Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse

Verhalten von Atomen in hochintensiven Laserfeldern

Henri Zimmermann

17. Juni 2009

ъ.

(日) (部) (注) (日) (日)

Einleitung	Effekte induziert durch intensive Laserstrahlung	Theoretische Ansätze	experimentelle Ergebnisse
		000000 00000	

Inhalt

1 Einleitung

2 Effekte induziert durch intensive Laserstrahlung

ATI

HHG

- 3 Theoretische Ansätze
 - Keldysh-Näherung
 - Strong-Field-Näherung

4 experimentelle Ergebnisse

Einleitung	Effekte induziert durch intensive Laserstrahlung	Theoretische Ansätze	experimentelle Ergebnisse
		000000 00000	

- hochintensiv: Laserfelder sind stark genug, um mit dem Coulombfeld, dass Elektronendynamik bestimmt zu konkurrieren
- Beispiel: Wasserstoffatom
- $E \approx 5 \cdot 10^9 \frac{V}{m} \rightarrow I \approx 3.51 \cdot 10^{16} \frac{W}{cm^2}$
- \blacksquare magnetisches Feld:($\approx 10^3\,T$)
- Elektronengeschwindigkeit: bis zu $\frac{1}{100}c_0$

Einleitung	Effekte induziert durch intensive Laserstrahlung	
	00	

Theoretische Ansätze

Effekte induziert durch intensive Laserstrahlung

- Ein- und Mehrfachionisation der Atome
- Erzeugung höherer harmonischer Frequenzen

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ●

Einleitung	Effekte induziert durch intensive Laserstrahlung	Theoretische Ansätze	experimentelle Ergebnisse
	00	00000	

lonisationsregimes

Abbildung: Die drei verschiedenen Regimes der Elektronenionisation durch verschieden hohe Lichtintensitäten (aus [1])

Einleitung	Effekte induziert durch intensive Laserstrahlung • •	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse
ATI			
٨٣١			

Abbildung: ATI-Spektrum für Xenon aufgenommen mit 100*ps* 1064*nm* Pulsen (aus [3]) Absorption von Photonen nach Ionisation

- → Peaks der Elektronenenergie hbei ganzzahligen Vielfachen der Photonenenergie
- steigende Intensität führt zu Peaks höherer Ordnung

Henri Zimmermann High-Intensity Laser Physics

 \neg \Box \Box

Einleitung	Effekte induziert durch intensive Laserstrahlung ○ ●○	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse
HHG			

High-Harmonic Generation

 Erzeugung von Vielfachen der eingestrahlten Laserfrequenz durch Probe

"simple-man's-theory"

- 1 Elektron tunnelt aus dem Kern
- **2** Oszillation im Laserfeld \rightarrow Aufnahme kinetischer Energie
- **3** bei Rückkehr zum Kern und Rekombination unter Abstrahlung eines Photons

Harmonic Order

Abbildung: shematische Darstellung eines ATI-Spektrums (aus [1]) Elektron gibt bei Rekombination mit Kern seine Gesamtenergie (Bindungsenergie + kinetische Energie) ab

$$U_P = \frac{e^2 E^2}{4m_e \omega^2} \tag{1}$$

Einleitung	Effekte induziert durch intensive Laserstrahlung

Theoretische Ansätze

Theoretische Ansätze

- 2 theoretische Ansätze
- Keldysh-Näherung: Regime der Mehrphotonenionisation
- Strong-Field N\u00e4herung: Regime in dem Coulompotential durch Laserfeld stark deformiert wird
- grobe Abschätzung durch Keldysh Parameter

$$\gamma = \sqrt{\frac{I_P}{2U_P}} \propto \sqrt{\frac{I_P}{I}}$$
(2)

A (1) > A (1) > A

3

•
$$\gamma \gg 1$$
 Mehrphotonenionisation; $\gamma \ll 1$ Tunnel- / "over-the-barrier"-lonisation

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze •00000 •0000	experimentelle Ergebnisse
Keldysh-Nähe	rung		

Keldysh-Näherung

- Keldysh-Näherung gibt intuitives Verständnis für den Vorgang der Mulitphotonen-Ionisation, quantitativ ist das Modell nur sehr grob gültig
- Ansatz: Schrödinger-Gleichung mit minimaler Kopplung

$$i\hbar\dot{\psi} = \left(\frac{\hat{p}^2}{2m} + \hat{V}(r) + \hat{H}'\right)\psi\tag{3}$$

mit

$$\hat{H}' = -\frac{e}{mc}A(t)\hat{p} + \frac{e^2A^2(t)}{2mc^2}$$
 (4)

(日) (同) (三) (三)

3

mit dem Coulomb-Potential V(r)

