
8 Quantized Interaction of Light and Matter

8.1 Dressed States

Before we start with a fully quantized description of matter and light we would
like to discuss the evolution of a two-level atom interacting with a classical field
E(t) = E0 exp(iω1t) in a different way.

As discussed in the previous section, the most general state of a two-level atom is:

|ψ〉 = cge
i
2
ω1t|g〉+ cne

− i
2
ω1t|e〉 (332)

= c̃g|g〉+ c̃n|e〉 (333)

(334)

where we have already transformed the coefficients into a rotating frame.

If we plug this state in the Schroedinger equation

·
|ψ〉 =

1

i~
(HA + HI) |ψ〉 (335)

with HA = 1
2
~ω0σz and HI = −~µ~E

we find coupled equations for the coefficients c̃e(t) and c̃g(t).

·
c̃e = i

(
−δ

2
c̃e + ~−1〈e|HI |g〉c̃g

)
(336)

·
c̃g = i

(
δ

2
c̃g + ~−1〈g|HI |e〉c̃e

)
(337)

We can write this equation in matrix form:

( ·
c̃e
·
c̃g

)
=

( − δ
2

Ω/2
Ω/2 δ

2

)(
c̃e

c̃g

)
(338)

with the Rabi-frequency Ω = 2|~−1〈e|HI |g〉|
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The solution of these equations are again the Bloch-equations (without damping!)
as derived in the previous chapter. We now start with a diagonalization of the 2x2
Hamiltonian.

The eigenenergies of the Hamiltonian are:

E1,2 = ±1

2

√
δ2 + Ω2 = ±1

2
Ω̃ (339)

The two eigenenergies differ by the generalized Rabi-frequency.

The according eigenstates are:

|1〉 = sin θ|e〉+ cos θ|g〉 (340)

|2〉 = cos θ|e〉 − sin θ|g〉 (341)

where

tan θ =
Ω

Ω̃− δ
(342)

These states are called dressed states. They are superpositions of the uncoupled
bare states.

The following figure shows the energy structure of the eigenstates for different de-
tunings in the case without coupling and with coupling.

In exact resonance (δ = 0) the states would be degenerate in the case without cou-
pling. However, a classical field couples the two bare states which mix and form the
dressed states. Instead of a crossing a pronounced anti-crossing is observed. The
splitting is proportional to the Rabi-frequency and hence to the strength of the clas-
sical field. Far from resonance both eigenstates approximate the bare states. The
shift of the eigenenergies at the anti-crossing is also denoted as AC stark shift.

As explained, the former bare states are no eigenstates of the coupled Hamiltonian.
Their dynamical behavior can now easily be derived from the new eigenstates, the
dressed states:
Obviously, the bare states can be written as coherent superpositions in the dressed
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Figure 54: Eigenenergies as a function of the detuning ∆. Top: in case of zero coupling (no classical
field present); Bottom: in case of coupling via a classical field. [from D.A. Steck Quantum and
Atom Optics]. Note: In this figure one eigenenergy was kept at a fixed reference level.

states basis:

|e〉 = |1〉+ |2〉 (343)

|g〉 = |1〉 − |2〉 (344)

The phase of the basis states now starts to evolve, e.g. for the state |e〉 and δ = 0:

|ψ〉 = e−iE1t/~|1〉+ e−iE2t/~|2〉 (345)

= e−iΩt/2|1〉+ eiΩt/2|2〉 (346)

= e−iΩt
(|1〉+ eiΩt|2〉) (347)

Apart from an overall phase, at Ωt = 2nπ the state |ψ〉 = |e〉, but at Ωt = (2n+1)π
the state is |ψ〉 = |g〉. This dynamical behavior is the known Rabi flopping.

92



8.2 Interaction of an atom with a quantized field

Now we will describe the interaction of an atom with a quantum field. It is conve-
nient to start from the Hamiltonian:

H =
1

2m
(p− eA)2 + eV (x) + Hfield (348)

= HA + HI + Hfield (349)

where

HA =

∫
ψ+(x)

(
− ~

2

2m
∇2 + eV (x)

)
ψ(x) dx (350)

HI =

∫
ψ+(x)

(
− e

m
Ap +

e2

2m
A2

)
ψ(x) dx (351)

The last term in HI can usually be neglected for not too intense fields.

