
5 Photon Pairs

5.1 Parametric down-conversion

Parametric down-conversion is a non-linear process, where a wave impinging on
a non-linear crystal creates two new light beams obeying energy and momentum
conservation:

ω0 = ω1 + ω2 energy conservation (205)

k0 = k1 + k2 momentum conservation (phase-matching) (206)

Figure 26: Principle of down-conversion

One of the light beams, e.g., beam 1 is called the signal beam, the other, beam
2, is called the idler beam.

The Hamiltonian for such a non-linear process is

H =
2∑

i=0

~ωi(n̂i + 1/2) + ~g[a+
1 a+

2 a0 + h.c.] (207)

obviously
[n̂1 + n̂2 + 2n̂0, H] = 0 (208)
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which reflects the fission of one photon into two photons.

Usually the pump wave is very strong and can be regarded as a classical field:

H =
2∑

i=1

~ωi(n̂i + 1/2) + ~g[a+
1 a+

2 α0e
−iω0t + h.c.] (209)

with
[n̂1 − n̂2, H] = 0 (210)

which means that the two photons are always created together.

The time evolution for the operator a1(t) can be found using the Heisenberg equa-
tion:

·
a1(t) =

1

i~
[a1(t), H] (211)

= −iω1a1(t)− iga+
2 (t)α0e

−iω0t (212)

With the help of the slowly varying amplitudes

A1(t) = a1(t)e
iω1t (213)

A2(t) = a2(t)e
iω2t (214)

one finds in the case of resonance (ω0 = ω1 + ω2):

d

dt
A1(t) = −igα0A

+
2 (t) (215)

d

dt
A2(t) = −igα0A

+
1 (t) (216)

=⇒ (217)

d2

d2t
A1(t) = g2|α0|2A+

1 (t) (218)

d2

d2t
A2(t) = g2|α0|2A+

2 (t) (219)

The general solution is

A1(t) = A1(0) cosh (g|α0|t)− ieiϑA+
2 (0) sinh (g|α0|t) (220)

A2(t) = A2(0) cosh (g|α0|t)− ieiϑA+
1 (0) sinh (g|α0|t) (221)

where α0 = |α0|eiϑ (222)

49



Now it is easy to show that the following holds (with |〉 denoting the vacuum state):

〈n1(t)〉 = sinh2 (g|α0|t) = 〈n2(t)〉 and (223)〈
: n2

1(t) :
〉

= 2 sinh4 (g|α0|t) =
〈
: n2

2(t) :
〉

(224)

Thus for the variance:
〈
∆n1(t)

2
〉

=
〈
: n2

1(t) :
〉− 〈n1(t)〉2 + 〈n1(t)〉 (225)

= 〈n1(t)〉 [1 + 〈n1(t)〉] =
〈
∆n2(t)

2
〉

(226)

With this it is straightforward to evaluate the correlation between signal and idler
photon:

σ1,2 =
〈: ∆n1(t)∆n2(t) :〉

(〈∆n1(t)2〉 〈∆n2(t)2〉)1/2
= 1 (227)

Thus, the signal and idler photons are perfectly correlated: any decrease of photons
in the signal requires an equal decrease in the idler beam. This again reflects the
fact, that the two photons are always produced together. Whenever a photon is
detected in one arm (e.g., idler) there has to be a photon in the other arm (signal).
This behavior is utilized in the realization of (non-deterministic or heralded) single
photon sources, as depicted in the following picture:

Figure 27: Principle of (non-deterministic) single photon generation. F is a set of filters.
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5.2 Non-classical behavior of down-converted light

By using the relation

〈: n1(t)n2(t) :〉 =
〈
: n2

j(t) :
〉

+ 〈nj(t)〉 >
〈
: n2

j(t) :
〉

for i = 1, 2 (228)

it follows from the optical equivalence theorem for normally ordered operator func-
tions (

〈
g(N)(a, a+)

〉
=

〈
g(N)(α, α∗)

〉
P
):

〈|α1|2|α2|2
〉

P
>

〈|αj|4
〉

P
=

(〈|α1|4
〉

P

〈|α2|4
〉

P

)1/2
(229)

which clearly violates the Schwartz-inequality for classical fields!

Thus, the field generated in the process of down-conversion is inherently non-classical
in nature. Presently, the down-conversion process is the main tool for generating
non-classical light!

The following pictures show the experiment from Hong, Ou, and Mandel [Phys.
Rev. Lett. 59, 2044 (1987)]. A pair of identical photons was created and super-
imposed on a beamsplitter. When the two photons arrived at the same time they
interferred and were either both reflected or transmitted (Photon bunching). Then
there was no coincidence count at the detectors.

Figure 28: Experimental setup of a photon coincidence experiment using parametric down-
conversion [from Hong, Ou, and Mandel, Phys. Rev. Lett. 59, 2044 (1987)]
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Figure 29: Experimental results (photon coincidence rate versus time delay between the photons)
[from Hong, Ou, and Mandel, Phys. Rev. Lett. 59, 2044 (1987)]

5.3 Generation of entangled states

Let us assume the following situation for a down-conversion experiment:

Figure 30: Creation of signal and idler photons in a non-linear crystal of volume V
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The interaction Hamiltonian is given by:

HI(t) =

∫

V

χE
(+)
0 E

(−)
i (r, t)E(−)

s (r, t) dr (230)

where

E
(+)
0 = α0e

i(k0r−ω0t) classical field (231)

E
(−)
i,s = αi,se

−i(ki,sr−ωi,st)a+
ki,s

quantum fields (232)

The parameter χ describes the strengths of the down-conversion process.

