
2 Quantization of the Electromagnetic Field

2.1 Basics

Starting point of the quantization of the electromagnetic field are Maxwell’s equa-
tions in the vacuum (source free):

∇ ·B = 0 (1)

∇ ·D = 0 (2)

∇× E = −∂B

∂t
(3)

∇×H =
∂D

∂t
(4)

where B = µ0H, D = ε0E, µ0ε0 = c−2

In the Coulomb gauge E and B are determined by the vector potential A:

B = ∇× A (5)

E = −∂A

∂t
(6)

with the Coulomb gauge condition

∇ · A = 0 (7)

one finds

∇2A(r, t) =
1

c2

∂2A(r, t)

∂2t
(8)

and

∇2E(r, t) =
1

c2

∂2E(r, t)

∂2t
(9)

(∇× (∇× E) = ∇(∇ · E)−∇2E !)

The function A(r, t) can be decomposed as

A(r, t) =
∑

k

ckuk(r)ãk(t) + c∗ku
∗
k(r)ã

∗
k(t) (10)

or with some convenient normalization (such that the ak(t) become dimensionless):

A(r, t) = −i
∑

k

√
~

2ωkε0

[uk(r)ak(t) + u∗k(r)a
∗
k(t)] (11)
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Plugging this into the wave equation for A(r, t) gives:
[∇2 + ω2

k/c
2
]
uk(r) = 0 (12)[

∂2

∂2t
+ ω2

k

]
ak(t) = 0 (13)

with

ak(t) = ake
−iωkt (14)

a∗k(t) = a∗ke
iωkt (15)

one has to find solutions for uk(r) which can be sinusoidal (e.g. in an optical cavity)
or exponential (free runnig waves).

With periodic boundary conditons

uk(r) = uk(r + Lx̂) = uk(r + Lŷ) = uk(r + Lẑ) (16)

i.e.

uk(r) = ε̂k
1√
V

eiknr (17)

or

uk(r) = ε̂k
1√
V/2

sin(knr) (18)

where V = L3 and kn = 2π/L (nxx̂ + nyŷ + nz ẑ) and the polarization vector ε̂k

(̂εk · kn = 0).

Therefore:

A(r, t) = −i
∑

k

√
~

2ωkε0V
ε̂k

[
ake

−iωkt+iknr + c.c.
]

(19)

E(r, t) =
∑

k

√
~ωk

2ε0V
ε̂k

[
ake

−iωkt+iknr + c.c.
]

(20)

H(r, t) =
1

µ0

∑

k

√
~ωk

2ε0V
(kn × ε̂k)

[
ake

−iωkt+iknr + c.c.
]

(21)

The normalization constant

E0 =

√
~ωk

2ε0V
(22)
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is the electric field per photon.

Since the ak, a∗k follow the equations of motion of an harmonic oscillator with coor-
dinates:

q =

√
~

2mω
(a + a∗) (23)

p = −i

√
mω~

2
(a− a∗) (24)

the quantization is easily obtained by replacing the c-numbers with operators:

a → â (25)

a∗ → â+ (26)

which obey the commutation relations
[
âm, â+

n

]
= δmn (27)

[âm, ân] = 0 (28)[
â+

m, â+
n

]
= 0 (29)

In the following the ˆ above the operators is omitted for clarity.

The Hamiltonian of the quantized free electromagnetic field is thus:

H =
1

2

∫ (
ε0E

2 + µ0H
2
)

(30)

=
∑

k

~ωk

(
a+

k ak + 1/2
)

(31)

or with the number operator
nk = a+

k ak (32)

H =
∑

k

~ωk (nk + 1/2) (33)

2.2 Number States or Fock States

Number states or Fock states are eigenstates of the number operator n̂k.:

n̂k |nk〉 = nk |nk〉 (34)
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The operators âk and â+
k are called annihilation and creation operators and have

the following properties:

âk |nk〉 =
√

nk |nk − 1〉 (35)

â+
k |nk〉 =

√
nk + 1 |nk + 1〉 (36)

Thus

|nk〉 =

(
â+

k

)nk

(nk!)1/2
|0〉 (37)

with the vacuum state |0〉.