Henri Zimmermann

High-Intensity Laser Physics

 Ansatz für die Wellenfunktion: Entwicklung in diskrete Atomzustände |n> und Kontinuumszustände |k>

$$|\psi(t)\rangle = \Sigma_n a_n(t)|n\rangle + \int \mathrm{d}^3 k a_k(t)|k\rangle$$
 (5)

• Amplituden $a_n(t)$ und $a_k(t)$ erfüllen also die Gleichungen

$$i\hbar\dot{a}_{n}(t) = E_{n}a_{n}(t) + \Sigma_{m}\langle n|\hat{H}'(t)|m\rangle a_{m}(t) + \int \mathrm{d}^{3}k\langle n|\hat{H}'(t)|k\rangle a_{k}(t)$$
(6)

$$i\hbar\dot{a}_k(t) = E_k a_k(t) + \Sigma_m \langle k|\hat{H}'(t)|m\rangle a_m(t) + \int \mathrm{d}^3 k' \langle k|\hat{H}'(t)|k'\rangle a_{k'}(t)$$

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 00●000 00000	experimentelle Ergebnisse
Keldysh-Näh	erung		

- essentielle Annahme: V(r) ist kurzreichweitig genug um Kontinuumszustände $|k\rangle$ durch Eigenzustände $|p\rangle$ des kinetischen Terms zu approximieren
- dadurch Vereinfachen der Kontinuum-Kontinuum Übergänge und der Übergänge zwischen gebundenen und Kontinuumszuständen
- damit vereinfacht sich Gl. (7) zu

$$i\hbar\dot{a}_p(t) \approx \left(rac{p^2}{2m} + \hat{H}'(t)
ight) a_p(t) + \Sigma_m \hat{H}'(t) \Phi_m a_m(t)$$
 (8)

Lösung per Integration

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze	experimentelle Ergebnisse
Keldysh-Nähe	rung		

• Ansatz für Anfangszustand $a_m(t)$ und eingestrahltes Feld A(t):

$$a_m(t) \approx \exp\left(iE_m \tau \hbar\right) \exp\left(-\frac{\gamma_m \tau}{2}\right) \exp\left(-i\delta\omega_m \tau\right)$$
 (9)

$$A(t) = A_0 \left(\vec{e}_x \cos \omega t + \vec{e}_y \sin \omega t \right)$$
(10)

- *E_m*: Bindungsenergie des Zustandes, *γ_m*: Ionisationsrate und δω_m: Stark-Shift
- eingestrahltes Feld: zirkular polarisierte Welle

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 0000€0 00000	experimentelle Ergebnisse
Keldysh-Nähe	erung		

Photoelektronenspektrum:

$$|a_{p}|^{2} \approx \left[\left(\frac{p^{2}}{2m} + E_{m} + \hbar \delta \omega_{m} \right)^{2} + \frac{(\hbar \gamma_{m})^{2}}{4} \right] |\Phi_{m}(p)|^{2} \\ \times \Sigma_{-\infty}^{+\infty} J_{n}^{2}(\Gamma) \left[\left(\frac{p^{2}}{2m} + E_{m} + \hbar \delta \omega_{m} - n\hbar \omega \right)^{2} + \frac{(\hbar \gamma_{m})^{2}}{4} \right]_{-1}^{-1}$$
(11)
$$\blacksquare \text{ mit}$$

$$\Gamma = \frac{eA_0P_{\perp}}{mc\hbar\omega} \qquad (12) \qquad \qquad P_{\perp}^2 = p_x^2 + p_y^2 \qquad (13)$$

High-Intensity Laser Physics

Intensität der höheren harmonischen Frequenzen hängt von $|d(t)|^2$ ab, wobei

$$d(t) = \langle \psi | \hat{d} | \psi \rangle$$
 (14)

 zu beachten: für A(t) muss linear polarisiertes Feld angesetzt werden! (zirkular polarisiertes Licht erzeugt keine höheren Harmonischen)

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze ○○○○○○ ●○○○○	experimentelle Ergebnisse
Strong-Field-	Näherung		

Strong-Field-Näherung

- Annahmen:
- bei Einstrahlung des Laserfeldes wird das Elektron direkt aus Grundzustand heraus ionisiert
- 2 nach der Ionisation ist Auswirkung des Coulombpotentials vernachlässigbar

$$i\hbar\partial_{t}|\psi(r,t)\rangle = \left(-\frac{\hat{p}^{2}}{2m} + V(r) - exE(t)\cos\omega t\right)|\psi(r,t)\rangle \quad (15)$$
$$|\psi(r,t)\rangle = \exp\left(\frac{il_{P}t}{\hbar}\right)\left(a(t)|0\rangle + \int d^{3}qb(q,t)|q\rangle\right) \quad (16)$$

• für das Laserfeld diesmal lineare Polarisation angenommen

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze ○○○○○ ○○●○○	experimentelle Ergebnisse
Strong-Field-	Näherung		

