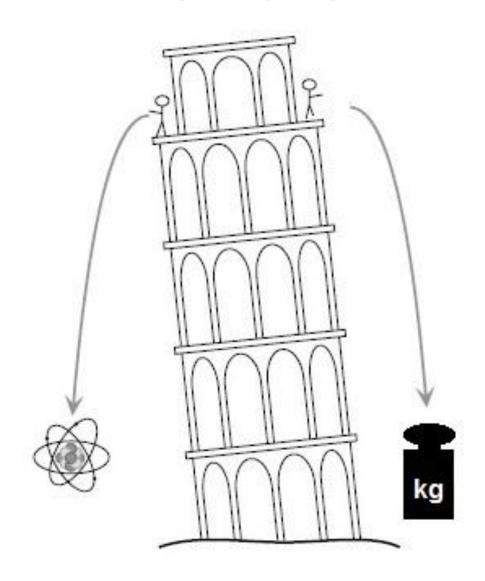
Atominterferometrie

Kai Lampmann

Berlin, den 23. Mai 2011

Motivation

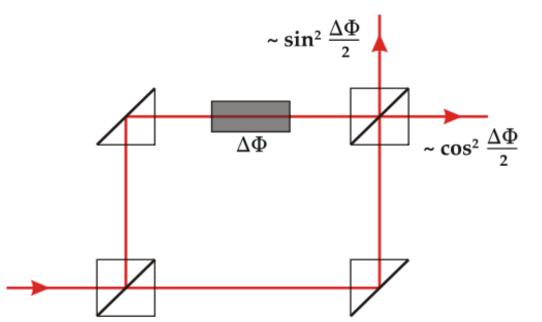


Gliederung

- 1. Einleitung
- 2. Atominterferometer
- 3. Test des Äquivalenzprinzips
- 4. Fazit

Lichtinterferometrie

Mach-Zehnder Interferometer



Komponenten eines Interferometers:

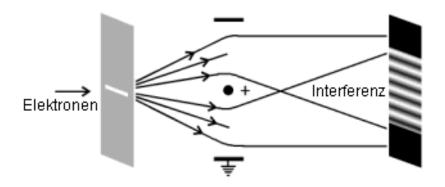
- Strahlteiler
- Reflexion
- Strahlüberlagerung
- → Phasenverschiebung zwischen den Armen des Interferometers
- → Messung durch Interferenz

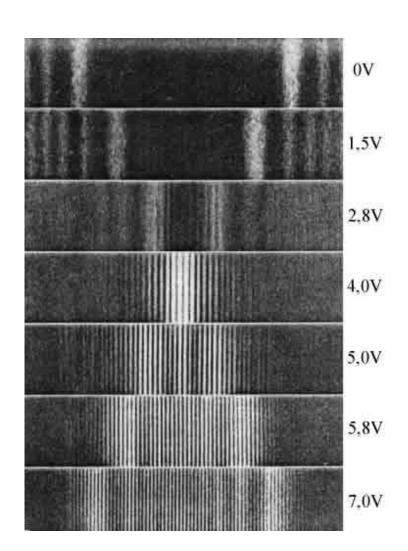
Elektronen-Interferenz

Luis de Broglie 1923:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Elektronen-Interferenz

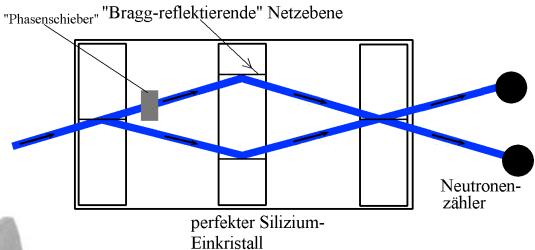
Möllenstedt und Dürker, 1954:





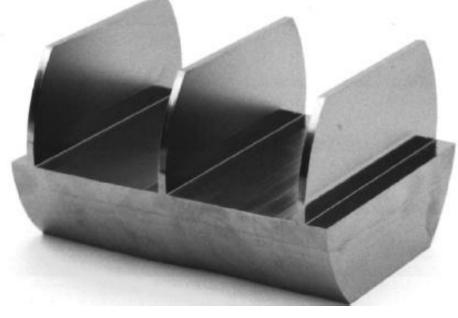
Neutronen-Interferometrie

Rauch, 1974
Silizium-PerfektkristallNeutronen-Interferometer



Mach-Zehnder-Interferometer

Strahlteilung und Reflexion durch Ausnutzung der Bragg-Reflexion an den Netzebenen im Kristall



http://www.forphys.de/Website/qm/exp/v37.html (bearbeitet) K. Littrell et al. Phys. Rev. A 56, 1767 (1997)

