### STED

#### Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscopy Principle Technical Details State of the Art Examples

# STED Microscopy

Breaking Abbes-Law

Robert Polster

20. Mai 2010

### Inhaltsverzeichnis

#### STED

#### Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Details State of the Art Examples

### 1 Classical Microscopy and Limits

- Limits of Resolution
- Modern Microscopes

### 2 STED-Microscopy

- Principle
- Technical Details
- State of the Art Examples



#### STED

Robert Polste

Classical Limits of Resolution Modern Microscopes

STED-Microscopy Principle Technical Details State of the Art Examples An electromagnetic wave propagates as:

$$\vec{E} = \frac{1}{4\pi^2} \int \int_{-\infty}^{\infty} \vec{E'} \cdot H \, dk_x dk_y dx' dy'$$

with

$$H = e^{i(k_x x + k_y y + k_z z)}$$

 $k_z$  can be expressed as:

$$k_z = \sqrt{k^2 - k_x^2 - k_y^2} = 2\pi \sqrt{\frac{1}{\lambda^2} - \rho^2}$$

 $k_z$  describes an evanescent wave, if  $\lambda < 1/\rho$ .

#### STED

Robert Polste

Classical Limits of Resolution Modern Microscopes

STED-Microscopy Principle Technical Details State of the Art Examples A electromagnetic Wave propagates as:

$$ec{E} = rac{1}{4\pi^2} \int \int_{-\infty}^{\infty} ec{E'} \cdot H \ dk_x dk_y dx' dy'$$

with

$$H = e^{i(k_x x + k_y y + k_z z)}$$

 $k_z$  can be expressed as:

$$k_z = \sqrt{k^2 - k_x^2 - k_y^2} = 2\pi \sqrt{\frac{1}{\lambda^2} - \rho^2}$$

 $k_z$  describes an evanescent wave, if  $\lambda < 1/\rho$ .

#### STED

#### Robert Polster

Classical Limits of Resolution Modern Microscopes

STED-Microscopy Principle Technical Details State of the Art Examples

### Conclusions:

The information of an evanescent wave vanishes in the far field. Because of the missing information we can not:

- reconstruct the scattering object
- construct infinitely small focus point

Best resolution:

$$\Delta x \approx \frac{\lambda}{2}$$

### **Optical Aperture**

#### STED

Robert Polstei

Classical Limits of Resolution Modern Microscopes

STED-Microscopy Principle Technical Details State of the Art Examples The resolution is  $\lambda/2$ , if you are able to collect every k-vector. As every microscope has a specific angle of acceptance the resolution is after the Rayleigh-Criterion:

$$\Delta x = 0.61 \frac{\lambda}{NA}$$

 $NA = n \sin \alpha$ 

 $\mathsf{n}=\mathsf{refraction}\;\mathsf{index}$ 

 $\alpha = {\rm angle} ~{\rm of} ~{\rm acceptance}$ 



### Microscopy methods

#### STED

#### Robert Polster

Classical Limits of Resolution Modern Microscopes STED-Microscopy

Principle Technical Details State of the Art Examples Modern commercial approaches to reach the resolution limit:

- ordinary Far Field Fluorescence Microscopy
- Scanning Confocal Microscopy

or even to break the resolution limit:

Near Field Microscopes

### Confocal Microscopy



source: http://en.wikipedia.org/wiki/Confocal\_microscopy

### 4Pi

### STED

#### Robert Polster

Classical Limits of Resolutio Modern Microscop STED-Microscopy Principle Technical Details



### Resolution:

- transversal 200 nm
- longitudinal 80 nm

Better resolution because of interference pattern at probe



<sup>2</sup> source: Bewersdorf, A. Egner, S.Hell "4Pi Microscopy". In: Handbook of Biological Confocal Microscopy, pp. 561-570, Ed. J. Pawley. Springer, New York, 2006

### Near Field Microscope



Modern Microscopes



3

source: http://nahfeldmikroskopie.de/allgemeines.html

#### STED

Robert Polster

Classical Limits of Resolution Modern Microscop

#### STED-Microscopy

Principle Technical Details State of the Art Examples

# **STED Microscopy**

Stimulated Emission Depletion Microscopy

#### STED

#### Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Detai

State of the Art Examples

### The goal

Make an image of a cell with previously inserted dye molecules for fluorescence microscopy.