The energy of a field in a Fock state |nk〉 is:

〈nk|H |nk〉 =
∑

k′
~ωk′

(〈nk| â+
k′ âk′ |nk〉+ 1/2

)
(38)

= ~ωknk + H0 (39)

The expectation value of the electric field of a Fock state vanishes:

〈nk|E |nk〉 = 0 (40)

however

〈nk|E2 |nk〉 =
~ωk

ε0V
(nk + 1/2) (41)

There are non-zero fluctuations even for a vacuum field (vacuum fluctuations! )

A problem is the divergence of the energy for the vacuum state:

〈0|H |0〉 =
∑

k′

1

2
~ωk′ →∞ (42)

This is not a problem in practise, since experimentally only differences of energies
are measured.

Some more properties of Fock states:

• Orthonormality
〈n|m〉 = δnm (43)

• Completeness
∞∑

nk=0

|nk〉 〈nk| = 1 (44)
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A generalization are multi-mode Fock states:

|n1〉 |n2〉 ... |nl〉 = |n1, n2, ..., nl〉 (45)

al |n1, n2, ..., nl, ...〉 =
√

nl |n1, n2, ..., nl − 1, ...〉 (46)

a+
l |n1, n2, ..., nl, ...〉 =

√
nl + 1 |n1, n2, ..., nl + 1, ...〉 (47)

Any multi-mode state |Ψ〉 can be written in the Fock representation (i.e. it can be
expanded in a Fock state basis):

|Ψ〉 =
∑
n1

∑
n2

...
∑
nl

...cn1n2...nl... |n1, n2, ..., nl, ...〉 (48)

=
∑

{nk}
c{nk} |{nk}〉 (49)

2.3 Coherent States

A special class of states are the so-called coherent states.

Definition A: Coherent states are produced by classical light sources:
The classical Interaction Hamiltonian for the interaction of a classical field (described
by a classical vector poential) with a current (described by a classical current density
J(r, t)) is:

Vint =

∫
J(r, t) A(r, t) dr (50)

The expression also holds if the classical field is replaced by a quantum field, i.e., a
field with the vector potential

A(r, t) = −i
∑

k

√
~

2ωkε0V
ε̂k

[
ak(t)e

−iωkt+iknr + c.c.
]

(51)

= −i
∑

k

1

ωk

Ek ε̂k

[
ak(t)e

−iωkt+iknr + c.c.
]

(52)

Plugging this into the Schrödinger equation:

d

dt
|ψ(t)〉 = − i

~
Vint |ψ(t)〉 (53)
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and formally integrating yields:

|ψ(t)〉 = exp


− i

~

t∫

0

dt′Vint(t
′)


 |ψ(0)〉 eiϕ (54)

The integration is not obvious since A(r, t) and A(r, t′) do not commute. However,
a correct calculation gives only an additional phase factor!

Therefore:
|ψ(t)〉 =

∏

k

exp
(
αka

+
k − α∗kak

) |ψ(0)〉 (55)

where

αk =
1

~ωk

Ek

t∫

0

dt′
∫

dr ε̂k J(r, t)eiωkt′−ikr (56)

If the initial state is the vacuum state (|ψ(0)〉 = |0〉) then |ψ(t)〉 is called a coherent
state |{αk}〉.

|{αk}〉 =
∏

k

|αk〉 (57)

|αk〉 = exp
(
αka

+
k − α∗kak

) |0〉k (58)

In the single mode case the operator D(α)

D(α) = exp
(
αka

+
k − α∗kak

)
(59)

is the displacement operator.
D(α) |0〉 = |α〉 (60)

Definition B: A coherent state is an eigenstate of the annihilation operator:

a |α〉 = α |α〉 (61)

It is easy to show that |α〉 can be written in a Fock basis as:

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉 (62)

Since

|n〉 =
(a+)n

√
n!