Materie-Interferometrie

Schwierigkeiten bei Interferometern mit Materiewellen:

- Andere Propagationseigenschaften von Materiewellen verglichen mit Lichtwellen
 - → Andere Verfahren zur Manipulationen nötig
- Sehr genaue Kontrolle der experimentellen Bedingungen nötig

Vorteile von Materieinterferometern:

- Neue Messgrößen zugänglich / genauer messbar
 - Messung von Beschleunigungen
 - Messung von Rotationen
 - •Messung von allg. relativistischen Effekten

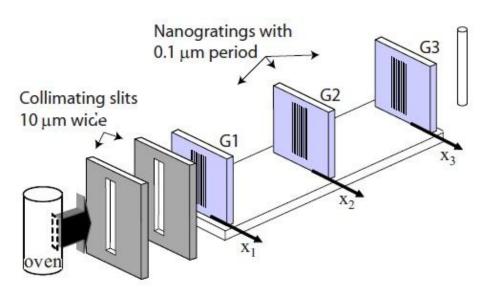
Gliederung

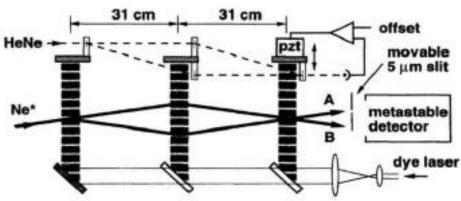
- 1. Einleitung
- 2. Atominterferometer
- 3. Test des Aquivalenzprinzips
- 4. Fazit

Atominterferometer

Atominterferometer mit Gittern

- Transmissionsgitter mit Perioden ≈ 100 nm
- Herstellung mittels Nanolithographie





Atominterferometer mit Lichtwellen

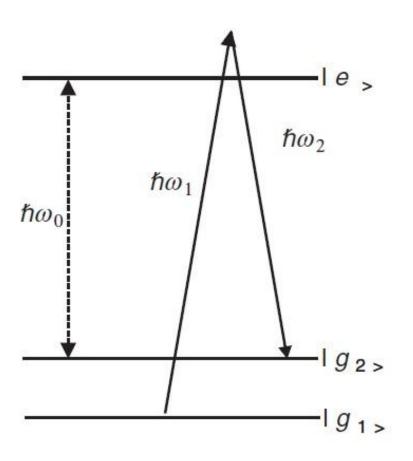
- Realisierung des Gitters durch stehende Lichtwellen
- Brechung der Materiewellen nach der Bragg-Beziegung:

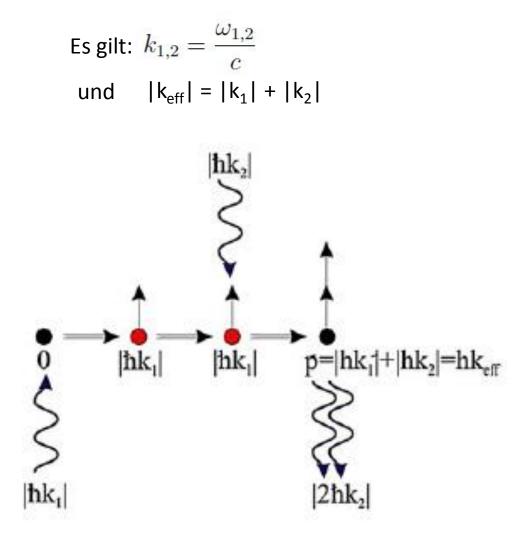
$$n \times \lambda = 2 \times d \times \sin(\theta)$$

