Exercise 1

a) Show with the help of the (retarded) potentials from the first problem of the 3rd exercise sheet

\[\phi(\vec{r}, t) = \frac{d_0 \cos \theta}{4\pi\varepsilon_0 r} \left(-\frac{\omega}{c} \sin \left[\omega \left(t - \frac{r}{c} \right) \right] + \frac{1}{r} \cos \left[\omega \left(t - \frac{r}{c} \right) \right] \right) \]

and

\[\vec{A}(\vec{r}, t) = -\frac{\mu_0 \omega d_0}{4\pi r} \sin \left[\omega \left(t - \frac{r}{c} \right) \right] \hat{e}_z, \]

and using \(r \gg c/\omega \), that the electric and the magnetic fields of a dipole oscillating along the \(z \) axis are

\[\vec{E}(\vec{r}, t) = \frac{\mu_0\omega^2 d_0}{4\pi r} \cos \left[\omega \left(t - \frac{r}{c} \right) \right] \left(\hat{e}_z - \frac{z}{r} \hat{e}_r \right) \]

and

\[\vec{B}(\vec{r}, t) = \frac{1}{c} \left(\hat{e}_r \times \vec{E} \right). \]

Here \(\hat{e}_r = \vec{r}/r \) is the unit vector in radial direction.

Hint: Use the relations \(\hat{e}_z = \hat{e}_r \cos \theta - \hat{e}_\theta \sin \theta \) and \(\hat{e}_r \times \hat{e}_\theta = \hat{e}_\varphi \) to get the form \(\vec{E} \propto \hat{e}_\theta \) and \(\vec{B} \propto \hat{e}_\varphi \).

b) A rotating dipole \(\vec{d} \) can be represented as the superposition of two oscillating dipoles where one dipole oscillates along the \(x \) axis and the other one along the \(y \) axis. The phase difference between the two dipoles is \(\pi/2 \), i.e.

\[\vec{d} = d_0 \left[\cos(\omega t) \hat{e}_x + \sin(\omega t) \hat{e}_y \right]. \]

Determine the electric and the magnetic fields of an oscillating dipole using the superposition principle and the fields from part a). Calculate also the Poynting vector \(\vec{S} \), its time average \(\langle \vec{S} \rangle \), and the emitted power \(P \). Compare \(P \) with the emitted power

\[P_1 = \frac{\mu_0 d_0^2 \omega^4}{12\pi c} \]

of an dipole oscillating along one axis. Did you expect your result?

Hint: \(\vec{a} \times \left(\vec{b} \times \vec{c} \right) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}) \); \(\hat{e}_r = (x\hat{e}_x + y\hat{e}_y + z\hat{e}_z)/r \) \(\Rightarrow \vec{E} \cdot \hat{e}_r = ? \)
Exercise 2

Step-index and graded-index optical fibers

a) A step-index fiber has a radius of $a = 5\mu m$, core refractive index $n_1 = 1.45$ and a fractional refractive-index change $\Delta = 0.002$. Determine the shortest wavelength λ_c for which the fiber is a single-mode waveguide. If the wavelength is changed to $\lambda_c/2$, identify the indices (l,m) of all the guided modes.

b) Compare the numerical apertures of the step-index fiber from a) with a graded-index fiber with $n_1 = 1.45$, $\Delta = 0.002$, and a parabolic refractive-index profile ($p = 2$), so that $n^2(y) = n^2_0(1 - p^2y^2)$.

Exercise 3

Asymmetric planar waveguide

Examine the TE field in an asymmetric planar waveguide consisting of a dielectric slab of width d and a refractive index n_1 placed on a substrate of lower refractive index n_2 and covered with a medium of refractive index n_3, where $n_3 < n_2 < n_1$.

a) Determine an expression for the maximum inclination angle θ of plane waves undergoing total internal reflection, and the corresponding numerical aperture (NA) of the waveguide.

b) Write an expression for the self-consistency condition.

c) Determine an approximate expression for the number of modes M (valid when M is very large).

d) For the parameters $n_1 = 1.35$, $n_2 = 1.32$, $n_3 = 1.3$, plot the values of the effective refractive index (β/k_0) as a function of the slab width normalized by the wavelength (d/λ) for the first 3 modes.