Inserting the expression for the quantized vector potential gives:

HA =
∑

j

Ejb
+
j bj (352)

HI = ~
∑

j,k,λ

b+
j bk

(
gλjkaλ + g∗λjka

+
λ

)
(353)

with

gλjk = i
e

m

√
1

2~ωλε0

∫
ψ∗j(x) (uλ(x)p) ψk(x) dx (354)

If uλ(x) varies much more slowly than the extension of the electronic wavefunction
(λphoton À ratom, typically λ/r ≈ 103) then uλ(x) can be taken out of the integral.
In this electric dipole approximation one finds

∫
ψ∗j(x)pψk(x) dx =

im

~

∫
ψ∗j(x) [HA, x] ψk(x) dx (355)

=
im

~
(Ej − Ek)

∫
ψ∗j(x)xψk(x) dx (356)

= imω0m12 (357)

Therefore, one can write:

93



H = HA + HI + Hfield with (358)

HA =
∑

j

Ejb
+
j bj (359)

Hfield =
∑

k

~ωka
+
k ak (360)

HI = ~
∑

j,k,λ

gjkλb
+
j bk(aλ + a+

λ ) (361)

From the solution of the unperturbed Hamiltonian it can be seen that b+
j , bk, aλ, a

+
λ

oscillate rapidly with optical frequencies (e.g. b(t) = 1/i~ [H, b]):

bk = bk(0)e−iEkt/~ (362)

b+
j = b+

j (0)eiEjt/~ (363)

aλ = aλ(0)e−iωλt (364)

For not too intense fields only resonant terms with ω0 = (Ej − Ei)/~ ' ωλ and the
form exp i(ωij − ωλ)t are significant in the dynamics.

In this rotating wave approximation the Hamiltonian for the two-level atom in-
teracting with a quantized field is:

H = H0 + HI (365)

H0 =
1

2
~ω0σz +

∑

k

~ωka
+
k ak (366)

HI = ~
∑

λ

gλ(aλσ
+ + a+

λ σ−) (367)

with

gλ = −
(

1

2~ε0ωλ

)1/2

ω0uλ(x0)µ12 (368)

with the dipole moment µ12 = em12

Or if ωλ ≈ ω0 then
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gλ =

√
ω0

2~ε0

uλ(x0)µ12 (369)

= Ω0/2 (370)

with the vacuum Rabi frequency

Ω0 = 2
1

~

√
~ω0

2ε0

uλ(x0)µ12 = 2
1

~

√
~ω0

2ε0V
ũλ(x0)µ12 =

2E0µ12

~
ũλ(x0) (371)

which is similar as in the classical case, but with the classical field replaced by the
electric field per photon and explicitly taking into account the mode function ũλ(x0).

8.3 Jaynes-Cummings Model

The most simple case occurs if a single two-level atom interacts with a single mode
of the electromagnetic field.

For this case the Jaynes-Cummings-Hamiltonian applies:

HJC =
1

2
~ω0σz + ~ωa+a + ~g(aσ+ + a+σ−) (372)

This Hamiltonian only couples states |n, e〉 with |n + 1, g〉 where we denote with
|e〉 , |g〉 the excited and ground state of the two-level atom.

It thus suffices to describe H in this basis and define:

Hn = ~
(

n +
1

2

)
ω

(
1 0
0 1

)
+ ~

(
δ/2 g

√
n + 1

g
√

n + 1 −δ/2

)
(373)

with δ = ω0 − ω.

The eigenenergies of this Hamiltonian are:

E2n = ~
(

n +
1

2

)
ω − 1

2
~Ωn (374)

E1n = ~
(

n +
1

2

)
ω +

1

2
~Ωn (375)
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with

Ωn =

√
δ2 + Ω2

0 (n + 1) (376)

Ωn is called the generalized Rabi frequency.

The according eigenstates are:

|2n〉 = cos ϑn |e, n〉 − sin ϑn |g, n + 1〉 (377)

|1n〉 = sin ϑn |e, n〉+ cos ϑn |g, n + 1〉 (378)

with

cos ϑn =
Ωn − δ√

(Ωn − δ)2 + 4g2 (n + 1)
(379)

sin ϑn =
2g

√
(n + 1)√

(Ωn − δ)2 + 4g2 (n + 1)
(380)

These eigenstates of the combined atom-field system are called dressed states.
The quantized expressions are identical to the semiclassical expression with Ω0

√
n + 1

replaced by its semiclassical expression Ω. A striking difference is that even the vac-
uum filed (n = 0, i.e. zero field amplitude) can couple the two states. this is why
Ω0 is called vacuum Rabi-frequency.