Links: Keith et al., 1991; rechts: Giltner et al, 1995

Atominterferometer mit Lichtpulse

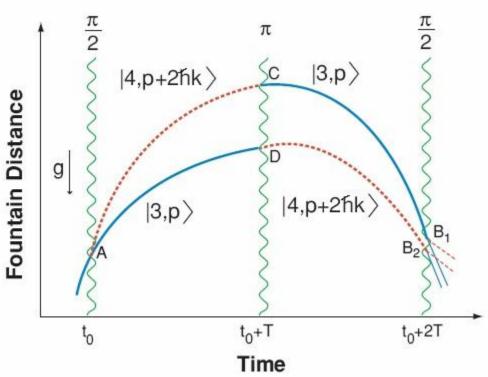
Stimulierte Raman-Übergänge

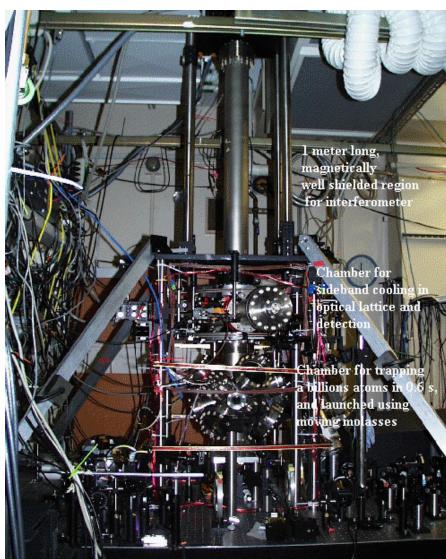




Atomfontäne

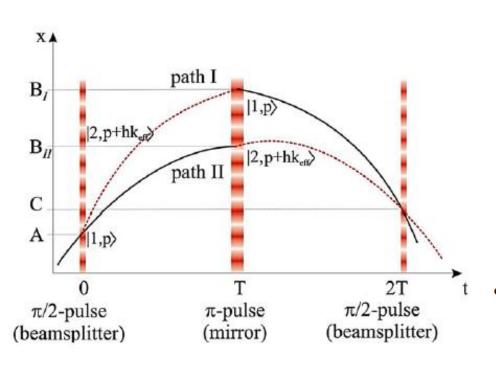
Realisierung des Interferometers:





Aus Talk von M. Kasevich, Stanford University http://www.stanford.edu/group/chugroup/amo/interferometry.html

Einfluss der Gravitation auf den Phasenunterschied



Berechnung der Phasendifferenz

$$\Phi(x^A, 0) = 0$$

$$\Phi(x_{II}^B, T) = k_{eff} \left[-\frac{1}{2}gT^2 + v_0T \right]$$

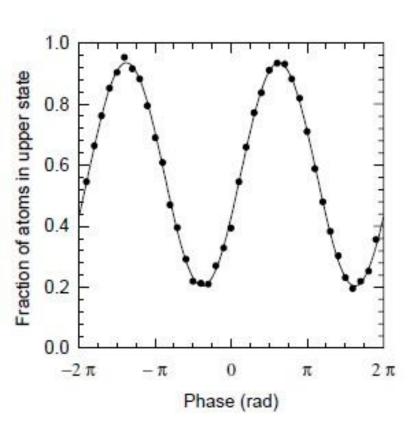
$$\Phi(x_I^B, T) = k_{eff} \left[-\frac{1}{2}gT^2 + \left(v_0 + \frac{\hbar k_{eff}}{m}\right)T \right]$$

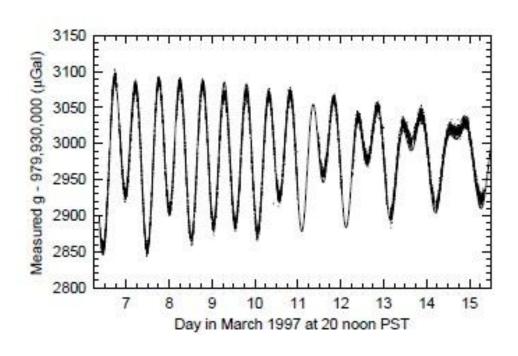
$$\Phi(x^C, 2T) = k_{eff} \left[-2gT^2 + \left(2v_0 + \frac{\hbar k_{eff}}{m}\right)T \right]$$

