
10 System Reservoir Interactions

10.1 The master equation

In quantum optics incoherent and irreversible processes can be described by the
master equation.

To define the problem we have a ’small’ system S which interacts with a ’large’
system R beeing a reservoir (here we consider only thermal baths, i.e. reservoirs in
thermal equilibrium).

The Hamiltonian for such a model system is:

H = HS + HR + V (463)

The equation of motion for the total density operator ρ(T ) (system and reservoir) in
the interaction picture is:

∂ρ(T )

∂t
= − i

~
[
V (t), ρ(T )

]
(464)

The reduced density operator (of the system) is obtained by tracing over the reservoir
variables:

ρ(t) = TrR

{
ρ(T )

}
(465)

Initially we assume:
ρ(T )(0) = ρ(0)⊗ ρR (466)

Formal integration and iteration leads to:

ρ(T )(t) = ρ(T )(0) +
∞∑

n=1

(
− i

~

)n
t∫

0

dt1

t1∫

0

dt2... (467)

×
tn−1∫

0

dtn
[
V (t1),

[
V (t2), ...

[
V (tn), ρ(T )(0)

]]]
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and

ρ(t) = ρ(0) +
∞∑

n=1

(
− i

~

)n
t∫

0

dt1

t1∫

0

dt2... (468)

×
tn−1∫

0

dtn TrR {[V (t1), [V (t2), ... [V (tn), ρR ⊗ ρ(0)]]]}

= (1 + U1(t) + U2(t) + ...) ρ(0)
.
= U(t)ρ(0)

where

Un(t) =

(
− i

~

)n
t∫

0

dt1

t1∫

0

dt2... (469)

×
tn−1∫

0

dtn TrR {[V (t1), [V (t2), ... [V (tn), ρR ⊗ (·)]]]} (470)

It is possible to define

∂ρ(t)

∂t
= L(t)ρ(t) =

[ ·
U1(t) +

·
U2(t) + ...

]
U(t)−1ρ(t) (471)

If we assume for V (t):
TrR (V (t)ρR) = 0 (472)

it follows U1(t) = 0. Keeping only terms of second order it follows:

L(t) ≈
·
U2(t) = − 1

~2

t∫

0

dt1 TrR {[V (t), [V (t1), ρR ⊗ (·)]]} (473)

∂ρ(t)

∂t
= L(t)ρ(t) ≈ − 1

~2

t∫

0

dt1 TrR {[V (t), [V (t1), ρR ⊗ ρ(t)]]}

Now we assume as a special case an harmonic oscillator as system S damped by
coupling to a thermal reservoir R of harmonic oscillators.
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Thus:

V (t) = ~
(
a+Γ(t)eiω0t + aΓ+(t)e−iω0t

)
with (474)

Γ(t) =
∑

j

gjbje
−iωjt where (475)

[
bj, b

+
k

]
= δjk (476)

The bj denote the bosonic harmonic oscillators in the reservoir!

Substituting gives terms with the following integrals:

I1 =

t∫

0

dt1
∑
i,j

gigj 〈bibj〉R e−i(ωit+ωjt1)eiω0(t+t1) (477)

≈
t∫

0

dt1

∞∫

0

dω1

2π
D(ω1)

∞∫

0

dω2

2π
D(ω2)g(ω1)g(ω2) 〈bibj〉R e−i(ωit+ωjt1)+iω0(t+t1)

I2 =

t∫

0

dt1
∑
i,j

g∗i g
∗
j

〈
b+
i b+

j

〉
R

ei(ωit+ωjt1)e−iω0(t+t1) (478)

≈
t∫

0

dt1

∞∫

0

dω1

2π
D(ω1)

∞∫

0

dω2

2π
D(ω2)g

∗(ω1)g
∗(ω2)

〈
b+
i b+

j

〉
R

ei(ωit+ωjt1)−iω0(t+t1)

I3 =

t∫

0

dt1
∑
i,j

gig
∗
j

〈
bib

+
j

〉
R

e−i(ωit−ωjt1)eiω0(t−t1) (479)

≈
t∫

0

dt1

∞∫

0

dω1

2π
D(ω1)

∞∫

0

dω2

2π
D(ω2)g(ω1)g

∗(ω2)
〈
bib

+
j

〉
R

e−i(ωit−ωjt1)+iω0(t−t1)

I4 =

t∫

0

dt1
∑
i,j

gigj

〈
b+
i bj

〉
R

ei(ωit−ωjt1)e−iω0(t−t1) (480)

≈
t∫

0

dt1

∞∫

0

dω1

2π
D(ω1)

∞∫

0

dω2

2π
D(ω2)g

∗(ω1)g(ω2)
〈
b+
i bj

〉
R

ei(ωit−ωjt1)−iω0(t−t1)
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where sums were replaced by integrals and D(ωj) denotes the density of states.