- Behandlung der Schrödingergleichung (Gl. (15)) nun störungstheoretisch
- dazu: Aufspaltung der Dipolwechselwirkung:

$$\langle \psi | ex | \psi \rangle \rightarrow \langle q | ex | 0 \rangle + \text{h.c.} + ie\hbar \nabla_{q_x} \delta(q - q') + g_x(q, q')$$
 (17)

- erster Term (+ hermitesch konjugierter): Übergang aus dem gebundenen Zustand ins Kontinuum
- zweiter Term: Bewegung des Elektrons im Laserfeld
- letzter Term: Streuung am Kern

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze ○○○○○ ○○○●○	experimentelle Ergebnisse
Strong-Field-N	läherung		

- Streuung mit dem Kern wird nun als Störung behandelt
- Motivation: nach Ionisation durch das Laserfeld ist die Wahrscheinlichkeit der Streuung mit dem Kern gering
- in nullter Ordnung Störungstheorie erhält man für die Amplituden der Kontinuumszustände b(q, t):

$$b_0(q,t) = i \int_0^t \mathrm{d}t' E(t') \cos\left(\omega t'\right) d_x \left(p - eA(t')/c\right) \times \exp\left(-iS(p,t,t')/\hbar\right)$$
(18)

A(t): Vektorpotential und:

$$p = q + eA(t)/c$$
 (19) $S(p, t, t') = \int_{t'}^{t} dt'' \left(\frac{(p - eA(t'')/c)^2}{2m} + I_P \right)$ (20)

A (1) > A (1) > A

3

 nun Benutzung von b₀ aus Gl. 18 zur Berechnung der Amplituden in erster Ordnung Störungstheorie:

$$b_{1}(q,t) = -\int_{0}^{t} dt' \int_{0}^{t'} dt'' \int d^{3}p' E(t') \cos(\omega t') \times g_{X} \left(p - eA(t')/c, p' - eA(t')/c \right) e^{-iS(p,t,t')/\hbar} \times E(t'') \cos(\omega t'') d_{X} \left(p' - eA(t'')/c \right) e^{-iS(p',t',t'')/\hbar}$$
(21)

Henri Zimmermann

High-Intensity Laser Physics

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse

experimentelle Ergebnisse

 in Experimenten wird Strom aus Atomen mit geringem Druck mit fokussierten Laserpulsen bestrahlt

Abbildung: typscher experimenteller Aufbau (aus [2])

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse

ATI

 Unterdrückung der Peaks niedriger Ordnung resultiert aus Kopplung der atomaren Zustände an das Laserfeld (Stark-Shift)

Abbildung: ATI Spektren von Xenon für steigende Pulsenergien (aus [4])

æ

∃ >

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse

- HHG
 - für Helium konnten höhere Harmonische erzeugt werden, deren Wellenlängen unter 3nm liegen

Abbildung: HHG-Spektren für Argon, Neon und Helium (aus [5])

<ロ> (四) (四) (日) (日) (日)

э

Einleitung	Effekte induziert durch intensive Laserstrahlung

Theoretische Ansätze

experimentelle Ergebnisse

nichtsequenzielle Ionisation

Detektionsraten ein- und zweifachionisierten Heliums als Funktion der Laserintensität (aus [6])

э

3

Henri Zimmermann

High-Intensity Laser Physics

Einleitung	Effekte induziert durch intensive Laserstrahlung 0 00	Theoretische Ansätze 000000 00000	experimentelle Ergebnisse

- bei steigender Intensität der Laserpulses zeigen zweifach ionisierte Atome den gleichen Anstieg wie einfach ionisierte Atome
- $\blacksquare \ \rightarrow \ nicht sequenzieller \ lonisations prozess$
- simple-man's-theory" liefert auch hier mögliche Erklärung:
- nach Ionisation des ersten Elektrons schlägt das Elektron bei der Streuung am Kern ein zweites Elektron heraus

leitung	Effekte	induziert	durch	intensive	Laserstrahlu

Theoretische Ansätze

- M. Protopapas, C. H. Keitel and P. L. Knight; *Reports on Progress in Physics* 60; 389; (1997)
- M. Lewenstein, A. L'Huillier; *Principles of Single Atom Physics: High-Order Harmonic Generation, Above-Threshold Ionization and Non-Sequential Ionization* in *Strong Field Laser Physics*; Springer; 2008
- R.R. Freeman, T.J. McIlrath, P.H. Bucksbaum, M. Bashkansky; Physical Review Letters 57; 3156;; (1986)
- F.Yergeau, G. Petite, P Agostini; Journal og Phyisics B Atomic, Molecular and Optical Physics 19; L663; (1986)
- T. Brabec, F Krausz; *Review of Modern Physics* 72; 545; (2000)
- B. Walker, B. Sheeshy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander; *Physical Review Letters* 73; 1227; (1994)

Eir