Phasenunterschied:

$$\Delta \Phi_g = -k_{eff}gT^2$$

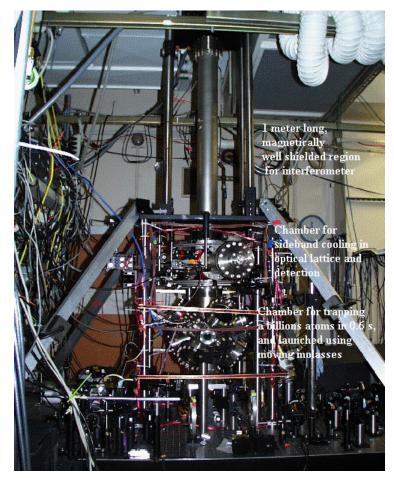
Messergebnis





mit
$$1 \text{ Gal} = 0.01 \text{ m/s}^2$$

Vergleich mit Standard



Gravimeter FG5

Beschleunigung zusammen messen:

VS.

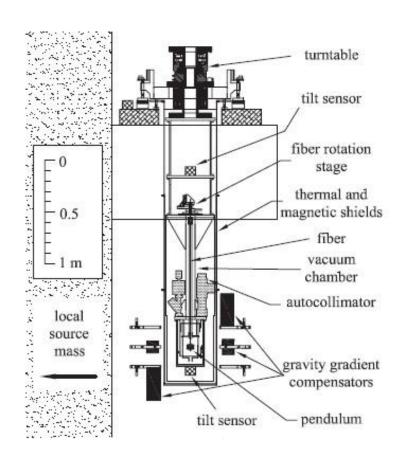
$$\delta g \approx 7 \times 10^{-9}$$

Gliederung

- 1. Einleitung
- 2. Atominterferometer
- 3. Test des Äquivalenzprinzips
- 4. Fazit

Äquivalenzprinzip

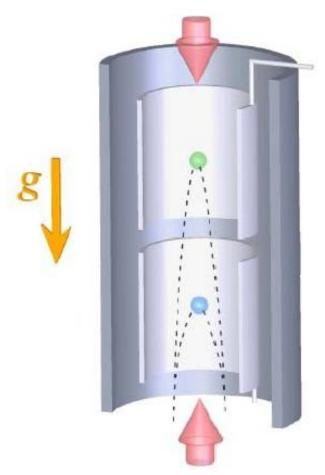
= Universalität des freien Falls



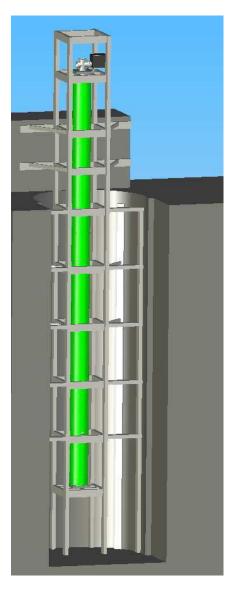
Sensitivität: $\delta g \approx 10^{-13}$

Äquivalenzprinzip auf Quantenebene

Direkter Vergleich der Beschleunigung eines ⁸⁵Rb und eines ⁸⁷Rb Ensembles



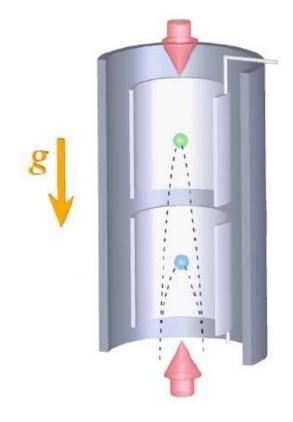
10-Meter-Fontäne in Stanford



Verbesserung der Sensitivität

$$\Delta \Phi_g = -k_{eff}gT^2$$

10m Fontäne → Faktor 100



Common-Mode-Rejection → ca. Faktor 100

Statistische Sensitivität: $\delta g \approx 10^{-15}$ mit einem Monat Integrationszeit

Systematische Einflüsse

 $-k_{eff} g T^2$

-2.84724×10⁸ 1.