If we assume a thermal bath with no phase dependent correlations (〈bibj〉R =〈
b+
i b+

j

〉
R

= 0) then only the integrals I3 and I4 are non-zero.

We assume δ-correlations:
〈
b+
i (ω1)bj(ω2)

〉
R

= 2πnR(ω1)δ(ω1 − ω2) (481)〈
bi(ω1)b

+
j (ω2)

〉
R

= 2π(nR(ω1) + 1)δ(ω1 − ω2) (482)

where nR(ω1) is the mean number of photons of the reservoir at frequency ω1.

Inserting, extending the time integration to ∞ (the integrals over the frequency
vanish rapidly), and defining ε = ω − ω0 and τ = t− t1 gives e.g. for I3 :

I3 ≈
∞∫

−∞

dε

2π
D2(ε + ω0)g

2(ε + ω0)(nR(ε + ω0) + 1)

∞∫

0

dτ e−iετ (483)

We note that ∞∫

0

dτ e−iετ = πδ(ε)− iPV

(
1

ε

)
(484)

Now we can write

I3 =
γ

2
(nR(ω0) + 1)− i∆ and similar (485)

I4 =
γ

2
nR(ω0)− i∆′ with (486)

γ = D2(ω0)g
2(ω0) (487)

Substituting the integrals, omitting the phase terms ∆ (which cause an energy shift)
and inculding an additional time evolution (according to HI) of the system S finally
gives the master equation:

∂ρ

∂t
= − i

~
[H0 + HI , ρ] (488)

+
γ

2
(nR + 1)(2aρa+ − a+aρ− ρa+a)

+
γ

2
(nR)(2a+ρa− aa+ρ− ρaa+)
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As an example consider for HI = 0 the time evolution of the mean photon number
n = 〈a+a〉 of the system:

d 〈a+a〉
dt

= −γ
〈
a+a

〉
+ γnR (489)

and thus
n(t) = n0e

−γt + nR

(
1− e−γt

)
(490)

10.2 Representations of the master equation

10.2.1 Fock representation

It is easy to represent the master equation in a Fock basis:

d

dt
ρmn = γnR

[
(nm)1/2ρm−1n−1 −

1

2
(m + n + 2)ρmn

]
(491)

+ γ(nR + 1)

[
{(n + 1)(m + 1)}1/2 ρm+1n+1 −

1

2
(m + n)ρmn

]

For the diagonal elements which describe the probability pn to find exactly n photons
in the mode it follows:

d

dt
pn = γnRnpn−1 + γ(nR + 1)(n + 1)pn+1 (492)

− [γnR(n + 1) + γ(nR + 1)n] pn

In steady state the detailed balance condition holds:

γ(nR + 1)npn = γnRnpn−1 (493)

This leads to the thermal probability disribution:

pn =
1

1 + nR

(
nR

1 + nR

)n

(494)

The following picture gives a schematis of the probability flow between the pn:
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Figure 69: Schematis of the probability flow between different diagonal matrix elements [from
Meystre ”Elements of Quantum Optics”]

10.2.2 Fokker-Planck-equation

A P-representation transforms the master equation into a statistical c-number equa-
tion if the P-distribution is interpreted as a (quasi-) probability distribution.

One can show that:

∂

∂t
P (α) =

[
1

2
γ

(
∂

∂α
α +

∂

∂α∗
α∗

)
+ γnR

∂2

∂α∂α∗

]
P (α) (495)

This equation is a Fokker-Planck equation.

The first term
1

2
γ

(
∂

∂α
α +

∂

∂α∗
α∗

)
(496)

is called the drift term and the second term

γnR
∂2

∂α∂α∗
(497)

is called the diffusion term.
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Figure 70: Qualitative effect of the drift term (left) and the diffusion term (right) on a probability
distribution in the Fokker-Planck equation [from Meystre ”Elements of Quantum Optics”]

The drift term describes the evolution of the average values, e.g. 〈α〉P :

∂

∂t
〈α〉P = −γ

2
〈α〉P (498)

or 〈α∗α〉P :
∂

∂t
〈α∗α〉P = −γ 〈α∗α〉P + γnR (499)

The diffusion term describes the evolution of higher moments, e.g. of the width of
the quasi-probability distribution.

