シック 単 (中下・(中下・(中下・))

XFEL

Freie-Elektronen-Laser im Röntgenbereich

Stephan Scholz

Institut für Physik Humboldt-Universität zu Berlin

6. Juni 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Gliederung

Synchrotronstrahlung

2 XFEL

Funktionsweise Anwendung Ausblick

Gliederung

Synchrotronstrahlung

2 XFEL

Funktionsweise Anwendung Ausblick

1^{te} Generation - Synchrotronstrahlung von Dipolmagneten

• 1947: Nebenerscheinung an Ablenkmagneten von Synchrotronen

Winkelverteilung im Ruhesystem \approx wie Dipolstrahler.

Dipolstrahlung im Ruhesystem

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Im Laborsystem:

$$\boldsymbol{p} = \boldsymbol{L}' \cdot \boldsymbol{p}' = \begin{pmatrix} \gamma & 0 & \beta\gamma & 0\\ 0 & 1 & 0 & 0\\ \beta\gamma & 0 & \gamma & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{\boldsymbol{E}}{\boldsymbol{c}}\\ \boldsymbol{p}_{\perp}\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} \gamma \frac{\boldsymbol{E}}{\boldsymbol{c}}\\ \boldsymbol{p}_{\perp}\\ \beta\gamma \frac{\boldsymbol{E}}{\boldsymbol{c}}\\ 0 \end{pmatrix} \overset{\gamma = \mathcal{O}(10^3)}{\approx} \begin{pmatrix} \gamma \frac{\boldsymbol{E}}{\boldsymbol{c}}\\ \boldsymbol{p}_{\perp}\\ \gamma \boldsymbol{p}_{\perp}\\ 0 \end{pmatrix}$$

 \Rightarrow Öffnungswinkel von Synchrotronstrahlung $\approx \frac{p_{\perp}}{p_{\parallel}} = \frac{1}{\gamma}$

Dipolstrahlung im Laborsystem ($\gamma = 9 \Leftrightarrow \beta = 0.994$)

Beobachter sieht (anharmonische) Halbschwingung \rightarrow wird Spektrum bestimmen

- im System mit $v \approx \beta c$ entlang Sichtlinie ist $t' = \frac{t}{\gamma}$
- \Rightarrow typische Frequenz: $\omega' = \frac{\omega_0 \gamma^2}{2}$
- durch Boost:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2^{te} Generation - Wiggler (to wiggle = wackeln)

Wiggler = $2N_U$ hintereinandergesetzte Dipolmagnete wechselnder Orientierung ($N_U = O(10 - 10^4)$)

auch zirkulare Polarisation realisierbar

3^{te} Generation - Undulatoren (undulation = Wellenbewegung)

Aufbau wie Wiggler, aber

- Periode λ_{U} so, dass Strahlung eines e^ konstruktiv interferiert
- geringere Auslenkung \leftrightarrow harmonischere Bewegung

$$\lambda_{1} \approx \frac{\lambda'_{U}}{\gamma} = \frac{\lambda_{U}}{\gamma^{2}}$$

Genauere Betrachtung:
$$\lambda_{1} = \frac{\lambda_{U}}{2\gamma^{2}} (1 + \frac{1}{2} (\underbrace{\lambda_{U} \cdot B_{0} \cdot \text{const.}}_{=:\mathcal{K}=\mathcal{O}(0.2-20)})^{2})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

K ist Maß für die Auslenkung

Eurodamontala Wollonlänga:

- $K < 1 \leftrightarrow$ Undulator
- $K > 1 \leftrightarrow Wiggler$

Undulator

K-Parameter erfasst den Übergang vom Wiggler- zum Undulatorspektrum [Khan,geändert]

・ロト ・ 四ト ・ 日ト ・ 日ト

ъ

5900

590

XFEL-Undulator [tesla]

Präzisionsarbeit, z.B. LCLS-FEL-Undulator in Stanford: transversale Ungenauigkeit $\stackrel{!}{<}$ 5 µm auf 130 m

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

bisher: Beschreibung eines einzelnen e⁻ mehrere Elektronen:

$$P \propto \left| \sum_{j=1}^{N} E_j \mathbf{e}^{\mathbf{i} \phi_j} \right|^2 = \sum_{j=1}^{N} E_j^2 + \underbrace{\left| \sum_{j=1}^{N} \sum_{k=1}^{N} E_j E_k \mathbf{e}^{\mathbf{i} (\phi_j + \phi_k)} \right|^2}_{\propto N^2(!!!)}$$

der zweite Summand hebt sich im Mittel heraus

Gliederung

Synchrotronstrahlung

2 XFEL

Funktionsweise Anwendung Ausblick

4^{te} Generation - FEL Freie Elektronen Laser

SASE (Self Amplified Spontaneous Emission)

Laserprinzip:

- Abstrahlung von einer beschleunigten Ladung ist induzierbar
- Wellenlänge der Strahlung durch Undulatorgeometrie bestimmt
- \Rightarrow am Undulatoreingang: "totale Inversion"
- \Rightarrow exponentielle Verstärkung spontan emitierter Photonen

Unterschied zum Atomlaser:

- keine Spiegel für $\lambda < 100 \, \mathrm{nm} \Rightarrow$ nur ein Durchlauf für Verstärkung
- $\lambda_1 = \lambda_1(\gamma, B) \Rightarrow$ Energie durchstimmbar

- + Verstärkungsanfang ist intrinsisch statistisch
- \Rightarrow geringe zeitliche Kohärenz

- für Energieübertrag im Mittel: transversale e⁻-Bewegung in *Ē*-Orientierung des Strahlungsfeldes
 - → Licht muss e⁻ um eine Wellenlänge pro Undulatorperiode vorauseilen
- \Rightarrow Licht kann nur Elektronen im Bereich von $\lambda_1 \cdot N_U$ erfassen z.B. LCLS: 1.5 fs von 200 fs e⁻-Packetlänge

Microbunching

Idee: leicht phasenkorrellierte Strahlung durch e^--Dichteschwankung \rightarrow Dichtemodulation davorliegender e^- \rightarrow Strahlung höherer Kohärenz \rightarrow höhere Dichtemodulation ...

