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At low temperatures, sufficiently small metallic1 and semicon-
ductor2 devices exhibit the ‘Coulomb blockade’ effect, in which
charge transport through the device occurs on an electron-by-
electron basis3. For example, a single electron on a metallic island
can block the flow of another electron if the charging energy of the
island greatly exceeds the thermal energy. The analogous effect of
‘photon blockade’ has been proposed for the transport of light
through an optical system; this involves photon–photon inter-
actions in a nonlinear optical cavity4–13. Here we report obser-
vations of photon blockade for the light transmitted by an optical
cavity containing one trapped atom, in the regime of strong atom–
cavity coupling14. Excitation of the atom–cavity system by a first
photon blocks the transmission of a second photon, thereby
converting an incident poissonian stream of photons into a sub-
poissonian, anti-bunched stream. This is confirmed by measure-
ments of the photon statistics of the transmitted field. Our
observations of photon blockade represent an advance over
traditional nonlinear optics and laser physics, into a regime
with dynamical processes involving atoms and photons taken
one-by-one.

An analogy between electron transport in mesoscopic electronic
devices and photon transport through strongly coupled optical
systems was originally suggested in ref. 5. These authors proposed
that an effect similar to Coulomb blockade for electrons1–3 might be
possible for photons by using photon–photon interactions in a
nonlinear optical cavity5. In this scheme, strong dispersive inter-
actions enabled by electromagnetically induced transparency (EIT)
cause the presence of a ‘first’ photon within the cavity to block the
transmission of a ‘second’ photon, leading to an ordered flow of
photons in the transmitted field.

After resolution of an initial difficulty6, subsequent work has
confirmed that such photon blockade is indeed feasible for a single
intracavity atom by way of a multi-state EIT scheme7–9. Photon
blockade is possible in other settings, including in concert with
Coulomb blockade10 and via tunnelling with localized surface plas-
mons11. Photon blockade has also been predicted for a two-state
atom coupled to a cavity mode4,9,12,13. As illustrated in Fig. 1a, the
underlying mechanism is the anharmonicity of the Jaynes–
Cummings ladder of eigenstates4,15. Resonant absorption of a photon
of frequency q2 to reach the state j1;2l (where jn;þð2Þl denotes
the higher- (lower-) energy eigenstate with n excitations) ‘blocks’ the
absorption of a second photon at q2 because transitions to j2;^l are
detuned from resonance.

Whereas electrons interact directly via Coulomb repulsion, photon–
photon interactions must be mediated by matter. Furthermore,
verification of this effect requires measurements of the quantum
statistics of the field; in contrast, Coulomb blockade can be inferred
directly from mean transport. Scattering from a single atom in free
space, for example, provides a fundamental example of photon
blockade16, albeit with the fluorescent field distributed over 4p and

the flux limited by the rate of spontaneous decay g. In contrast,
cavity-mediated schemes offer the possibility of photon emission
into a collimated spatial mode with high efficiency and at a rate set by
the cavity decay rate k, which can be much larger than g. Achieving
photon blockade for a single atom in a cavity requires us to operate in
the regime of strong coupling, for which the frequency scale g0

associated with reversible evolution of the atom–cavity system
exceeds the dissipative rates (g, k) (ref. 14).

Here we report observations of photon blockade in the light
transmitted by an optical cavity containing one atom strongly
coupled to the cavity field. For coherent excitation at the cavity
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Figure 1 | The atomic level structure used for implementation of the photon
blockade effect, and a simple diagram of the experiment. a, Atomic level
diagram showing the lowest-energy states for a two-state atom of transition
frequency qA coupled (with single-photon Rabi frequency g0) to a mode of
the electromagnetic field of frequencyqC, withqA ¼ qC ; q0 (ref. 15). Two-
photon absorption is suppressed for a probe fieldqp (arrows) tuned to excite
the transition j0l! j1;2l; qp ¼ q0 2 g0; leading to g ð2Þð0Þ, 1 (ref. 13).
b, Eigenvalue structure for the ðF ¼ 4;mFÞ$ ðF 0