10.3 Quantum Langevin equation

The previous description of a small system interacting with a large reservoir was
performed in the Schroedinger picture.

Additional insight can be gained in the Heisenberg picture.

Starting again with the Hamiltonian:

H = ~ω0a
+a +

∑
j

~ωjb
+
j bj + ~

∑
j

(
gja

+bj + g∗j ab+
j

)
(500)
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gives:

·
a(t) = −iω0a(t)− i

∑
j

gjbj(t) (501)

·
bj(t) = −iωjbj(t)− ig∗j a(t) (502)

Formally integrating results in

bj(t) = bj(t0)e
−iωj(t−t0) − ig∗j

t∫

t0

dt′ a(t′)e−iωj(t−t′) (503)

= bfree(t) + bradiation(t) (504)

In this definition bradiation(t) describes the modification of the free evolution due to
the system-reservoir interaction.

Inserting gives:

·
a(t) = −iω0a(t)− i

∑
j

gjbj(t0)e
−iωj(t−t0) −

∑
j

|gj|2
t∫

t0

dt′ a(t′)e−iωj(t−t′) (505)

Transforming in the interaction picture with

A(t) = a(t)eiω0t (506)

finally gives:

·
A(t) = −

∑
j

|gj|2
t∫

t0

dt′ A(t′)e−i(ωj−ω0)(t−t′) + F (t) (507)

with F (t) = −i
∑

j

gjbj(t0)e
−i(ωj−ω0)(t−t0) (508)

The integral over t′ above is very similar to the integral which occured in the Wigner-
Weisskopf theory of spontaneous emission.

Thus, one can evaluate the integrals and finds:

·
A(t) = −γ

2
A(t) + F (t) (509)

with 〈F (t)〉R = 0 (510)
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The noise operator F (t) plays a similar role as in a classical Langevin equation.
Therefore, the equation above is called the quantum Langevin equation.

Remarks:

• One could not expect to find a simple time evolution for the operators A(t)
such as A(t) = A(t0) exp(−tγ/2). This would imply a possible change of the
commutation relation with time in striking contradiction to the laws of quantum
mechanics.

• It is, however,

〈 ·
A(t)

〉
= −γ

2
〈A(t)〉

• The Heisenberg picture has the appealing advantage that the equations look
similar as in the classical case.

• The operator ordering is very important when caculating in the Heisenberg
picture. System and reservoir operators may commute at time zero, but not
necessarily at a later time. The ordering can be chosen at the beginning, but
then has to be used consequently.

10.4 Resonance fluorescence

10.4.1 Master equation

Resonance fluorescence is the light that is detected from an atom that is driven by
a laser field. Here it is assumed that the laser field is strong and can be described
classically.

The system may be described by the following Hamiltonian:

H = H0 + Hdrive + Hdamping (511)

H0 =
1

2
~ω0σz + ~

∑
ωkb

+
k bk (512)

Hdrive = ~
(

g
ε∗

2
σ−eiωt + g∗

ε

2
σ+e−iωt

)
(513)

Hdamping = ~
∑(

gkb
+
k σ− + g∗kbkσ

+
)

(514)

where ε is the amplitude of the classical driving field.
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The master equation for the reduced density operator for the system (the atom)
is if we assume the reservoir at zero temperature:

∂ρ

∂t
=

(
∂ρ

∂t

)

coherent

+

(
∂ρ

∂t

)

incoherent

(515)

In the interaction picture (with the detuning ∆ω):

∂ρ

∂t
= −i

∆ω

2
[σz, ρ]− i

Ω

2

[
σ+ + σ−, ρ

]
+ (516)

γ

2

(
2σ−ρσ+ − ρσ+σ− − σ+σ−ρ

)

where γ is the natural linewidth of the atom and Ω = εg∗/~.

From the master equation the equations of motion for the expectation values 〈σ−(t)〉 , 〈σ+(t)〉
and 〈σz(t)〉 can be derived:

d

dt

〈
σ+

〉
= −

(γ

2
− i∆ω

) 〈
σ+

〉− iΩ 〈σz〉 (517)

d

dt

〈
σ−

〉
= −

(γ

2
+ i∆ω

) 〈
σ−

〉
+ iΩ 〈σz〉 (518)

d

dt
〈σz〉 = −γ (1 + 〈σz〉)− iΩ

(〈
σ+

〉− 〈
σ−

〉)
(519)

In these equation we recognize the optical Bloch equations for a two-level system
driven by a single-mode electromagnetic field.