Verstärkung nimmt exponentiell zu bis zum vollständigen Microbunching [tesla.desy.org]

Chicanes

chicane = Schikane (Bodenwelle zur Geschwindigkeitsbegrenzung im Straßenverkehr)

Lasing im Röntgenbereich nur bei extrem hoher

- e^- -Strahlgüte \Rightarrow Linearbeschleuniger (Linac)
- e^- -Dichte \Rightarrow Bunchcompression

Eingangspuls: 10 ps, $I_{\text{max}} = 50 \text{ A}$

- Energieaufprägung in Abhängigkeit der e⁻-Position
- 2 $qvB = m\gamma \frac{v^2}{R} \Rightarrow$ Durchlaufen energieabhängiger Bahn

Ausgangspuls: $100 \text{ fs}, I_{\text{max}} = 10^3 \text{ A}$

Nebeneffekt: 100 fs-Röntgenpulse

magnetischer Pulskompressor (Chicane) [hasylab.desy.de]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Maß für Strahlgüte (vgl. Emmitanz), nicht durch optische Elemente zu vergrößern

Photonen

(s)(mrad)²(mm² Fläche der Strahlungsquelle)(0.1% der Bandbreite)

_

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

	ESRL Synchrotron	LCLS Stanford	XFEL Hamburg
Beschleuniger	Raumtemperatur	Raumtemperatur	Supraleitend
Pulse pro Sekunde	3 · 10 ⁶	120	27000
Elektronenenergie	6.3 GeV	14.3 GeV	17.5 Gev
$\min(\lambda_{Photon})$	0.7 nm	0.15 nm	0.1 nm
Länge	270 m(ø)	3 km	3.4 km
Experimentierplätze	47	3-5	6-10
max(Brillanz)	8 · 10 ²³	$8.5 \cdot 10^{32}$	$5 \cdot 10^{33}$
Brillanz	6 · 10 ²⁰	$2.4 \cdot 10^{22}$	1.6 · 10 ²⁵
Kosten			1.08 · 10 ⁹ €

Vergleich technischer Parameter verschiedener Röntgenstrahlungsquellen

Anwendungsgebiete

- Festkörperphysik: Schmelzvorgang an Oberflächen
- Astrophysik: Plasmaeigenschaften
- Femtochemie: zeitaufgelöste Beobachtung chemischer Reaktionen
- Traum in Biologie: Strukturanalyse nichtkristalliner Moleküle, Viren . . .

Problem

benötigte Intensität für auswertbares Signal zerstört das Objekt bevor Datenaufnahme abgeschlossen ist

Coulombexplosion während hochintensiver Röntgenbeugung [hasylab.desy.de]

Lösung

Verwende Pulslängen unter Zeitskala der Zerstörung

200

-

Sac

Untersuchung des Photosystem I [$(281\,\text{\AA})^2 \times 165\,\text{\AA}$] am LCSL

- $\lambda = 6.9 \text{ Å}, E_{\gamma} = 1.8 \text{ keV}$
- 10¹² Photonen pro Puls
- Pulsrate 30 Hz
- Pulsdauer $\in \{10\,fs, 70\,fs, 200\,fs\}$
- Kristallgröße $200 \text{ nm} 2 \,\mu\text{m} \Rightarrow$ Kantenlänge ab 10 Moleküle
- Kristalle werden bei Belichtung zerstört und in Lösung durch Röntgenstrahl gespritzt; $\sum = 3 \cdot 10^6$ Kristallbilder

Beispielsignal auf vorderem CCD nach 70 fs Impuls[Chapman]

Beispielsignale auf hinterem CCD nach 70 fs Puls, Inset: Kristallform aus Fouriertransformation und Phasenermittlungsalgorithmus[Chapman]

20 Å

3D-Beugungsbild aus 3 Millionen Einzelbildern [Chapman]

oben: rekonstruiertes Molekül, unten zum Vergleich: Molekülform aus Synchrotronstrahlungsexperimenten [Chapman]

500

(日)

q...Impulsübertrag, *d*...Auflösung; Signalaufsplittung wird als Strukturänderung gewertet [Chapman]

(optimistische Prognosen)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Ausblick

- Problem zu kleineren λ₁: Rückstoß auf e[−] ruiniert e[−]-Strahlgüte → bessere Undulatortechnik
- Ansatz zur Verbesserung der zeitlichen Kohärenz: Strahlung von außen statt spontane Emission (z.B. höhere Harmonische eines Laser)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Literatur

- Chapman Fromme, Barty; Nature Volume: 470, Pages: 73-77 Date published: (03 February 2011) DOI: doi:10.1038/nature09750
 - Khan S(2008) 'Free-electron lasers', Journal of Modern Optics, 55: 21, 3469 – 3512
 - McNeill Thompson Nature Photonics; Volume: 4, Pages: 814-821, Year published: (2010) DOI: doi:10.1038/nphoton.2010.239

```
tesla http:
```

//tesla.desy.de/new_pages/FEL_figures/