¼ 5 0 ;m 0

FÞ transition
coupled to two degenerate cavity modes l y,z, as discussed in the
Supplementary Information. Two-photon absorption is likewise blocked for
excitation tuned to the lowest eigenstate (arrows). c, Simple diagram of the
experiment. BS, beam splitter.
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input, the photon statistics for the cavity output are investigated by
measurement of the intensity correlation function g (2)(t), which
demonstrates the manifestly nonclassical character of the transmitted
field. Explicitly, we find gð2Þð0Þ ¼ ð0:13^ 0:11Þ, 1 with gð2Þð0Þ,
gð2ÞðtÞ; so that the output light is both subpoissonian and anti-
bunched17. We find that gð2ÞðtÞ rises to unity at a time t. 45 ns;
which is consistent with the lifetime t2 ¼ 2=ðgþ kÞ ¼ 48 ns for the
state j1;2l associated with the blockade. Over longer timescales,
cavity transmission exhibits modulation arising from the oscillatory
motion of the atom trapped within the cavity mode. We use
this modulation to make an estimate of the energy distribution for
the atomic centre-of-mass motion and infer a maximum energy
E=kB < 250mK , where kB is the Boltzmann constant

The schematic of our experiment in Fig. 1c illustrates the Fabry–
Perot cavity formed by mirrors (M1, M2) into which single optically
cooled caesium atoms are loaded. Atoms are trapped within the
cavity by a far-off-resonance trap (FORT), which is created by
exciting a TEM00 cavity mode at lF ¼ 935:6 nm (ref. 18). To achieve
strong coupling, we use the 6S1/2, F ¼ 4! 6P3=2; F

0
¼ 5

0
transition

of the D2 line in caesium at lA ¼ 852:4 nm (subscript A refers to
‘atom’), for which the maximum rate of coherent coupling is
g0=2p¼ 34 MHz for ðF ¼ 4;mF ¼^4Þ! ðF 0

¼ 5 0 ;m 0

F ¼^5Þ: The
transverse decay rate for the 6P3=2 atomic states is g=2p¼ 2:6 MHz;
while the cavity field decays at rate k=2p¼ 4:1 MHz: The parameters
of the cavity are further discussed in the Methods.

A variety of factors make our atom–cavity system more complex
than the simple situation described by the Jaynes–Cummings eigen-
states, including most significantly that (1) the cavity supports
two modes l y,z with orthogonal linear polarizations ðŷ; ẑÞ near lA ¼
852:4 nm as described in the Methods section, and (2) a multiplicity
of Zeeman states are individually coupled to these modes for
transitions between the manifolds ðF ¼ 4;mFÞ$ ðF 0

¼ 5 0 ;m 0

FÞ: An
indication of the potential for this system to achieve photon blockade
is provided in Fig. 1b, which displays the actual eigenvalue structure
for the first two excited manifolds obtained by direct diagonalization
of the interaction hamiltonian, as discussed in the Supplementary
Information. As for the basic two-state system, excitation to the
lowest-energy state in the one-excitation manifold ‘blocks’ sub-
sequent excitation because the transitions to the two-excitation
manifold are out of resonance.

To substantiate this picture quantitatively, we present in Fig. 2
theoretical results from the steady-state solution to the master
equation in various situations, all for the case of coincident atomic
and cavity resonances qA ¼ qC1

; q0: (Subscripts C1 and C2 refer to
the cavity resonances near lA and lF, respectively). Beginning with
the ideal setting of a two-state atom coupled to a single cavity mode,
we display in Fig. 2a results for the probe transmission spectrum
T(qp) and the intensity correlation function g (2)(0) of the field 1t

transmitted by mirror M2 for excitation by a coherent-state probe 1p

of variable frequency qp incident upon the cavity mirror M1. Clearly
evident in T(qp) are two peaks at qp ¼ q^ ; q0 ^ g0 associated with
the vacuum-Rabi splitting for the states j1;^l: At these peaks, 1p is
detuned for excitation j1;^l! j2;^l; resulting in gð2Þð0Þ, 1 for 1t:
The poissonian photon statistics of the incident probe are thereby
converted to subpoissonian statistics for the transmitted field by way
of the photon blockade effect illustrated in Fig. 1a. For strong
coupling in the weak-field limit, gð2Þð0Þ/ ðkþ gÞ2=g2

0 for qp ¼ q^

(ref. 12), hence the premium on achieving g0 .. ðk;gÞ: By contrast,
for qp ¼ q0 ^ g0=

ffiffiffi
2

p
;1p is resonant with the two-photon transition

j0l! j2;^l, resulting in superpoissonian statistics with gð2Þð0Þ.. 1:
For qp ¼ q0; there is extremely large bunching due to quantum
interference between 1p and the atomic polarization12,19.