On resonance the dressed states reduce to:

|2n〉 = (|e, n〉 − |g, n + 1〉) /
√

2 (381)

|1n〉 = (|e, n〉+ |g, n + 1〉) /
√

2 (382)

with eigenenergies:

E2n = ~
(

n +
1

2

)
ω − ~g√n + 1 (383)

E1n = ~
(

n +
1

2

)
ω + ~g

√
n + 1 (384)

It is easy to show that in the interaction picture (rotating at the frequency (n+1/2)ω)
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Figure 55: Dressed states. Dashed lines show energy levels without coupling. [from Meystre
”Elements of Quantum Optics”]

the coefficients c1n(t), c2n(t) of an arbitrary state |ψ(t)〉 = c1n(t) |1n〉 + c2n(t) |2n〉
obey:

(
c2n(t)
c1n(t)

)
=

(
exp(iΩnt) 0

0 exp(−iΩnt)

)(
c2n(0)
c1n(0)

)
(385)

In the resonant case δ = 0 this gives for a state initially in the upper state:

|cen(t)|2 = cos2(g
√

n + 1t) (386)

|cgn+1(t)|2 = sin2(g
√

n + 1t) (387)

Even if n = 0 (no photon or interaction with the vacuum) there is:

|ce0(t)|2 = cos2(gt) =
1

2
(1 + cos(Ω0t)) (388)

Thus there is a coherent exchange of one energy quantum between the atom and
the field mode, the so-called vacuum Rabi oscillation, in striking difference to the
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irreversible exponential decay into free space of an excited atom. The periodic en-
ergy exchange has an analogy with two coupled pendula.

The coupled equation of motion for the states |e, n〉 and |g, n + 1〉 are:

·
cen = −i

δ

2
cen − ig

√
n + 1cgn+1 (389)

·
cgn+1 = i

δ

2
cgn+1 − ig

√
n + 1cen (390)

Experiments to show the vacuum Rabi oscillations have been performed recently.

M. Brune, et al., Phys. Rev. Lett. 76, 1800-1803 (1996); B. T. H. Varcoe, S.
Brattke, M. Weidinger, H. Walther, Nature 403, 743 - 746 (2000)

8.4 Wigner-Weisskopf theory of spontaneous emission

The Hamiltonian for a single two-level atom coupled to a discrete number of modes
of an e.magn. field is:

H =
1

2
~ω0σz + ~

∑

k

ωka
+
k ak + ~

∑

k

gk(akσ
+ + a+

k σ−) (391)

The most general state vector is:

|ψ(t)〉 = ce0(t) |e{0}〉+
∑

k

cg{1k}e
−i(ωk−ω0)t |g{1k}〉 (392)

Substituting into the Schroedinger equation gives:

·
ce0 = −i

∑

k

gkcg{1k}e
−i(ωk−ω0)t (393)

·
cg{1k} = −igkce0e

i(ωk−ω0)t (394)

Formally integrating and inserting results to:
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·
ce0 = −

∑

k

g2
k

t∫

0

dt′ e−i(ωk−ω0)(t−t′)ce0(t
′) (395)

We now move from a discrete set of modes to a continuum by replacing the sum
over k with an integral:

∑

k

f(k) −→ V

(2π)3

∫
d3k f(k) =

V

(2πc)3

∫
dω ω2

∫ π

0

dϑ sin ϑ

∫ 2π

0

dϕ f(ω, ϑ, ϕ) (396)

We also insert

g2
k(ω, ϑ) =

1

~2

2∑
σ=1

|〈e| e−→r ε̂σ |g〉E0,ωuω|2 (397)

=
1

~2
E2

0,ωµ2
12 sin2 ϑ

∣∣cos2 ϕ + sin2 ϕ
∣∣ (398)

=
1

~2
E2

0,ωµ2
12 sin2 ϑ (399)

=
1

~2

(
~ω

2ε0V

)
µ2

12 sin2 ϑ (400)

Inserting and integrating gives:

·
ce0 = − 1

6ε0π2~c3

∫
dω ω3µ12

t∫

0

dt′ e−i(ωk−ω0)(t−t′)ce0(t
′) (401)

with

lim
t→∞

t∫

0

dt′ e−i(ωk−ω0)(t−t′) = πδ(ω − ω0)− P

[
i

ω − ω0

]
(402)

it follows:
·
ce0 = −Γ

2
ce0(t) (403)

where the Lamb-shift is neglected.