|0〉 (63)
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Figure 9: Photon number representation of coherent states for n=1 (a), n=5 (b), and n=10 (c)

it follows
|α〉 = e−|α|

2/2eαa+ |0〉 (64)

With
e−α∗a |0〉 = |0〉 (65)

the above equation can be written as

|α〉 = e−|α|
2/2eαa+

e−α∗a |0〉 (66)

Together with the Baker-Hausdorff formula one finally can write:

|α〉 = e−|α|
2/2eαa+

e−α∗a |0〉 = |α〉 = eαa+−α∗a |0〉 = D(α) |0〉 (67)
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Definition C: Another way to define the coherent state is to assume that a co-
herent state should ”reproduce a classical state in the best possible fashion”, i.e.
the mean value of important observables, such as H, E, P , ... should equal the
corresponding classical values:

〈{α}|H |{α}〉 −Hvac = Hclassical({α}) (68)

〈{α}|E |{α}〉 = Eclassical({α}) (69)

〈{α}|P |{α}〉 = Pclassical({α}) (70)

The equation for the electric field is for example:

〈{α}|E |{α}〉 = 〈{α}|
∑

k

Ekε̂k

(
ake

−iωkt+ikr + c.c
) |{α}〉 (71)

=
∑

k

Ek ε̂k

(
αke

−iωkt+ikr + c.c
)

= Eclassical({α}) (72)

Similar equations follow for the other observables.

It is obvious that the equation above holds if |α〉k is an eigenstate of ak!

To summarize, all definitions of the coherent state are equivalent.
In the next chapter we’ll see why the coherent state is called coherent state.

2.4 Properties of Coherent States

• The mean number of photons in a coherent state is

〈α| a+a |α〉 = |α|2 = 〈n〉 = n (73)

The photon number distribution is a Poisson distribution:

p(n) = 〈n|α〉 〈α|n〉 =
|α|2n e−n

n!
=

nne−n

n!
(74)

• A coherent state is a minimum uncertainty state.

∆p∆q =
~
2

(75)

This follows from

a =
1√
2~ω

(ωq + ip) (76)

a+ =
1√
2~ω

(ωq − ip) (77)
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and

〈q〉 =

√
~
2ω

(α + α∗) (78)

〈p〉 =

√
~ω
2

(α− α∗) (79)

〈
p2

〉
=
~ω
2

(α2 + α∗2 + 2n + 1) (80)

〈
q2

〉
=
~
2ω

(α2 + α∗2 + 2n + 1) (81)

Therefore

(∆p)2 =
〈
p2

〉− 〈p〉2 (82)

(∆q)2 =
〈
q2

〉− 〈q〉2 (83)

∆p∆q = ~/2 (84)

• The set of coherent states is a complete set:

1

π

∫
|α〉 〈α| d2α = 1 (85)

• Two coherent states are not orthogonal:

〈α|α′〉 = exp

(
−1

2
|α|2 + α′α∗ − 1

2
|α′|2

)
(86)

|〈α|α′〉| = exp
(
− |α− α′|2

)
(87)

If |α− α′| is very large then the two states are ”nearly” orthogonal.

Coherent states are overcomplete (every state can be expanded in the {|α〉}-
basis, but not in a unique way.
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2.5 Thermal State

A third class of quantum states of light are thermal states. These states are pro-
duced by thermal sources, e.g. a light bulb or a discharge lamp.

The photon number distribution of a thermal state is:

p(n) =
1

1 + n

(
n

1 + n

)n

(88)

This follows directly from the Boltzmann distribution:

p(n) =
exp (−En/kBT )∑

n (−En/kBT )
(89)

The mean number of photons in a thermal state obeys a Planck-distribution:

p(n) =
1

e~ω/kBT − 1
(90)

The density operator of a thermal state is:

ρthermal(n) =
∑

n

nn

nn+1 |n〉〈n| (91)

Figure 10 shows the photon number distribution for a thermal and a coherent state.
Obviously, the thermal state has a wider photon number distribution.
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Figure 10: Photon number representation of a thermal state (a) and a coherent state (b) for n = 10
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