In Fig. 2b we examine the more complex situation relevant to our
actual experiment, namely a multi-state atom coupled to two cavity
modes with orthogonal polarizations ŷ; ẑ: Most directly related to the
simple case of Fig. 2a is to excite one polarization eigenmode with the
incident probe, taken here to be 1zp; and to detect the transmitted field

1zt for this same polarization, with the transmission spectrum and
intensity correlation function denoted by TzzðqpÞ; g

ð2Þ
zz ð0Þ; respect-

ively. Even for the full multiplicity of states for the F ¼ 4! F
0
¼ 5

0

transition coupled to the two cavity modes ly;z; TzzðqpÞ displays a
rather simple structure, now with a multiplet structure in place of the
single vacuum-Rabi peak around qp . q0 ^ g0: For a probe fre-
quency tuned to the eigenvalues qp ¼ q0 ^ g0; g

ð2Þ
zz ð0Þ. 0:7; once

again dropping below unity as in Fig. 2a.
An alternative scheme is to detect along ẑ; but excite along

orthogonal polarization ŷ; with the respective transmission and
correlation functions TyzðqpÞ; g

ð2Þ
yz ð0Þ also shown in Fig. 2b. Similar

to TzzðqpÞ; TyzðqpÞ exhibits a multiplet structure in the vicinity
of qp . q0 ^ g0 owing to the nature of the first excited states
of the atom–cavity system. At the extremal qp ¼ q0 ^ g0; g

ð2Þ
yz ð0Þ

reaches a value gð2Þyz ð0Þ. 0:03 much smaller than for either g (2)(0) in
Fig. 2a, or gð2Þzz ð0Þ in Fig. 2b, for the same values of (g0, k, g). Our
preliminary hypothesis is that this reduction relates to the absence of
the superposed driving field 1yp with the transmitted field 1zt of
orthogonal polarization ẑ (ref. 20); photons in the mode l z derive
from emissions associated with the atomic components of atom-field
eigenstates.

Tuning the probe to qp ¼ q0 ^ g0 has the additional benefit of
reducing sensitivity to atomic position, which varies experimentally
owing to atomic motion and the multiplicity of trapping sites within
the cavity21. The atomic position affects the transmission via
the position dependence of the coupling g ¼ g0wðrÞ; where w is the
TEM00 spatial mode at lC1

with maximum jwj ¼ 1; and r is the
position of the atom. TyzðqpÞ is small when jqp 2q0j* g; so atoms
which have a lower-than-expected value of g will have a reduced
contribution to the photon statistics.

An important step in the implementation of this strategy is our
recent measurement of the vacuum-Rabi spectrum TzzðqpÞ for one
trapped atom21. In that work we obtained quantitative agreement on
an atom-by-atom basis between our observations and an extension
of the theoretical model used to generate the various plots in Fig. 2b.
The extended model incorporates a.c.-Stark shifts from the FORT as
well as cavity birefringence. This model predicts that corrections to

Figure 2 | Theoretical results for the transmission spectra and intensity
correlation functions. a, T(qp), g

(2)(0); b, Tzz(qp), g
ð2Þ
zz ð0Þ (dashed) and

Tyz(qp), g
ð2Þ
yz ð0Þ (red) from the steady-state solution to the master equation.

Included are all transitions ðF ¼ 4;mFÞ$ ðF 0
¼ 5 0 ;m 0

F Þ with their
respective coupling coefficients g

ðmF ;m
0
F Þ

0 ; as well as the two cavity modes l y,z
here assumed to be degenerate in frequency (see Supplementary
Information for further discussion). The blue dotted lines indicate
poissonian statistics. Parameters are (g0, k, g)/2p ¼ (33.9, 4.1, 2.6) MHz,
and the probe strength is such that the intracavity photon number on
resonance without an atom is 0.05.
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gð2Þyz ð0Þ due to these effects are small for our parameters, as discussed
in the Supplementary Information.