The rate Γ is the Wigner-Weisskopf rate of spontaneous emission:

Γ =
ω3µ2

12

3πε0~c3
(404)
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Figure 56: Probability to find an excited atom in a cavity in the upper state for weak damping (a)
and strong damping (b) of the cavity field. [from Scully ”Quantum optics”]

8.5 Collapse and Revival & Quantum beats

8.5.1 Collapse & Revival

An interesting phenomenon exists if a single atom interacts not with a single Fock-
state |n〉, but with a coherent state |α〉 where

|α〉 = e−|α|
2/2

∑
n

αn

√
n!
|n〉 (405)

In this case the probability to find the initially excited atom in the excited state
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after some time t is:

Pe =
∑

n

pn |cen(t)|2 (406)

= e−|α|
2∑

n

|α|2n

n!
cos2(g

√
n + 1t) (407)

The time evolution is a sum of oscillations with different Rabi frequencies which
then dephase.
This occurs on a timescale of appr.:

tc ≈ g−1 (408)

However, after some time there is a revival of the probability to find the atom excited
again. This is a pure quantum effect and due to the discrete number of basis states
of the coherent state.

The time for the revival can be estimated to:

tr ≈ 4π
√

ntc = 4π
√

ng−1 (409)
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Figure 57: Collapse and revival for the interaction of a two-level system with a coherent state with
n = 10 (top) and n = 120 [from D.A. Steck Quantum and Atom Optics]
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8.5.2 Quantum Beats

Another interesting quantum effect in the spontaneous emission of light from a sin-
gle atom is the quantum beat effect.

Consider the following Λ- and V -type three level systems:

Figure 58: V-type and Λ-type three level systems

Assume the atomic state is in a superposition:

|ψ(t)〉 = cae
−iωat |a〉+ cbe

−iωbt |b〉+ cce
−iωct |c〉 (410)

Semiclassically there exist oscillating dipoles:

V -type system: Pac and Pbc

Λ-type system: Pab and Pac

which create a field of the form

E(t) = E01 exp(−iν1t) + E02 exp(−iν2t) (411)

with
V -type system: ν1 = ωa − ωc

ν2 = ωb − ωc

Λ-type system: ν1 = ωa − ωb

ν2 = ωa − ωc

Obviously this creates a beating in a square law detector which can only measure
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intensities:

|E(t)|2 = |E01|2 + |E02|2 + {E∗
01E02 exp [i (ν1 − ν2) t] + c.c.} (412)

for both the Λ- and the V -type system.

However, in the quantum case the beating signal is given by the following expres-
sions:

V -type system:

I = 〈ψV (t)|E(−)
1 E

(+)
2 |ψV (t)〉 (413)

with
E

(−)
1 ∝ a+

1 eiν1t and E
(+)
1 ∝ a2e

−iν2t (414)

Therefore with the state

|ψV (t)〉 =
∑

i=a,b,c

ci |i, 0〉+ c1 |c, 1ν1〉+ c2 |c, 1ν2〉 (415)

this gives:

I = const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] 〈c|c〉 (416)

= const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] (417)

But, in the Λ-type system:

|ψΛ(t)〉 =
∑

i=a,b,c

c′i |i, 0〉+ c′1 |b, 1ν1〉+ c′2 |c, 1ν2〉 (418)

and

I = 〈ψΛ(t)|E(−)
1 E

(+)
2 |ψΛ(t)〉 (419)

= const. 〈1ν10ν2| a+
1 a2 |0ν11ν2〉 exp [i (ν1 − ν2) t] 〈c|b〉 (420)

= 0 (421)

There is no beat note in the Λ-system.
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This can be interpreted in the framework of which-path-information:

• After emission of a photon it is not possible to say which decay path the photon
took in the V -system. Thus, the two paths interfere.

• In the Λ-system a measurement of the atomic state (it is either in |b〉 or |c〉)
reveals information which path the photon took (even before it is detected).
thus there is no interference.

This effect has some analogy to Young’s double slit experiment.
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