#### STED

Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Detai

### Excite the dyes

As in every fluorescence microscopy the dye molecules are excited by a Laser.



#### STED

#### Robert Polster

- Classical Limits of Resolution Modern Microscopes
- STED-Microscopy Principle Technical Detail

### At the edge of breaking the limit

The Laser excites too much dye molecules for a good resolution. As we could not distinguish the light of the different dye molecules.

STED

#### Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Detai

### De-excitation of the dye molecules

Another Laser with a donut shaped focus deexcite the molecules by stimulated emission.



#### STED

Finish

#### Robert Polster

#### Classical Limits of Resolution Modern Microscope

#### STED-Microscopy Principle Technical Detai

Only selected molecules are still excited and can emit. Hence Abbes-Law is broken!



## The Dye

#### STED

#### Robert Polster

#### Classical Limits of Resolutio Modern Microscop

#### STED-Microscopy Principle Technical Detail State of the Art



### Important attributes of the dye:

- 2 level system
- the lower level has sub levels
- decay time of excited level $(k_{Fl}^{-1}) >>$  laser pulses
- decay rate of sub levels $(k_{vib}) >>$  re excitation rate

source: S.W. Hell, Far-Field Optical Nanoscopy, www.sciencemag.org, 25/05/07

#### STED

Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscopy Principle

Technical Details State of the Art Examples Depletion of the fluorescence level:

$$\frac{dN_1}{dt} = -N_1 \sigma I_{STED} / \hbar \omega + N_0 \sigma I_{STED} / \hbar \omega - N_1 k_{FI}$$

#### STED

Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscop

Principle

Technical Details State of the Art Examples Depletion of the fluorescence level:

$$\frac{dN_{1}}{dt} = -N_{1}\sigma I_{STED}/\hbar\omega + N_{0}\sigma I_{STED}/\hbar\omega - N_{1}k_{FI}$$
$$\frac{dN_{0}}{dt} = N_{1}\sigma I_{STED}/\hbar\omega - N_{0}\sigma I_{STED}/\hbar\omega - N_{0}k_{vib}$$

Depletion of the fluorescence level:

#### STED

Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscop Principle

Technical Details State of the Art Examples

$$\frac{dN_1}{dt} = -N_1\sigma I_{STED}/\hbar\omega + N_0\sigma I_{STED}/\hbar\omega - N_1k_{FI}$$

$$dN_0$$

$$\frac{dN_0}{dt} = N_1 \sigma I_{STED} / \hbar \omega - N_0 \sigma I_{STED} / \hbar \omega - N_0 k_{vib}$$

$$k_{vib} >> \sigma I_{STED}/\hbar\omega >> k_{FL} \rightarrow N_0 pprox 0$$

#### STED

Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscop Principle

Technical Detail State of the Art

$$\frac{dN_{1}}{dt} = -N_{1}\sigma I_{STED}/\hbar\omega + N_{0}\sigma I_{STED}/\hbar\omega - N_{1}k_{FD}$$
$$\frac{dN_{0}}{dt} = N_{1}\sigma I_{STED}/\hbar\omega - N_{0}\sigma I_{STED}/\hbar\omega - N_{0}k_{vib}$$

$$k_{vib} >> \sigma I_{STED}/\hbar\omega >> k_{FL} \rightarrow N_0 \approx 0$$

 $\Rightarrow$  N<sub>1</sub>  $\propto$  e<sup> $-\tau\sigma$ I<sub>STED</sub>/ $\hbar\omega$ </sup>

#### STED

Robert Polster

Classical Limits of Resolutio Modern Microscop

STED-Microscopy Principle

State of the Art Examples Depletion of the fluorescence level:

$$\frac{dN_1}{dt} = -N_1 \sigma I_{STED} / \hbar \omega + N_0 \sigma I_{STED} / \hbar \omega - N_1 k_{FI}$$
$$\frac{dN_0}{dt} = N_1 \sigma I_{STED} / \hbar \omega - N_0 \sigma I_{STED} / \hbar \omega - N_0 k_{vib}$$

$$k_{vib} >> \sigma I_{STED}/\hbar\omega >> k_{FL} \rightarrow N_0 \approx 0$$

$$\Rightarrow \mathit{N}_{1} \propto e^{- au\sigma \mathit{I}_{\mathit{STED}}/\hbar\omega}$$

