Fundamentals of Optical Sciences

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson
Prepare your answers for the exercise on 14.12.2015.

Exercise 1

Consider phenomenological decay terms for the density matrix. If decays only happen into states different from the two levels g and e, they can be introduced phenomenologically in the wavefunction picture. Let ϕ_{g} and ϕ_{e} be the stationary field-free atomic wavefunctions with the eigenenergies $\epsilon_{g}=\hbar \omega_{g}$ and $\epsilon_{e}=\hbar \omega_{e}$. For exponentially decaying states with the rates γ_{g} and γ_{e} the coefficients c_{g} and c_{e} of the wavefunction

$$
\Psi(\vec{r}, t)=c_{g}(t) \phi_{g}(\vec{r}) \mathrm{e}^{-\mathrm{i} \omega_{g} t}+c_{e}(t) \phi_{e}(\vec{r}) \mathrm{e}^{-\mathrm{i} \omega_{e} t}
$$

after transforming to the rotating coordinate system become

$$
\tilde{c}_{g}(t)=\mathrm{e}^{-\frac{\mathrm{i}}{2} \delta t} c_{g}(t) \quad \text { and } \quad \tilde{c}_{e}(t)=\mathrm{e}^{+\frac{\mathrm{i}}{2} \delta t} c_{e}(t) .
$$

Here $\delta=\omega-\omega_{e, g}$ is the detuning with the laser frequency is ω and the atomic transition frequency $\omega_{e, g}=\omega_{e}-\omega_{g}$. Using the rotating wave approximation (RWA) gives

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{c}_{g}(t)}{\mathrm{d} t} & =-\frac{1}{2}\left[\left(\gamma_{g}+\mathrm{i} \delta\right) \tilde{c}_{g}(t)+\mathrm{i} \Omega_{0} \tilde{c}_{e}(t)\right] \\
\frac{\mathrm{d} \tilde{c}_{e}(t)}{\mathrm{d} t} & =-\frac{1}{2}\left[\mathrm{i} \Omega_{0} \tilde{c}_{g}(t)+\left(\gamma_{e}-\mathrm{i} \delta\right) \tilde{c}_{e}(t)\right]
\end{aligned}
$$

where $\Omega_{0}=d_{e, g} E_{0} / \hbar$ is the Rabi frequency with the transition dipole moment $d_{e, g}$ and and electric field amplitude E_{0}. In the following, assume Ω_{0} is real.
a) Show that the introduction of these decay terms in the amplitude equations valid in the absence of external fields (i.e. for $\delta=E_{0}=0$) yields the desired exponential decay of the coefficients.
b) i) Show that for $\gamma=\gamma_{g}=\gamma_{e}$ the perturbative solutions of the differential equations can alternatively be obtained by using the transformations $\tilde{c}_{g}^{\prime}=\mathrm{e}^{\frac{1}{2} \gamma t} \tilde{c}_{g}$ and $\tilde{c}_{e}^{\prime}=\mathrm{e}^{\frac{1}{2} \gamma t} \tilde{c}_{e}$ for the solutions without decays (for an arbitrary number of levels).
ii) In the two-level case the population probability of the excited state is

$$
P_{e}(t)=\left|c_{e}(t)\right|^{2} \approx \frac{\Omega_{0}^{2}}{4}\left(\frac{\sin \left[\frac{1}{2}\left(\omega_{e, g}-\omega\right) t\right]}{\frac{1}{2}\left(\omega_{e, g}-\omega\right)}\right)^{2} \mathrm{e}^{-\gamma t}
$$

Discuss this solution compared to the one without decays.
c) Now assume that the excited state $|e\rangle$ decays with the rate γ to the state $|f\rangle$ emitting a photon (spontaneous emission). Initially (for $t=0$), all atoms are in the ground state $|g\rangle$. The population of the excited state $|f\rangle$ is given by

$$
P_{f}(t)=\gamma \int_{0}^{t}\left|c_{e}\left(t^{\prime}\right)\right|^{2} \mathrm{~d} t^{\prime}
$$

i) Motivate this equation.
ii) Calculate the spectral distribution function $P_{f}(t)$.
iii) Calculate the limit $P_{f}(t \rightarrow \infty)$.

Exercise 2

The eigenstates of the Pauli matrix $\boldsymbol{\sigma}_{z}$ form a complete orthonormal basis, $|+\rangle=\binom{1}{0}$ with eigenvalue +1 and $|-\rangle=\binom{0}{1}$ with eigenvalue -1 . Using these eigenstates the Observables A, B, and C have the following matrix representation:

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right) ; \quad \mathbf{B}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; \quad \mathbf{C}=\left(\begin{array}{cc}
0 & 2 \mathrm{i} \\
-2 \mathrm{i} & 0
\end{array}\right) .
$$

The expectation values of the observables

$$
\langle A\rangle=2 ; \quad\langle B\rangle=\frac{1}{2} ; \quad\langle C\rangle=0
$$

were measured for a certain spin state.
a) Determine the density matrix $\boldsymbol{\rho}$ of the spin state.
b) Is it a pure or a mixed spin state?
c) What is the probability of finding the spin eigenvalue $+\hbar / 2$ after a measurement in z direction?
Reminder: $\mathbf{S}_{z}=\frac{\hbar}{2} \boldsymbol{\sigma}_{z}$
d) Calculate the expectation values of the Pauli matrices $\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle$. Hint:

$$
\boldsymbol{\sigma}_{x}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right) ; \quad \boldsymbol{\sigma}_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) ; \quad \boldsymbol{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