Systematische Einflüsse

$-k_{\tt eff} g T^2$	-2.84724×10 ⁸	1.
$k_{eff} R_E \Omega_y^2 T^2$	6.21045×10 ⁵	2.18122×10 ⁻³
$k_{\tt eff} T_{\tt ss} V_{\tt L} T^3$	1.57836×10^3	5.54347×10^{-6}
$-\frac{7}{12}$ $k_{eff}T_{ss} g T^4$	-9.20709×10^2	3.23369×10 ⁻⁶
$2 \text{ k}_{\text{eff}} \text{ V}_{\text{x0}} \Omega_{\text{y}} \text{ T}^2$	1.97884×10^{1}	6.95002×10 ⁻⁸
-3 $k_{\tt eff} V_{\tt L} \Omega_{\tt y}^{\ 2} {\tt T}^{2}$	-5.16411	1.81373×10 ⁻⁸
$\frac{7}{4} k_{eff} \Omega_y^2 g T^4$	3.0124	1.05801×10 ⁻⁸
$\frac{7}{12}$ k _{eff} R _E T _{ss} Ω_y^2 T ⁴	2.00827	7.05338×10^{-9}
$\frac{k_{\rm eff}^2 T_{zz} \hbar T^3}{2 m}$	7.05401×10^{-1}	2.47749×10 ⁻⁹
$k_{\tt eff} T_{\tt ss} v_{\tt s0} T^3$	7.05401×10^{-1}	2.47749×10^{-9}
$k_{\tt eff} T_{\tt ss} T^2 z_0$	8.92817×10^{-2}	3.13573×10^{-10}
$-\frac{7}{4}$ k _{eff} R _E Ω_y^4 T ⁴	-6.57069×10^{-3}	2.30774×10^{-11}
$-\frac{7}{4} \text{ k}_{\text{eff}} \text{ R}_{\text{E}} \Omega_{\text{y}}^{2} \Omega_{\text{s}}^{2} \text{T}^{4}$	-3.84744×10^{-3}	1.35129×10^{-11}
$-\frac{3 k_{\rm eff}^{ 2} \Omega_{\rm y}^{ 2} \hbar T^3}{2 \rm m}$	-2.30795×10 ⁻³	8.10592×10 ⁻¹²
-3 $k_{\tt eff} v_{\tt s0} \Omega_{\tt y}^{\ 2} T^3$	-2.30795×10 ⁻³	8.10592×10^{-12}
$\frac{1}{4} \text{ k}_{\text{eff}} \text{ T}_{\text{ss}}^2 \text{ V}_{\text{L}} \text{ T}^5$	2.18739×10^{-3}	7.68251×10^{-12}
$3 \text{ k}_{\texttt{eff}} \text{ v}_{\texttt{y0}} \Omega_{\texttt{y}} \Omega_{\texttt{z}} \texttt{T}^{\texttt{3}}$	1.76607×10^{-3}	6.20273×10^{-12}
$-\frac{31}{360} \text{ keff Tss}^2 \text{ g T}^6$	-7.53436×10^{-4}	2.6462×10^{-12}
$4 B_0 V_L T^2 \alpha b_{z1}$	5.14655×10^{-4}	1.80756×10^{-12}
$-4~\mathrm{B_0}~\mathrm{g}~\mathrm{T^2}~\mathrm{a}~\mathrm{b_{s1}}$	-5.14655×10^{-4}	1.80756×10^{-12}
$k_{eff} \Omega_y^2 T^2 z_0$	9.73714×10^{-5}	3.41985×10^{-13}
$-k_{\tt eff}\Omega_{\tt y}\Omega_{\tt z}{\tt T}^2{\tt y}_0$	-7.45096×10^{-5}	2.61691×10^{-13}
$\frac{7}{6}$ k _{eff} T _{ss} V _{x0} Ω_{y} T ⁴	6.39894×10^{-5}	2.24742×10^{-13}
$-7 V_L g T^4 \alpha b_{z1}^2$	-4.7766×10^{-5}	1.67762×10^{-13}
$\frac{7}{6}$ k _{eff} T _{xx} V _{x0} Ω_{y} T ⁴	-3.19947×10^{-5}	1.12371×10^{-13}
$4 \text{ V}_{\text{L}}^2 \text{ T}^3 \alpha \text{b}_{\text{m}1}^2$	2.72948×10^{-5}	9.58642×10^{-14}
$3 g^2 T^5 \alpha b_{z1}^2$	2.04711×10 ⁻⁵	7.18982×10 ⁻¹⁴