The steady state solution in the interaction picture of this equation gives:

〈σz〉ss = − 1 + (2∆ω/γ)2

1 + (2∆ω/γ)2 + 2 (Ω/γ)2 (520)

〈
σ+

〉
ss

= −i
(Ω/γ) (1 + i2∆ω/γ)

1 + (2∆ω/γ)2 + 2 (Ω/γ)2 (521)

In the interaction picture the exact solution of the Bloch equation at zero detuning
(∆ω = 0) is:

〈σz(t)〉 =
2Ω2

γ2 + 2Ω2

[
1− e−3γt/4

(
cosh κt +

3γ

4κ
sinh κt

)]
− 1 (522)

〈
σ+(t)

〉
= iΩ

γ

γ2 + 2Ω2

{
1− e−3γt/4

[
cosh κt +

(
κ

γ
+

3γ

16κ

)
sinh κt

]}
(523)

〈
σ−(t)

〉
=

〈
σ+

〉∗
(524)
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where κ =
[(

γ
4

)2 − Ω2
]1/2

There is a threshold at Ω = γ/4 below which the solutions are monotonic and
above which they exhibit oscillations. For the case Ω À γ/4 the solutions are:

〈σz(t)〉 = −e−3γt/4 cos Ωt (525)
〈
σ+(t)

〉
=

i

2
e−3γt/4 sin Ωt (526)

The probability for the atom to be in the excited state is:

Pe(t) =
1

2

(
1− e−3γt/4 cos Ωt

)
(527)

The steady state probability is:

P (ss)
e (t) =

Ω2

γ2 + 2Ω2
(528)

This equation shows that for intense fields the atom does not respond to the driving
field like a classical oscillator, but saturates at a level:

lim
Ω−→∞

P (ss)
e (t) =

1

2
(529)

10.4.2 Spectrum of the fluorescent light

The spectrum of the fluorescent light is given by the following expression:

S(ω) =
1

2π

∞∫

−∞

e−iωτ
〈
E(−)(t)E(+)(t + τ)

〉
ss

dτ (530)

It is possible to relate the electric field emitted by the atom directly to the op-
erator σ−: 〈

E(+)(r, t)
〉

= −U(r)
〈
σ−(t)

〉
(531)

Hier U(r) is an amplitude function. (Here we write t, but we mean the retarded
time t− r/c !)
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The steady state spectrum may thus be written as an integral over the correlations
of σ−:

S(ω) =
I0(r)

2π

∞∫

−∞

e−iωτ
〈
σ+(t + τ)σ−(t)

〉
ss

dτ where I(r) = |U(r)|2 (532)

In order to find the integral we have to derive the time evolution of the two-time cor-
relation function 〈σ+(t + τ)σ−(t)〉ss. There is a very helpful theorem, the quantum
regression theorem, which states the following: If 〈σ+(τ)〉 (time evolution) obeys a
certain linear differential equation, then the time evolution of a two-time correlation
function 〈σ+(t + τ)σ−(t)〉 obeys exactly the same differential equation.

The initial condition is found by the commutation relation of the Pauli matrices:

〈
σ+(0)σ−(0)

〉
ss

=
1

2
(〈σz〉ss + 1) (533)

Thus, it is straightforward to find the time evolution for
G(1)(τ) = 〈σ+(τ)σ−(0)〉ss from the equations above.

After some calculation one finds:

G(1)(τ) = I0(r)
Ω2

γ2 + 2Ω2
(

γ2

γ2 + 2Ω2
e−iω0τ + exp

[
−

(γ

2
+ iω0

)
τ
]

(534)

− λ+ exp

{
−

[(
3γ

4
− κ

)
+ iω0

]
τ

}

+ λ− exp

{
−

[(
3γ

4
+ κ

)
+ iω0

]
τ

}
)

where

λ± =
1

4

(− γ
4κ

(10Ω2 − γ2)± (γ2 − 2Ω2)

γ2 + 2Ω2

)
(535)

This rather complicated result requires some discussion:
The spectrum will result from a Fourier transform of G(1)(τ). The first term cor-
responds to elastic scattering, whereas the second term corresponds to ineleastic
scattering by a Lorentzian peaked at ω0. The third and fourth terms contribute to
this term if Ω < γ/4, but if Ω > γ/4 they give rise to two side bands of width 3γ/4.