With these capabilities, we now report measurements of gð2Þyz ðtÞ for
the light transmitted by a cavity containing a single trapped atom. We
tune the probe 1yp to ðqp 2q0Þ=2p¼234 MHz; near 2g0, and
acquire photoelectric counting statistics of the field 1zt by way of
two avalanche photodiodes (D1, D2), as illustrated in Fig. 1c. From
the record of these counts, we are able to determine gð2Þyz ðtÞ by using
the procedures discussed in ref. 22. Data are acquired for each
trapped atom by cycling through probing, testing, and cooling
intervals (of durations Dtprobe ¼ 500ms; Dttest ¼ 100ms and Dtcool ¼
1:4 ms; respectively) using a procedure similar to that of ref. 21. The
test beam is polarized along ẑ and resonant with the cavity. A
repumping beam transverse to the cavity axis and resonant with
6S1=2; F ¼ 3! 6P3=2; F

0
¼ 4

0
also illuminates the atom during the

probe and test intervals. This beam prevents accumulation of
population in the F ¼ 3 ground state caused by the probe off-
resonantly exciting the F ¼ 4! F 0

¼ 4 0 transition. All probing/cool-
ing cycles end after an interval Dttot ¼ 0:3 s; at which point a new

loading cycle is initiated. We select for the presence of an atom by
requiring that Tzzðqp . qC1

Þ& 0:35 for the test beam. We use only
those data records associated with probing intervals after which the
presence of an atom was detected and for which the presence of an
atom was detected in all preceding intervals. If there is no atom and
the probe is tuned to be resonant with the cavity (qp ¼ qC1

), then the
photon number in mode l y due to 1yp is 0.21 and the polarizing beam
splitter at the output of the cavity (PBS in Fig. 1c) suppresses
detection of this light by a factor of ,94.

Figure 3 presents an example of gð2Þyz ðtÞ determined from the
recorded time-resolved coincidences at (D1, D2). In Fig. 3a, the
manifestly nonclassical character of the transmitted field is clearly
observed with a large reduction in gð2Þyz ð0Þ below unity, gð2Þyz ð0Þ ¼
ð0:13^ 0:11Þ, 1; corresponding to the subpoissonian character of
the transmitted field, and with gð2Þyz ð0Þ, gð2Þyz ðtÞ as a manifestation of
photon antibunching. We find that g (2)(t) rises to unity at a time
t. 45 ns; which is consistent with a simple estimate of t2 ¼
2=ðgþ kÞ ¼ 48 ns based upon the lifetime for the state j1;2l.

Although for small jtj our observations of gð2Þyz ðtÞ are in reasonable
agreement with the predictions from our theoretical model, there are
significant deviations on longer timescales. Modulation that is not
present in the model is evident in Fig. 3b, which arises from the
centre-of-mass motion of the trapped atom. In support of this
assertion, Fig. 3c displays the Fourier transform ~gð f Þ of gð2Þyz ðtÞ;
which exhibits a narrow peak at frequency f 0 . 535 kHz just below
the independently determined frequency n0 . 544 kHz for harmonic
motion of a trapped atom about an antinode of the FORT in the axial
direction x. This modulation is analogous to that observed in ref. 23
for g (2)(t) for the light from a single ion, which arose from micro-
motion of the ion in the radio-frequency trap.

Here, UðrÞ ¼U0 sin2ð2px=lC2
Þexpð22r2=w2

C2
Þ is the FORT

potential, which gives rise to an anharmonic ladder of vibrational
states with energies {Em}. Here m ¼ 0 to mmax ¼ 99 correspond to
the bound states in the axial dimension for radial coordinate r;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
¼ 0: The anharmonicity leads to the observed offset

f0 , n0 due to the distribution of energies for axial motion in the
FORT well. Indeed, the frequency nmin ¼ ðEmmax

2 Emmax21Þ=h at the
top of the well is approximately half that at the bottom of the well,
n0 ¼ ðE1 2 E0Þ=h: By comparing the measured distribution of fre-
quencies exhibited by ~gðf Þ with the calculated axial frequencies {nm},
we estimate that those atoms from which data was obtained are
trapped in the lowest-lying axial states m& 10; which corresponds to
a maximum energy E=kB < 250mK. This energy estimate is consist-
ent with other measurements of gð2Þyz ðtÞ that we have made, as well as
the Fourier transform of the record of the transmitted intensity and
the transmission spectra of ref. 21.

