√
(ω0 − ω)2 + 4ng2τ

]
(468)

Bn =
4Rgg

2

(ω0 − ω)2 + 4ng2
sin2

[
1

2

√
(ω0 − ω)2 + 4ng2τ

]
(469)

Here the rate R has been generalized for the case where atoms are injected in the
upper state with rate Re or in the lower state with rate Rg.

Finally, one finds an analytic expression for the steady state photon number dis-
tribution in the micromaser with incoherent Poissonian pump:

pn = p0

n∏

k=1

nRω/Q +Ak

(nR + 1)ω/Q + Bk

(470)
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9.1.1 Features of the photon statistics

With the steady state solution of the photon number distribution the moments 〈n〉,
〈n2〉, ...can be calulated.

A parameter which is often used is the normalized average photon number n

n ≡ 〈n〉/Ne =
∑

n

npn/Ne (471)

and the dimensionless pump parameter Θ :

Θ =
1

2

√
Negτ (472)

The following plot shows the mean photon number as a function of the pump pa-
rameter for three different atom injection rates:

Figure 63: Normalized average photon number for different values of R/γ [Filipowicz et al. Phys.
Rev. A 34, 3077 (1986)]

The clearly observable oscillation is a reminiscent of the Rabi-oscillation.

Another interesting property is the non-classical character of the micromaser field
in steady state. This is best characterized by the normailzed variance σ:
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σ ≡ (〈n2〉 − 〈n〉2)1/2

〈n〉1/2
(473)
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The following figure shows σ versus the pump parameter.

Figure 64: Normailzed variance of the micromaser field in steady state. [from Meystre ”Elements
of Quantum Optics”]

In regions of increasing photon number a super-Poissonian statistics is observed,
whereas in regions of decreasing photon number the field shows a non-classical sub-
Poissonian statistics.

At very low temperatures (where thermal photons are negligible) an interesting
behaviour of the steady state field occurs: If the photon number in the cavity nq

is such that the atom performs an exact integer multiple q of full Rabi-oscillation,
then the probability to emit an additional photon is zero. The photon number is
”trapped” at a certain level nq. Only losses are compensated.

The condition for these trapping states is thus:

g
√

nq + 1τ = 2qπ or (474)

Ne

Θ2
=

nq + 1

q2π2
(475)

Trapping states approximate Fock states under certain conditions.
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The following plot shows the normalized mean photon number and variance for a
very low number of thermal photons:

Figure 65: Normalized mean photon number and variance for an average thermal photon number
of 10−7. [from Meystre ”Elements of Quantum Optics”]
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The next figures show an experiment [Weidinger et al., Phys. Rev. Lett. 82, 3795
(1999)] where trapping states were demonstrated in a one-atom-maser.

Figure 66: The experimental: Atoms leaving the rubidium oven are excited into the 63P3/2 Rydberg
state using a tilted UV laser for velocity selection. Following the cavity the atoms are detected
using state selective field ionization. Tuning of the cavity is performed using two piezo translators.
The reference beam is used to stabilize the laser frequency to a Stark shifted atomic resonance,
allowing the velocity of the atoms to be tuned continuously. [from Weidinger et al., Phys. Rev.
Lett. 82, 3795 (1999)]
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Figure 67: Atomic inversion as a function of interaction time. Plots (A) and (B) present the
inversion as a function of interaction time for pump rates of Nex = 7 and Nex = 10, respectively.
Plots (a) and (b) represent the plots (A) and (B), respectively, after the linear trend was removed
(see text). The vertical lines on the plot indicate the theoretical positions of all low order trapping
states over the range of interaction times of the plot. Dips in the inversion can be identified as
corresponding with the positions of the indicated trapping states. [from Weidinger et al., Phys.
Rev. Lett. 82, 3795 (1999)]
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9.2 Single mode laser master equation

The generalization of a single atom maser to laser is to allow that many atoms in-
teract with the cavity field.

In this regime collective effects (superfluorescence, superradiance) may occur if the
atoms ’see’ the same field. However, here we assume that the atoms move over
distances large compared to the optical wavelength and respond independently to
the field.

Then it is easy to combine the expressions which were obtained in the previous
section to obtain the time evolution for the diagonal elements of the density matrix
in the laser.