Systematische Sensitivität: $\delta g \approx 10^{-16}$

Atominterferometrie in China

"High-Precision Atom Interferometer for the Test of the Equivalence Principle":

Prof. Wang Jin, Wuhan University

12,6 m Höhe des Systems 10 m Atom-Fontäne

Gliederung

- 1. Einleitung
- 2. Atominterferometer
- 3. Test des Äquivalenzprinzips
- 4. Fazit

Zusammenfassung

- Interferometrie ermöglicht extrem empfindliche Messungen
- Atominterferometrie mach neue Messungen möglich
 - → neue Messgrößen zugänglich
 - → Sensitivität auf extrem schwache Effekte
- Atominterferometer bieten bessere Genauigkeit als makroskopische Experimente

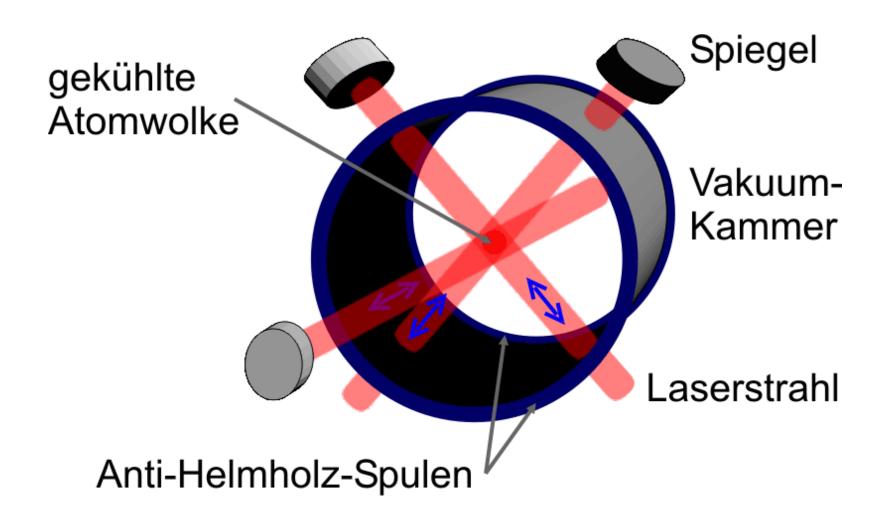
Ausblick

- → Äquivalenzprinzip
- Atominterferomertemessungen werden die bisherige Genauigkeit weiter verbessern
- Satellitengestützte Experimente (z.B. STEP, μSCOPE) sollen Genauigkeit weiter verbessern
- → Atominterferometrie
- Interferometer mit BECs
- Interferometer unter Schwerelosigkeit
- Interferenz makroskopischer Objekte

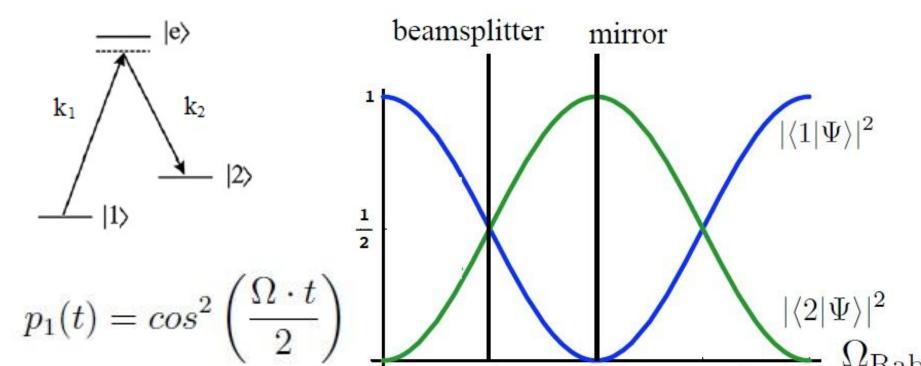
Vielen Dank für Ihre Aufmerksamkeit

Fragen?

Magneto-optische Falle



Rabi-Oszillation



 $\pi/2$

 π

 $3\pi/2$

$$p_2(t) = \sin^2\left(\frac{\Omega \cdot t}{2}\right)$$