We have demonstrated photon blockade for the transmission of an
optical cavity strongly coupled to a single trapped atom4–9,12,13. The
observed nonclassical photon statistics for the transmitted field result
from strong nonlinear interactions at the single-photon level, in
analogy with the phenomena of Coulomb blockade for electron
transport1–3. Extensions of our work include operation in a pulsed
mode, as was analysed in ref. 5, thereby realizing a source for single
photons ‘on demand’22. As we improve the effectiveness of our
cooling procedure, we should be able to explore the dependence of
gð2Þyz ðtÞ on probe detuning, qp 2q0; as well as to move to higher levels
of excitation to increase the intracavity photon number towards
unity and the output flux towards the maximum value & k for
subpoissonian photons.

METHODS
Cavity and detection parameters. The physical length of the cavity used in this
work is 42.2 mm and the finesse is 4.3 £ 105. The cavity length is independently
stabilized such that a TEM00 longitudinal mode at lC1

is resonant with the free-
space atomic transition at lA and another TEM00 mode at lC2

is resonant at lF.
At the cavity centre x ¼ 0, the mode waists wC1;2

¼ {23:4;24:5} mm at lC1;2
¼

{852:4;935:6} nm:

Figure 3 | Experimental measurements of the intensity correlation function
gð2Þyz ðtÞ for incident excitation with polarization along ŷ and detection with
orthogonal polarization ẑ: a, g ð2Þyz ðtÞ over the interval jtj# 1:0ms
demonstrates that the transmitted field exhibits both subpoissonian
photon statistics g ð2Þyz ð0Þ ¼ ð0:13^ 0:11Þ, 1 and photon antibunching
g ð2Þyz ð0Þ, g ð2Þyz ðtÞ (ref. 17). b, g

ð2Þ
yz ðtÞ over longer intervals jtj# 10ms displays a

pronounced modulation due to axial motion of the trapped atom. c, The
Fourier transform ~gðf Þ of g ð2Þyz ðtÞ with the independently determined
minimum and maximum frequencies nmin and n0 for axial motion in a
FORTwell indicated by the dotted lines. g ð2Þyz ðtÞ is plotted with 6-ns
resolution in a and with 12-ns resolution in b.

NATURE|Vol 436|7 July 2005 LETTERS

89
© 2005 Nature Publishing Group 

 



The TEM00 longitudinal mode for the FORT is driven by a linearly polarized
input field 1FORT; resulting in nearly equal a.c. Stark shifts for Zeeman states in
the 6S1=2; F ¼ 3;4 manifold. At an antinode of the field, the peak value of the
trapping potential for these states is U0=h¼243 MHz for all our measure-
ments. Zeeman states of the 6P3=2; F 0

¼ 5 0 manifold experience a similar
trapping potential, but with a weak dependence on m 0

F (ref. 18).

Stress-induced birefringence in the cavity mirrors leads to a mode splitting
DqC1

=2p¼ 4:4^ 0:2 MHz of the two cavity modes l y,z with orthogonal linear
polarizations ðŷ; ẑÞ: 1FORT is linearly polarized and aligned along ẑ; the higher-
frequency mode.

The efficiency for photon escape from the cavity, limited by losses inherent to
the mirror substrates, is ae2 ¼ 0:6^ 0:1: The propagation efficiency from M2 to
detectors (D1, D2) is aP ¼ 0:41^ 0:03; with each detector then receiving half of
the photons. The avalanche photodiodes (D1, D2) have quantum efficiencies
aD ¼ 0:49^ 0:05:
Photon statistics. The transmission spectrum T(qp) is proportional to the
ratio of photon flux k1†

t 1t l transmitted by M2 to the flux j1pj
2

incident upon M1,
and normalized such that a cavity without an atom has a resonant transmission
of unity, i.e. Tðqp ¼ qC1

Þ ¼ 1: For a field with intensity operator ÎðtÞ;gð2ÞðtÞ;
k : ÎðtÞÎðtþ tÞ : l=k : ÎðtÞ : lk : Îðtþ tÞ : l;where the colons denote time and normal
ordering (ref. 17). gð2Þyz ðtÞ; displayed in Fig. 3a and shown with a 6-ns resolution,
has been corrected for background counts due to detector dark counts and
scattered light from the repumping beam. Without this correction, gð2Þyz ð0Þ.
ð0:18^ 0:10Þ is directly derived from the recorded counts.
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