We can estimate  $N_1(I_{STED})$  as a step function which becomes 0 at  $I_{STED} = \frac{\hbar\omega}{\tau\sigma}$ 

### Area of Excited Molecules



### Area of Excited Molecules



### New Resolution



#### Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Details State of the Art



$$\Delta x = rac{\lambda}{2 \cdot \textit{NA} \cdot \sqrt{1 + rac{l_{STED}}{l_{Sat}}}}$$

As the improvement is due to the limited area of light sources  $I_{STED}$  must be the crucial parameter.

### The Donut-Mode



The minimum in the center of the STED Focus is made by giving the half of the inner laying beams an phase shift of  $\pi$ 

### The STED Setup



#### Robert Polster

- Classical Limits of Resolutio Modern Microscop
- STED-Microscopy Principle Technical Details State of the Art Examples



The STED setup is similar to the setup of a confocal or 4Pi microscope. With the difference that one more beam has to be coupled into the optical axes.

<sup>&</sup>lt;sup>5</sup> source: Imaging with the Leica TCS STED a Practical Guide

### **Proof of Concept**



Technical Details



Experiment details:

- dye: LDS 751  $I_{STED} = 2.8 GW/cm^2$  $\lambda_{exc} = 540 nm$ ۲
- ۲  $\lambda_{STED} = 700 nm$

#### Results:

- predicted dependence N1 from ISTED a)
- measured lateral FID<sup>7</sup> without the STED beam b)
- reduced axial FID with the STED beam c)
- d) reduced lateral FID with the STED beam

6 source: Hell et al., Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission FID stands for fluorescence light intensity distribution

### STED Applications: Biophysics

#### STED

Robert Polster

Classical Limits of Resolution Modern Microscope

STED-Microscopy Principle Technical Detail State of the Art Examples



8 source: S.W. Hell, Far-Field Optical Nanoscopy, www.sciencemag.org, 25/05/07

### Resolution:

- transversal 16 nm
- longitudinal 32 nm

Probes:

- a) microtubules in a neuron
- b) silica nanobeads
- c) neurofilamente
- d) cell membrane

### Record of Resolution

#### STED

#### Robert Polster

- Classical Limits of Resolutio Modern Microscope
- STED-Microscopy Principle Technical Detai
- State of the Art Examples



### Experiment details:

- dye: nitrogen vacancies in diamond
- $I_{STED} = 3.7 GW/cm^2$
- $\lambda_{exc} = 532 nm$
- $\lambda_{STED} = 775 nm$

Results:

- resolution goes up to 8 nm
- with  $I_{STED} = 8.6 GW/cm^2$  even 6 nm

9 source: see next page

### **Diamond Colour Centers**



#### Robert Polster

- Classical Limits of Resolutio Modern Microscop
- STED-Microscopy Principle Technical Detai
- State of the A Examples



• luminescent transitions arising from nitrogen vacancies in the diamond structure

 $<sup>10</sup>_{\mbox{Hell et al, STED microscopy reveals crystal colour centers with nanometric resolution, nature photonics , 22/02/09}$ 

### **Diamond Colour Centers**



- Centers with  $m_s = 0$  emit more strongly, because the  $m_s = \pm 1$  centers convert often to the metastable state  ${}^1E$
- optical measurement of spins
- usable as magnetic field sensor or data storage

 $<sup>^{11}</sup>$  Hell et al, STED microscopy reveals crystal colour centers with nanometric resolution, nature photonics , 22/02/09

### Conclusion

#### STED

#### Robert Polster

- Classical Limits of Resolution Modern Microscope
- STED-Microscopy Principle

State of the Art

- Theoretically no more resolution limits for far field microscopy
- Practically bounded by the destruction threshold or cross section of the medium