A so-called coarse-grained derivative can be defined as follows:

ṗn =
pn(ti + τ)− pn(ti)

τ
(476)

If we now combine the terms An (change of the matrix element pn per time due to
the passage of atoms in the upper state) and Bn (change of the matrix element pn

per time due to the passage of atoms in the lower state) and the losses of the field
(described by the master equation) we find:

ṗn = −(n + 1)

[
An+1 +

ω

Q
n

]
pn + (n + 1)

[
Bn+1 +

ω

Q
(n + 1)

]
pn+1

+ n

[
An +

ω

Q
n

]
pn−1 − n

[
Bn +

ω

Q
(n + 1)

]
pn (477)

This equation is valid if the matrix element does not change much due to the passage
of a single atom and if the cavity losses during the interaction of an atom with the
cavity can be neglected.

In order to derive the equation of motion for the maser we averaged the arrival
time of the atoms over a Poissonian distribution and assumed a fixed interaction
time. Here we assume that the atoms are all present in the cavity, but we average
over the lifetimes T1 of the atoms in the state |e〉 and |g〉. For simplicity we assume
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that these are given by the same rate γ.

Averaging with γ
∫

dτe−γτ yields:

An =
ReR

2(1 + nR)
(478)

Bn =
RgR

2(1 + nR)
(479)

where the following dimensionless rate constant R is defined as

R = 4|g/γ|2L(ω0 − ω) (480)

and L(ω0 − ω) is a dimensionless Lorentzian:

Here, Ne = ReT1 and Ng = RgT1 describe the average number of atoms present
in the excited and ground state, respectively.

L(ω0 − ω) =
γ2

γ2 + (ω0 − ω)2
(481)

In the next subchapter we have to solve the equations of motion under these as-
sumption.

9.3 Laser Photon Statistics and Linewidth

In order to find a solution for the photon distribution of the laser in steady state it
is useful to introduce the following notation:

A′
n = An +

ω

Q
nR and B′n = Bn +

ω

Q
(nR + 1) (482)

and with this to write:

ṗn = −(n + 1)A′
n+1pn + (n + 1)B′n+1pn+1 + nA′

npn−1 − nB′npn (483)
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This equation can be solved in steady state (ṗn = 0) with the help of the detailed
balance condition. With this one can find:

pn = p0

n∏

k=1

nRω/Q +Ak

(nR + 1)ω/Q + Bk

(484)

For an optical field one can set the mean number of thermal photons nR to zero. By
inserting the expressions for A′

n and B′n one finds:

pn = p0

n∏

k=1

Na

Nb + 2T1(R−1 + k)ω/Q
(485)

The following figure shows the steady state photon number distribution according
to this photon number distribution:

Figure 68: Photon number distribution of a laser in steady state below (solid line) and above
(dashed line) threshold [from Meystre ”Elements of Quantum Optics”]
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Far below threshold the photon number distribution has the form:

pn = p0x
n = (1− x)xn with (486)

x = (Ne/(Ng + 2T1ω/QR)) (487)

and thus resembles a thermal distribution.

One can write the expression for the pn as:

pn =
P0

(n + C)!

[
Ne

2T1(ω/Q)

]n+C

with (488)

C = R−1 + Ng/2T1(ω/Q) (489)

The average photon number in steady state is thus:

nss =
∑

n

npn = p0

∑
n

n + C − C

(n + C)!

[
Ne

2T1(ν/Q)

]n+C

(490)

=
Ne −Ng

2T1ν/Q
− 1

R
(491)

Far above threshold the n’s around the average value < n > are much larger than
C. Then the following approximation holds:

pn =
e−〈n〉〈n〉n

n!
(492)

The photon number distribution of a laser far above threshold is thus Poissonian.
The state of the laser field is a ”phase diffused” coherent state, i.e. not a pure state.
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The average value of the photon number evolves as:

d

dt
〈n〉 =

∑
n

nṗn = −
∑

n

[A′
n+1(n

2 + n)− B′n(n2 − n)

−A′
n+1(n

2 + 2n + 1) + B′nn2]pn

=
∑

n

(A′
n+1 − B′n)npn +

∑
n

A′
n+1pn

' (A− B − ω/Q)〈n〉+A+ nRω/Q (493)

In the last row the values A′
n+1 and B′n were replaced by their semiclassical val-

ues:

A =
RNe

2T1(1 + 〈n〉)R (494)

B =
RNg

2T1(1 + 〈n〉)R (495)

This is appropriate if the photon number distribution is strongly peaked around
its average value.

The photon number distribution thus builds up (even if there are initially no pho-
tons, 〈n〉 = 0 !) from the thermal photons or from vacuum fluctuations.

The last term A+ nν/Q describes the time evolution of the photon number fluctu-
ations and gives rise to a finite laser linewidth:

∆ν =
A+ nRω/Q

nss

(496)
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