Thus at low intensities the spectrum is

S(ω) = I0(r)
γ2

γ2 + 2Ω2
δ(ω − ω0) (536)
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Figure 71: Calculated fluorescence spectrum of a single driven two-level atom (Mollow triplet) for
increasing (from a) to c)) pump power. [from Scully ”Quantum Optics”]

If the driving power is increased the peak broadens until when Ω > γ/4 two side
peaks appear.

The spectrum for Ω À γ/4 is:

S(ω) =
I0(r)

2π
(

πγ2

γ2 + 2Ω2
δ(ω − ω0) +

1

2

1
2
γ(

1
2
γ
)2

+ (ω − ω0)
2

(537)

+
1

4

3
4
γ(

3
4
γ
)2

+ (ω − ω0 + Ω)2
+

1

4

3
4
γ(

3
4
γ
)2

+ (ω − ω0 + Ω)2
)

For very large driving fields the elastic scattering is negligible. The spectrum con-
sists of three Lorentzians, the Mollow triplet.

132



This spectrum has a very intuitive explanation in the picture of dressed states. The
three peaks results simply from the spontaneous emission between different dressed
states.

Figure 72: Interpretation of the resonance fluorescence spectrum as spontaneous decay betwen
dressed state energy levels [from Meystre ”Elements of Quantum Optics”]

First experiments to measure this spectrum were performed by Ezekiel (Wu et al.,
Phys. Rev. Lett. 35, 1426 (1975)) and Walther (Diedrich and Walther, Phys. Rev.
Lett. 58, 203 (1987)).
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Figure 73: Measured resonance fluorescence from a single Na atom in an atomic beam at 589
nm for the driving powers 0,8 mW/cm2(a), 8 mW/cm2(b), 85 mW/cm2(c), 490 mW/cm2(d), 920
mW/cm2(e) [Wu et al., 1975]
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10.4.3 Photon correlation

In addition to the first order coherence function G(1)(τ) the second order coherence
function G(2)(τ) can be evaluated.

It is

G(2)(r, t; r, t + τ) =
〈
E(−)(r, t)E(−)(r, t + τ)E(+)(r, t + τ)E(+)(r, t)

〉
(538)

This may be expressed in terms of the atomic operators similar as in the previous
subsection:

G(2)(r, t; r, t + τ) = I2
0 (r)

〈
σ+(t)σ+(t + τ)σ−(t + τ)σ−(t)

〉
(539)

With the relation σ+σ− = 1
2
(σz + 1) this can be written as:

〈
σ+(t)σ+(t + τ)σ−(t + τ)σ−(t)

〉
= 1/2

〈
σ+(t)(σz(t) + 1)σ−(t)

〉
(540)

The solution can be found using the quantum regression theorem:

g(2)(τ) = 1− e−3γt/4

(
cosh κτ +

3γ

4κ
sinh κτ

)
(541)

This has the value g(2)(0) = 0 and is thus anti-bunched light.

Similar as in the case of the spectrum the behaviour of g(2)(τ) changes when the
driving field is increased.

For low power (Ω < γ/4) there is a monotonic increase:

g(2)(τ) =
(
1− e−γt/2

)2
(542)

whereas for high power (Ω À γ/4) there is an oscillatory behaviour:

g(2)(τ) = 1− e−3γt/4 cos Ωt (543)

The interpretation of this result is obvious when the correlation function is discussed
in terms of photon correlation:
When a photon from a single atom is deteced, then the atom is projected to its
ground state. The probability to detect the next photon is then proportional to the
probability to find the atom in its excited state again, i.e., proportional to the time
evolution of Pe(t) which was calculated in the previous subchapters:
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Figure 74: g(2)-function for 4Ω/Γ = 0, 1 (solid) and 4Ω/Γ = 10 (dashed) [from Scully ”Quantum
Optics”]

Pe(t) =
1

2

(
1− e−3γt/4 cos Ωt

)
(544)

First experiments of the photon statistics from the fluorescence light of a single atom
have been studied by the groups of Kimble (Kimble et al., Phys. Rev. Lett. 39, 691
(1977)) and Walther (Diedrich and Walther, Phys. Rev. Lett. 58, 203 (1987).
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Figure 75: Measured intensity correlation of the fluorescence light from a single atom [Diedrich
and Walther 1987]
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