Since the signal and idler fields can be in different k-modes we obtain (using ’
and ” to denote signal and idler modes, respectively):

HI(t) = (233)

1

L3

∑

k′,σ′

∑

k′′,σ′′
χα0αk′σ′αk′′σ′′

∫

V

dr ei(k0−k′−k′′)rei(ω0−ω′−ω′′)ta+
k′σ′a

+
k′′σ′′ + h.c.

It is easy to show that it follows for the state |ψ(t)〉:

|ψ(t)〉 = exp

{
1

i~

∫ t

0

dt′HI(t
′)
}
|0〉 ' |0〉+ (234)

1

i~
1

L3
α0

∑

k′,σ′

∑

k′′,σ′′
χαk′σ′αk′′σ′′

3∏
m=1

sin(1
2
k̃lm)

1
2
k̃lm

sin(1
2
ω̃t)

1
2
ω̃t

|k′, σ′〉 |k′′, σ′′〉+ Õ(2)

here k̃ = k0 − k′ − k′′ and ω̃ = ω0 − ω′ − ω′′.

The first fraction in the product accounts for the phase matching (momentum con-
servation), the second fraction for the energy conservation.

It is obvious that |ψ(t)〉 cannot be factorized into single photon states |k′, σ′〉.

The state |ψ(t)〉 is an entangled state!

If we fix only two directions k1 and k2 and the polarizations σ1 and σ2 and as-
sume resonance (ω̃ = 0) we can find a symmetric state of the form:

|ψ(t)〉 = c0 |0〉+ c2 {|k1, σ1〉s |k2, σ2〉i + |k2, σ2〉s |k1, σ1〉i} (235)
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This can also be denoted as

|ψ(t)〉 = c0 |0〉+ c2

{
|ωs〉k1,σ1

|ωi〉k2,σ2
+ |ωi〉k1,σ1

|ωs〉k2,σ2

}
(236)

In the down-conversion process usually |c2| ¿ |c0| holds.

The two-photon states above reveal the non-local character of quantum mechan-
ics: Let’s assume the following setup (the same as above):

Figure 31: Projection of an entangled state. F is a set of filters.

If we neglect the vacuum contribution we can create a state:

|ψ〉 =
1√
2

{|ωs〉k1
|ωi〉k2

+ |ωi〉k1
|ωs〉k2

}
(237)

If we now project the state by measuring a single photon in the k1-arm at energy
ωs (by choosing an appropriate filter) then the other photon has to have the energy
ωi. But, if we had chosen a filter that transmits ωi then the photon in the k2-arm
would have had to have the energy ωs. In each arm no defined energy eigenstate
exists. Only after the projection we can assign a definite energy to the photon. The
projection occurs immediately, without any time delay.

54



5.4 Two-photon interference experiments

An interesting experiment with photon pairs, which addresses the issue of inter-
ference and indistinguishability was performed by Ou, Wang, and Mandel in 1989
(Phys. Rev. A 40, 1428).
They used the following setup:

Figure 32: Setup of a two-photon interference experiment [Ou et al., Phys. Rev. A 40, 1428 (1989)]

The results showed an interference, but only an interference of the two-photon co-
incidence rate!
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Figure 33: Experimental results of a two-photon interference experiment. Top: single photon rate;
bottom: Two-photon coincidence rate [from Ou, et al., Phys. Rev. A 41, 566 (1990)]
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The two states after the down-converters NL1 and NL2 can be written as:

|ψ1〉 = c0,1 |0〉s1,i1 + η1A1 |ω〉s1 |ω′〉i1 (238)

|ψ2〉 = c0,2 |0〉s2,i2 + η2A2 |ω〉s2 |ω′〉i2 (239)

where the c0,i are normalization constants, the ηi down-conversion efficiencies and
the Ai amplitudes of the classical pump field.

After the beam splitters BSA and BSB the field is:

E
(+)
A = κ(as1 + ias2)e

−iωt (240)

E
(+)
B = κ(ai1 + iai2)e

−iωt (241)

Then, the count rate in detector A is

RA = 〈ψ1| 〈ψ2|E(−)
A E

(+)
A |ψ2〉 |ψ1〉 (242)

= κ2
[|η1A1|2 + |η2A2|2

]
(243)

and a similar expression for detector B. Thus, there is no interference.

However, the two-photon coincidence rate is:

RAB = 〈ψ1| 〈ψ2|E(−)
A E

(−)
B E

(+)
B E

(+)
A |ψ2〉 |ψ1〉 (244)

= κ4|c01η1A1 − c02η2A2|2 (245)

≈ κ4
{|η1A1|2 + |η2A2|2 − 2|η1A1||η2A2| cos [arg A1 − arg A2 + const.]

}
(246)

Thus, there is an interference in the two-photon count rate when, e.g., BSP is moved.

The result can be interpreted in terms of indistinguishability:

1. In two-photon interference there is no way to determine the source of each
photon pair. =⇒ interference

2. If, e.g., BSB is removed (and RA is measured) detecting a photon in i1 means
that there was a photon also in s1, otherwise the photon detected in DA was
from NL2. Thus, it is in principle possible to say which path the photon
detected in DA took. =⇒no interference
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